Application of mineralogical and textural evidence for recognition of alkaline metasomatism in Dodehak granitoid stock (NE Mahalat)

F. Masoudi1,2, M. Jamshidi-badri1, Z. Salehi1

1- Department of Geology, Tarbiat Moallem University, Tehran
2- Faculty of Science, Shahed Beheshti University, Tehran
Email: masoudi@saba.tmu.ac.ir

(Received: 25/9/2006, received in revised form: 25/6/2007)

Abstract: Dodehak granitoid stock with tonalite to granodiorite composition is exposed south of Dodehak village, north of Ab-e-Garm (Mahalat) in Urumieh-Dorhtar volcanic belt of Iran. Based on petrography and point analysis (EPMA), plagioclase crystals show normal zoning with graphic texture is present. Samples from SE of the intrusion are different and myrmekite texture is present in the rocks, while graphic texture is absent and plagioclases have lost their zoning. In samples from SE of the area, myrmekite is rim type and plagioclases show cross shape twinning. Based on whole rock XRF analyses, Rb-SiO2 and K2O-Na2O diagrams show non-linear trends and EPMA analysis indicate that plagioclases are homogeneous albite. Such petrographical and geochemical features are evidence for alkaline metasomatism in SE of the Dodehak intrusion.

Keywords: granite, myrmekite, alkaline metasomatism, zoning, Dodehak.
کاربرد شواهد کانی شناسی و بافتی در تشخیص دگرنهادی آلکالان در استوک گرانیتوئید دودهک (شمال شرق محلات) فریبرز مسعودی اور، محبوبه جمشیدی بدر، زهرا صالحی

1- کروه زمین شناسی دانشگاه تربیت معلم تهران
2- دانشکده علوم قبیلیات و همگانی تهران
masoudi@saba.tmu.ac.ir

چکیده: استخراج گرانیتوئیدی دودهک با ترکیب گوناگونسازی در جنوب چهارم محلات و در منطقه ارومیه دختر، برونز دارد. بر اساس شواهد سنگ‌شناسی و تجزیه ترکیباتی (EPMA)، پلاژیوکلازها دارای منطقه‌بندی خاصی و نشان‌دهنده است که نمونه‌های جنوب‌شرقی تندو نفودیان متقابل و دارای یافته‌های پاقیزه‌ای، زیرین از اینجا گرفته شده است و این نمونه‌های پلاژیوکلازی به دانه‌های گوناگون‌سازی دودهک وزن داده‌اند. در نتیجه پلاژیوکلازی دودهک به دنیای مسکن‌های سنتی کاربرد دارد.

واژه‌های کلیدی: گرانیتوئید، پلاژیوکلاز، منطقه‌بندی، دگرنهادی آلکالان، دودهک
کاربرد شواهد کاتی‌شناسی و بافتی در تشخیص درگیری‌ها

ریزگیرایی زرده‌شیمی‌پایی کاربردی در تشکیل بافت‌های مختلف در سنگ‌های بازتاب سی‌باید. در سال‌های

آخرین روش‌های موجود در سنگ‌های ایران، مانند پرتوی میکرویائی و روش‌های میکروسکوپی به عنوان کمیتی برای

تیم ورودی‌های کاوه و فراوان‌ترین مگماتیک‌های کارایی‌تن دارد. تعریف نیازمندی‌های فرزندی در

با ماه‌ها کویینز آن یا یک با بررسی میکروسکوپی محور مورد فیلم‌سازی‌های دیگر‌شیمی و سیرایی‌های محور در گونه‌کپ (metasomatic) فرایند، میگروفیلم‌های کارایی‌تن مطالعه کرده‌اند.

رایگا [۳] میگروفیلم‌های کارایی‌تن که در طول حاصل‌های می‌باشد. مورد بررسی قرار داده و

معمولاً نسبت می‌باشد. می‌توان به این نشان دهنده نوع

ماگما‌های سازنده سنگ‌ها باشد.

