Application of mineralogical and textural evidence for recognition of alkaline metasomatism in Dodehak granitoid stock (NE Mahalat)

F. Masoudi1,2, M. Jamshidi-badri1, Z. Saleh1

1- Department of Geology, Tarbiat Moallem University, Tehran
2- Faculty of Science, Siaheeg Beheshti University, Tehran
Email: masoudi@saba.tmu.ac.ir

(Received:25/9/2006, received in revised form:25/6/2007)

Abstract: Dodehak granitoid stock with tonalite to granodiorite composition is exposed south of Dodehak village, north of Ab-e-Garm (Mahalat) in Urumieh-Dorhtar volcanic belt of Iran. Based on petrography and point analysis (EPMA), plagioclase crystals show normal zoning with graphic texture is present. Samples from SE of the intrusion are different and myrmekite texture is present in the rocks, while graphic texture is absent and plagioclases have lost their zoning. In samples from SE of the area, myrmekite is rim type and plagioclases show cross shape twinning. Based on whole rock XRF analyses, Rb-SiO₂ and K₂O-Na₂O diagrams show non-linear trends and EPMA analysis indicate that plagioclases are homogeneous albite. Such petrographical and geochemical features are evidence for alkaline metasomatism in SE of the Dodehak intrusion.

Keywords: granite, myrmekite, alkaline metasomatism, zoning, Dodehak.
کاربرد شواهد کانی شناسی و بافتی در تشخیص دگرنهایدی آلوکالن در استوک گرانیت‌ویدی دوده‌های (شمال شرق محلات) فریبرز مسعودی امیر. محمدرضا جمشیدی بدر، زهرا صالحی.

1- کروب زمین شناسی ناکامیه تربیت معلول، تهران
2- دانشکده علوم، دانشگاه شهید بهشتی، تهران
masoudi@saba.tmu.ac.ir

چکیده: استوک گرانیت‌ویدی دوده‌های با ترکیب تونالیت تا گرابنودوریت در جنوب روستای دوده‌های شمال ایلام محلات و در مرزهای ارومیه دختر، برونز دارد. بر اساس شواهد سنگ‌شناسی و تجزیه نقطه‌ای (EPMA)، پلاژیوکلاز‌ها درای منطقه بندی‌هایی از خود جش آورده‌شده‌اند. این در حالتی است که نمونه‌های جنب‌شیری نوده نفوذی متفاوت و دارای ترکیب اپی‌کلینیکی و نشان دهنده پلاژیوکلاز‌ها ناشی از فلزهایی خود را از دست داده‌اند. نشان‌های خشک جنب‌شیری‌های مولکولاری از نوع حاشیه‌ای، سکه‌ای و پلاژیوکلاز دارای مانکل صفحه شترینی از نتایج تجربه‌های سنجش کل روند غیر خطی، نسبت K2O-Na2O و Rb-SiO2 و EPMA کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد. نتایج تجزیه‌های کانی پلاژیوکلاز ترکیب بکننده آبیشی را نشان می‌دهد.
ارادت شواهد کاتی‌شناسی و بافتی در تشخیص دکرتهادی

درختی الکتریکی که از تشکیل یافته‌اند و خوشه‌ای متفاوت در سنگ‌ها بافت‌شده است. در سالهای
اخر این‌گونه‌ای‌ها موجود در سنگ‌های آزاد. ماهی پروری و منیلام نیز به عنوان کلیدی برای
عائم و بیکی‌های کالا و تأمین‌های منیلام‌های ماده‌ای که به رز پروری خاصی برای خوبه است
پار می‌کنند. این با بررسی میکرونی‌ها موجود در سنگ‌های دگرگونه می‌شود و منیلام‌های
سورت‌های متاسوماتیک که در جنسیتی کوچکی در جنسیتی استانداردی جگوگی
فاین‌گرایانه‌ها دگرگونه‌ها را مطلوعه کرد. این
زیرگروه [2] میکرونی‌ها که در طول جانشینی حاصل می‌شوند به صورت قطر داد و
معتبر است میکرونی‌ها که در اثر جانشینی حاصل می‌شوند. می‌توانند نشان دهنده نوع
ماهی پروری سنگ‌ها باشد.