در منطقه شمال غرب شرکران محلات در تواف ماه‌ها ایران، رنگ‌شناختی کارایی‌تن به

نام توده نفوذی دوختا وجود دارد که از تعریف سنگ‌شناسی گردش‌گیری می‌باشد. یک سایر بخش‌ها می‌باشد. کارایی- (graphic) است.[۷] در این مقاله ورودی‌های بافتهای میگروفیل با کارایی‌تن بخش‌ها یا بخش‌هایی که در

شکل‌افزایی ورودی‌های تعریف قرار گرفته است. به منظور تغییر شیمی سنگ‌ز روش و برای پیشرفت تغییرات شیمی‌پایی کاربردی با بخش‌های مختلف بافت‌های مورد بررسی EPMA استفاده شده است.

زمان‌سنگ‌شناسی عمومی

در مسیر اصلی قم به دانکان و در جنوب روستای دوختا توده نفوذی کارایی‌تنی را خاص

دارد (شکل ۱). پرتویک مقطعی توده نفوذی دوختا به از ۱۰۰ کیلومتر مربع است و جایگاه

آن که استوک است. سن این توده به دلیل آنگه سنگ‌های

انشیافتی اوسن را قطع شده و امکان ایجاد می‌شود. روبی‌ها قرار گرفته است. انسان بازی- اولین‌گونه آغازی در سیستم‌های می‌باشد.[۸]

قیمت‌های پرواند در منطقه مورد نظر، متعلق به امکان‌های بررسی است. در این منطقه،

سابقه شاهد روز سنگ‌های پرمن قرار دارد و بیشتر شامل شیل‌های سپری با بیان‌های

از ماه‌ها پیدا است. در شمال روستای نیمه‌شناختی محدود از سنگ‌های اپی‌سنگ باید

فلز استراتفیور دیده می‌باشد. نزدیک ۲۰۰۰۰ جهت‌های محدودی در تتوافقی

اسبانی است. انسان شده است که بیشتر با اندازه بلوتهای تون بنام شده است.[۸]
روش مطالعه

به منظور مطالعه ویژگی‌های میکروسکوپی و زنوشیمایی توده دوده‌که، مقاطع نازکی از نمونه‌های مربوط به بخش‌های مختلف توده تهیه و پس از مطالعه متنوعی انتخابی به شورای XRF و نمونه کل سنجگی به وسیله یک دستگاه فیلیپس مدل PW2404 در آزمایشگاه تریپت مکالم انجام شد. نمونه‌ها به روش یوفر شده و در کامپیوتر EPMA (کانی پلاژیک، Kα) مورد آزمایش قرار گرفتند (جدول 1). به منظور تجزیه نقطه‌ای در نقطه‌ای مقطع نازک - صفحه تهیه و با یک دستگاه Cameca X100 در آزمایشگاه تحقیقات فرآوری مواد معدنی ایران و در شرایط ولتیژ شتاب 10 و جریان 10NA به شرکت 10KV نمونه‌های بررسی شدند. این مقاطع از دو گروه مختلف انتخاب شده بودند. در نمونه اول پلاژیک‌ها منطقه‌ای و سنتی‌ها فاقد میتریکت بودند. 13 نقطه از پلاژیک‌داری منطقه‌ای (نمونه D11) تجزیه شدند که از 7 نقطه از مرکز در راستای نوبتی کانی (شکل 2 پرداز 1) و 6 نقطه از مرکز در راستای عرض کانی (شکل 2 پرداز 2) به صمت حاشیه با مورد بررسی قرار گرفتند. نتایج این بررسیها را در جدول 2 می‌توان دید. نمونه دوم (نمونه D59) از جنوب‌شرقی توده انتخاب شد. این نمونه دارای یک میتریکت و یک پلاژیک‌داری منطقه‌ای خود را از دست داده بودند. از این نمونه 6
نتایج تجزیه شیمیایی، همگنی و یکنواختی بلورهای پلاژیوکلاز را در نمونه D59 نشان می‌دهد.

جدول 1 نتایج تجزیه گرواتوتروپهای توده نفوذی دودهک به روش XRF و سپس با حساب درصد و ppm عناصر بر حسب سنت. آلیهت، آنتی‌آلیهت و ارتنوز نوپهن بیز محاسبه شده است.

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>1-D</th>
<th>5DF</th>
<th>5DF</th>
<th>5VF</th>
<th>5VF</th>
<th>AAD</th>
<th>AAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>7.49</td>
<td>6.49</td>
<td>27.78</td>
<td>27.78</td>
<td>27.78</td>
<td>27.78</td>
<td>27.78</td>
<td>27.78</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>MgO</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>CaO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sr</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>V</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Cr</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Nb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ba</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>La</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Ce</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Nd</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>V</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Pb</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Cu</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Zn</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Cs</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ga</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Th</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>sum</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
<td>10.35</td>
</tr>
<tr>
<td>Ab</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
<td>18.11</td>
</tr>
<tr>
<td>An</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
<td>17.87</td>
</tr>
<tr>
<td>Or</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
شکل ۲ تصویر BSE مربوط به نمونه (DS9) از مرکز به حاشیه پلاژیوکلز در راستای نشان داده شده، به روش تجزیه کمی EPMA (EPMA) با روش جی. پ. پلگ (Pilg) که مرکز در دو راستای (EPMA) عمد بر هم تجزیه کمی (EPMA) روی آن انجام گرفته است.

شکل ۳ تصویر BSE مربوط به نمونه (DS9) از مرکز به حاشیه پلاژیوکلز در راستای نشان داده شده، به روش تجزیه کمی شده است (EPMA) با روش جی. پ. پلگ (Pilg) که مرکز در دو راستای (EPMA) عمد بر هم تجزیه کمی (EPMA) روی آن انجام گرفته است.
جدول ۲ نتایج نجیبی کمی پلاژیوکلز زونه (نموده D11) از مرکز به حاشیه A) در راستای طول بلوار و B) در راستای عرض بلوار.

<table>
<thead>
<tr>
<th></th>
<th>مرکز</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>4.25</td>
<td>3.78</td>
</tr>
<tr>
<td>K2O</td>
<td>7.17</td>
<td>1.65</td>
</tr>
<tr>
<td>CaO</td>
<td>6.29</td>
<td>3.36</td>
</tr>
<tr>
<td>FeO</td>
<td>1.71</td>
<td>0.39</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.79</td>
<td>0.39</td>
</tr>
<tr>
<td>SiO2</td>
<td>4.80</td>
<td>3.40</td>
</tr>
<tr>
<td>Total</td>
<td>17.44</td>
<td>14.85</td>
</tr>
<tr>
<td>Na</td>
<td>1.98</td>
<td>1.75</td>
</tr>
<tr>
<td>K</td>
<td>0.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Ca</td>
<td>2.64</td>
<td>1.36</td>
</tr>
<tr>
<td>Fe2</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Al</td>
<td>0.48</td>
<td>0.37</td>
</tr>
<tr>
<td>Si</td>
<td>0.92</td>
<td>0.51</td>
</tr>
<tr>
<td>Ab</td>
<td>0.83</td>
<td>0.66</td>
</tr>
<tr>
<td>An</td>
<td>0.39</td>
<td>0.36</td>
</tr>
<tr>
<td>Or</td>
<td>0.10</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>مرکز</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>4.17</td>
<td>4.62</td>
</tr>
<tr>
<td>K2O</td>
<td>3.78</td>
<td>4.20</td>
</tr>
<tr>
<td>CaO</td>
<td>1.54</td>
<td>1.10</td>
</tr>
<tr>
<td>FeO</td>
<td>0.32</td>
<td>0.50</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.19</td>
<td>3.76</td>
</tr>
<tr>
<td>SiO2</td>
<td>4.87</td>
<td>5.04</td>
</tr>
<tr>
<td>Total</td>
<td>19.77</td>
<td>19.98</td>
</tr>
<tr>
<td>Na</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>K</td>
<td>0.77</td>
<td>0.07</td>
</tr>
<tr>
<td>Ca</td>
<td>1.15</td>
<td>1.00</td>
</tr>
<tr>
<td>Fe2</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Al</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Si</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Ab</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>An</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Or</td>
<td>0.08</td>
<td>0.08</td>
</tr>
</tbody>
</table>
جدول 3: نتایج آنالیز کمی حاشیه و مرکز پلاژیوکلارهای نامطلوقه ی نمونه جنوب شرقی توده نفوذی
(نمونه 505)

<table>
<thead>
<tr>
<th></th>
<th>مرکز</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>11/44</td>
<td>11/98</td>
</tr>
<tr>
<td>K2O</td>
<td>52</td>
<td>71</td>
</tr>
<tr>
<td>CaO</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>FeO</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Al2O3</td>
<td>19/59</td>
<td>19/58</td>
</tr>
<tr>
<td>SiO2</td>
<td>68/92</td>
<td>68/92</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

بجت و بروکسی

مطالعه بخشنامه مختلف توده نفوذی در یک مرکز ناشن می‌دهد که در مقیاس ماکروکیفیت توده نفوذی می‌تواند دوگره دارای تركیب تشکیل‌دهنده‌ای است. بخش جنوب شرقی در ناحیه‌ی بخش جنوب شرقی جدا از هم بررسی و در مورد عوامل سایردهنده تفاوت‌های موجود بحث شد.

بوده نفوذی دوگره

بررسی‌های مدارسی ناشن می‌دهد که توده نفوذی دوگره یک توده تقریباً همگن است و تغییرات در زمان و نوع کلیها در سنگ‌ها پس از تبدیلی است. بر اساس مطالعات ماکروکیفیت و تفاوت‌های مدارسی کلی‌ها، نتایج تونالیت تا این جهت یک مدل بر اساس تقسیم‌بندی اشتراک‌التنه (7) تونالیت تا کارائوپورتیت هستند. سنگ‌ها با توجه به تجزیه شیمی اند (جدول 1) و بر اساس تقسیم‌بندی مدل، کلی‌ها، آبریز، و انتزاع (8) و (9) نیز بیشتر تونالیتی‌اند.
پلاژیوکلاژرها به صورت شکل‌دار تا نیمه‌شکل‌دار بوده و اندازه‌ آنها بین ۱۱ تا ۲۵ میلیمتر
تغییر می‌کنند و کلیت‌سالان و ساکت‌سالان منطقه‌ای و مالکیت‌‌سالان (شکل ۵) و آثار تجزیه در
آنها چندان‌دیده نمی‌شود. وی در فلسفه‌نامه‌ی کلیه‌ای آثار تجزیه به کتاب‌های رسی از برخی موربد
آشکار است.

یافته‌ام را اینکه گروه‌گرایی و پرفروش‌شده است. پرفروشی فرعی پرینته و رایگان‌گرایی به
خوبی قابل شناخت. خای شکستن گسترش اثر فرعی بی‌پروری بی‌پروری‌گرایی به گونه‌ای است که در
برخی موارد یافته اصلی سنج را به خود اختصاص می‌دهد (شکل ۶).

پلاژیوکلاژرها به شکل‌دار اصلی این توده منطقه‌ای هستند. اتومات و دیگرگونی‌شکل‌کننده‌منطقه‌ی
نیم‌دریچه‌پالژیوکلاژرها از دیگر یاز موربد توجه گرفته است. به طوری‌یان انجام شده برمبنی
نیم‌دریچه‌پالژیوکلاژرها را اینچیست و بیان (۱۳) و پیرس (۱۴) جمع‌بندی و ارائه شده است. منطقه
نیم‌دریچه‌پالژیوکلاژرها از دیگر یاز موربد برمبنی نیم‌دریچه‌پالژیوکلاژرها به پلژیوکلاژرها است. که در
tek بلور دیده می‌شودند (۱۲). مکتبر و همکاران (۱۵) انواع تغییر منطقه‌گردیده‌ریزی را معرفی
کرده‌اند. آنها معتقدند که در بلورهای پلژیوکلاژر در طول منطقه‌گردیده‌ریزی با تاریک و می‌توان
نوسان‌هایی در شبیدی را مشاهده کرده که به ترتیب انواع منطقه‌گردیده‌ریزی عادی، نوسانی، و نوسانی
وارون رد نشان‌گر گزارش می‌اندازند.

بر اساس تجزیه‌نگاری (EPMA) منطقه‌گردیده‌ریزی عادی در پلژیوکلاژرها منطقه‌گردیده‌ریزی
دیگر (EPMA) منطقه‌گردیده‌ریزی عادی در پلژیوکلاژرها منطقه‌گردیده‌ریزی
های اصلی توده دیده می‌شود که شامل افزایش میزان از مرکز به حاشیه و کاهش کلسیم
ارز میزان ا desn منطقه‌گردیده‌ریزی عادی در پلژیوکلاژرها از دیگر یاز موربد برمبنی
در حاشیه‌ها تغییر می‌کند (جدول ۲). ولی کلسیم در صورت ارائه‌تی از مرکز به حاشیه روی می‌ریز
در نتیجه و با نوسان‌های هم‌رودی از این روش شاید با توجه به تفاوت بین میزان این منطقه‌گردیده‌ریزی
پلژیوکلاژرها می‌توانند خاستگاه ماگمایی داشته و به سردر سریع مها می‌توانند
عناصر مربوط باشد (۱۶).
جدول ۴: نتایج آنالیز مدار مایع کاسه‌های کوارتز (Q)، فندسیت پتاسیک (KF) و پلاژیوکلار (Plg) بر حسب درصد در گرانيتولیه‌ها. مجموع درصد حجمی سه کانی به صورت رسانده شده است.

<table>
<thead>
<tr>
<th></th>
<th>αAD</th>
<th>αAD</th>
<th>αFD</th>
<th>βFD</th>
<th>δFD</th>
<th>δFD</th>
<th>θFD</th>
<th>10-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>39.32</td>
<td>39.77</td>
<td>39.77</td>
<td>39.91</td>
<td>39.84</td>
<td>39.39</td>
<td>38.12</td>
<td>38.28</td>
</tr>
<tr>
<td>Kf</td>
<td>1.18</td>
<td>1.23</td>
<td>1.54</td>
<td>1.80</td>
<td>1.61</td>
<td>1.79</td>
<td>1.25</td>
<td>1.29</td>
</tr>
<tr>
<td>Plg</td>
<td>59.32</td>
<td>58.82</td>
<td>64.78</td>
<td>63.27</td>
<td>74.54</td>
<td>72.80</td>
<td>70.87</td>
<td>77.05</td>
</tr>
</tbody>
</table>

نمودار (الف) و نمودار (ب) به‌کمک AFM شکل ۴: گرافیتولیه‌ها مورد مطالعه در نمودار آریبین و بارگار [۱۱] (الف) و نمودار (ب) نشانگر ترتیب شکل بستگی به ویژگی‌های گرافیتولیه‌ها است.

شکل ۵: تصویر مکروسکوپی پلاژیوکلارهای سالم با‌منطقه‌بندی مشخص در نمونه (XPL) D۱۱.
دگن‌نهایی در گرانیتون‌های جنوب شرقی توده نفوذی

نمودهای یک بخش جنوب‌شرقی توده با سایر نقاط منطقه نشان دهنده در نمونه‌هایی که از این بخش برداشت شده‌اند، بلاژوکلاژیک‌ها منطقه‌بندی روشنی ندارند و نیز بافت نگاری‌های که هم‌رسیده گوارتر و اکالسی فلدسپار است، مشاهده نمی‌شود. تفاوت‌هایی نیز در شکل و اندازه کانال‌ها وجود دارد. انداره بالورهای گوارتر بین ۲۰ تا ۱۲ میلی‌متر است. گوارتر بیشتر بی‌شکل بوده و پررنگ‌رخ

شکل ۱: تصویر میکروسکوپی بافت میکروگرافیک در بخش‌های اصلی توده نفوذی دودهک (XPL).
قسمت بین کانی‌های دیگر سنگ است. دانه‌های کوارتز اغلب خاوشی موچی نشان داده و در مواردی کانگلاست شده‌اند. سرسیتی شدن نیز در پلاژیکولازها مشاهده می‌شود که در حاشیه پلاژیکلازها می‌رمکت تشکیل شده است.

با توجه به تقسیم‌بندی فیلیپس (۶و۱۷) که می‌رمکت‌ها را به انواع می‌رمکت حاشیه‌ای، سنگر، زرده و شکل، انترگرونز، بین دو فلدسپار، و میکوکتی‌ها دو لحشه با دنباله‌ای منسوب‌کننده تقسیم کرده است، می‌رمکت‌های مورد مطالعه هیچ از نوع حاشیه‌ای هستند (شکل ۸ الف).

زبان (۴۱) نظریه‌های مختلف در ارتباط با تشکیل می‌رمکت‌ها عنوان کرده است که به ترتیب می‌باشد:

۱. رشده دم‌رمان یا بلوری شدن مستقیم از یک آبگون (۴) رشد دوباره کوارتز به صورت می‌رمکت، ۲. جانشینی پلاژیکلاز به وسایل فلدسپار (برخی دیگر معقده) کوارتز و می‌رمکت، ۳. فلدسپار جای گیرد (۴) اکسولوئن (جدایی) در طول سرد شدن فلدسپار با پلاژیکلاز که موجب افزایش می‌شود، ۴. بلوری شدن SiO۲ با پلاژیکلاز که موجب افزایش می‌شود، ۵. دوباره پلاژیکلاز در طول دگرسانی گرمایی در سنگ‌های دگرشکل شده (۴) نظریه‌های ترکیبی.

در مورد تناوب می‌رمکت در اثر جانشینی به وجود آمدن تغییرات در پلاک و کالری‌های سنگ دیده می‌شود. برای مثال دلیل این فاصله ناشیتی پلاژیکلازها، بافت‌های اولیه استر خاص دیجیت و ویژگی‌های از بین می‌روید. از طرف معیارها که دست‌خوش جانشینی می‌شوند، تغییر شکل بایت و آبگونی می‌تواند به راحتی در طول ددرنها ماهیت کانکا را تغییر دهد (۴۷).

تجزیه نقطه‌ای پلاژیکلازهای جنبی‌رشق منطقه (جدول ۳) نشان می‌دهد که درون ترکیب و آلی‌پت شدن پلاژیکلازهای تحقیق در حاشیه این پلاژیکلاز همگن، می‌رمکت تشکیل شده است و منطقه‌های پلاژیکلاز از بین رفته است که می‌تواند دلیلی بر تشکیل می‌رمکت در طول فرآیند دنگنه‌های شیشه‌ای باشد (۴۷).

از طرف دیگر، در نمونه‌های یک ناحیه جنوب شرقی فلدسپات‌های پتاسیک هسته‌های پلاژیکلازها هسته‌سازی داشته است (شکل ۸ ب) که این بافت به دنگنه‌های سدیک نسبت داده شده است (۱۹).
کاپیراد شواهد کاچی شناسی و یافته در تشخیص دگرنه‌دادی

در بررسی زئوویلیت‌های نمونه‌ها، روند غیرخطی نمونه‌های گرانیت‌یی در نمونه‌های K2O-Na2O و Rb-SiO2 دیده می‌شود (شکل ۹) که این پدیده نیز ناشی از دگرنه‌دادی سنگی است. در شرایط معمولی نمونه‌ها روند خطی با شیب مثبت نشان می‌دهند. [۱۰]

رنگ [۴] متناسب است که سنگ‌های حاوی میرمکیت در مناطقی که ماکمی کالکوآکن تشكل می‌شود، به وجود آمده. نمونه‌های منداز زئوویلیت‌های (شکل ۳) نیز که براساس تجزیه گرینی‌ها رسم شده است کالکوآکن بودن این سنگ‌ها که قبل نیز توسط قلمقاش و باعث اینکه [۶] کاراش شده بود نابود می‌گردند.

شکل ۸. PPL، پلاژیوگلازهای جنوب‌شرقی منطقه با سیموکیت‌های حاشیه‌ای (PPL) نشان داده که ندلسیتن پیتامیک روی پلاژیوگلاز در رنگ‌های جنوب‌شرقی توده تغییری دومه‌گذارکرد.

شکل ۹. روند غیرخطی نمونه‌های گرانیت‌یی در نمونه‌های K2O-Na2O و Rb-SiO2.
شکل 10 درصد آنورنیت نسبت به کوارتز در مایکروپیتهای مطالعه شده برحسب اساس نمودار رانگ [۴].

تشکیل دگرگونی آلقسان به عملکرد گرمایپیا و آیگونیا حاصل از واکنش‌های دگرگونی نسبت داده شده است [۲۰ تا ۲۲]. نتایج‌های پیشنهادی مطرح شده در سنگ‌های انششانی انتخاب‌های کویک نفوذ کرده و آکسی‌های الکوس در برخی نقاط روی آن قرار گرفته است. شکل داری که همراه با فعالیت دگرگونی درجه بالای دیده شده و یکی از تشکیل‌های مدل‌های دگرگونی مشخصی در منطقه دیده نشده. لذا به نظر می‌رسد که گرمایپیا در تشکیل دگرگونی آلقسان نقش داشته است. بنگاهی چگونگی تشکیل شرایط حاکم و ماهیت این اکسی‌های ۲۱ تا ۲۹ نشان داده است که مهم‌ترین عوامل کنترل کننده نوع دگرگونی، ترکیب سنگ‌های اولیه و میزان اسیدیت گرمایپیاس. کار تجربی [۲۶ و ۲۷] گویای این است که کرنشانگی آلقسان گرانیت‌ها در حصور شاره‌های با pH نزدیک به خشک‌بالی (۱/۸) و در گستره دما ۴۵۰ درجه سانتی‌گراد به وجود می‌آید. برخی پژوهشگران [۲۹] معتقدند که محلول‌ها دارای شوری پایین و در شرایط طبیعی و در محیط‌های زمین‌شناسی، میزان تاثیر آیگونیا و عملکرد منصفانه آیگونیا می‌تواند در تغییر دما و pH یاد شده موثر باشد. لذا برای تیمین دقیق خواص ماهیت آیگونیا می‌تواند در تغییر دما و pH یاد شده موثر باشد.
گونه‌ها و شباهت حاکم بر آنها در رمز تشکیل دگرگونه‌ای به آنها در هیدرات نفوذی دومه‌های مطلوب، بررسی‌های گونه‌ای در گروه‌های داده‌های مسطح، و تطبیق میزان و نسبت‌های آبی‌پیوندهای است.

در این دگرگونه‌ای، ساختاری سنجشایی نفوذی منطبق با نشان داده است که این سنجشایی نباید به آنها تاثیر مستقیم اعمالی نداشته باشد. این نتایج به طور کلی نشان می‌دهد که روزانه تغییرات و شرایط را برای آنها نیاز به پیشرفت می‌کند.

برداشت

توده‌های دومه‌های توانایی این از تاثیر پوزش‌های بی‌توجهی و فشار پوزش‌های در سنجشایی آن دیده می‌شود. با اینکه پیشینه‌های منطقه‌ای عادی (نوسانی) را نشان می‌دهند، با این دیدگاه موجود در سنجشایی جروم‌تراکت منطقه‌ی بی‌توجهی و وجود شواهد از دیگر نیز حضور دگرگونه‌ای آکنگان در این محیط است.

در حالی که پلاژیکالزایه‌ها که بایست نشان دهد خود را از دست داده‌اند، همچنین به وجود می‌آمد، این نوع می‌تواند در قرارند دگرگونه‌ای و در سنجشایی که از یک میدانی اولیه کاکتوکالزایه، بی‌توجهی شتاباند. با وجود آنکه، نمودارهای زیستی گزارش شده براساس تجزیه Röth، نتیجه‌های چنین می‌تواند روانه‌ای را نشان دهد.

اکننگان فیلم‌های به صورت مربع و لوزی شکل با پایه شیشه‌ای به شکل نسبتی زیستی به پلاژیکالزایه‌ها، نمونه‌گیری گرانیتی در نمودارهای Röth، Na2O و Rb-SiO2 می‌تواند در اثر اعتراف که می‌تواند ایجاد شده باشد وی در اثر نسبت ساختارهای تازه، شرایط برای نفوذ گسترش شرایط شرایط بیشمار نیاز به پیشرفت بی‌توجهی است.

زمان تشکیل دگرگونه‌ای توده نفوذی دومه‌های مطلوب بیشتری است.
تشکر و قدردانی
این کار پژوهشی با حمایت مالی معاونت پژوهشی و در اجرای طرح‌های پژوهشی پژوهشکده تحقیقاتی علوم کاربردی دانشگاه تربیت معلم انجام شده است.

مراجع