از جنسیتی شماره زیادی مخلوط در نوار آتش‌شناختی آبمی، رخ‌نمونی گرایانه‌ی به
نام توده نفوذی دهدهک وجود دارد که از نظر سنگ‌شناسی تقریباً ممکن است به نظر می‌رسد، ولی
خصوصاً کلی‌شناسی و بافتی در بخش‌های جنب‌شیرینی آن با سایر بافت‌های متناسب
است[5]. در این مقدمه ورک‌های بافتی میکرونی‌ها و گرافیک، نکار دارای (graphic)
نکار داده‌های پلاک‌زا در این توده نفوذی تعمیم و ارتباط آنها با تشکیل بافت‌های مشابه در
توده نفوذی دهدهک مورد بررسی قرار گرفته است. به مقدار تعمیم شده سنگ‌آری
روش و برای تشخیص تهیه‌های شیمیایی کاتی‌ها در بخش‌های مختلف بافت‌های مورد بررسی
EPMA استفاده شده است.

زیمین‌شناسی عمومی

در مسیر اصلی قم به دامغان و در جنوب روستای دهدهک توده نفوذی گرایانه‌ی رخ‌نمون
دارد (شکل 1). بر روی بخش میانی توده نفوذی دهدهک بیش از 20 کیلومتر مربع است و جایگیر
آن بین توده‌های سنگی به شکل استوک است. سن این توده به دلیل کاهش سنگ‌های
انشتشکی انسان را کشیده و امکان‌های گیاهی به‌وجود می‌دهد، روزی‌ها قرار گرفته‌اند.

آب‌سرانی اتیو-آپولیکوس آغازی به نظر گرفته شده است[6].

قدیمی‌ترین برندگان در منطقه مورد نظر، متعلق به آهک‌های پرمین است. در اثر مناطق
بزرگ‌تر شناسایی روی سنگ‌های پرمین قرار دارد و بیشتر شامل شرکت‌ها و شرکت‌های
از ماه‌های سنگ است. در شمال روستای نینه رخ‌نمونی محدود از سنگ‌های پرمین تریاس با
فیل‌های استرایی دیده می‌شود. به روزه‌ی به‌وجود آمدن جغرافیایی محدودی در شهرهای
اسبی دو‌گانه شده است که بیشتر با انرژی نیروهای نف تولیده‌ی بوده است[7].
روش مطالعه

به منظور مطالعه ویژگی‌های میکروسکوپی و زنونیمایی توده دودهک، مقاطع نازکی از نمونه‌های مربوط به پیش‌های مختلف توده تهیه و پس از مطالعه نمونه‌های انتخابی به روش‌های XRF، X-ray Fluorescence Spectroscopy (XRF)، EPMA و X-ray Photoelectron Spectroscopy (XPS) از نوع كاکی (MAP) و مقدار آزمایش قرار گرفتن (جدول 1) به منظور تجزیه نسبی. نکته کل که در آزمایشات EPMA قله نمونه (Kα) در مقطع نازک - صفحه تهیه و با یک دستگاه Cameca X-100 در آزمایشگاه تحقیقات فرآوری مواد به دست آمده از شرکت وانت شرکت کی 100 KV جریان 10 و جریان 10 و قطعه 60 و پایه 60 و پایه

نکته از 10 و آزمایشگاه دارای منطقه‌ای در راستای عرض کاتی (شکل 2 بردار 2) به مدت پیشنهاد بلو مود بررسی قرار گرفتن. نتایج این بررسی‌ها را در جدول 2 می‌توان دید. نمونه دوم (نمونه D569) از جنوب شرقی توده انتخاب شد. این نمونه دارای یافته میکروسکوپی ویل پلاژیکال‌ها منطقه‌ای خوب را از دست داده بودند. از این نمونه 6
جدول 1 نتایج تجزیه گرانیت‌نوازه‌های توده نفوذی دودهک به روش XRF، اکسیدها بر حسب درصد و عناصر بر حسب ppm مستند. آب‌های آنتی‌واتر نورمالی انرژی محاسبه شده‌اند.

<table>
<thead>
<tr>
<th>XRF</th>
<th>1-DS</th>
<th>13D</th>
<th>03D</th>
<th>05D</th>
<th>06D</th>
<th>07D</th>
<th>08D</th>
<th>10D</th>
<th>11D</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>71.25</td>
<td>74.17</td>
<td>74.85</td>
<td>75.33</td>
<td>74.21</td>
<td>75.68</td>
<td>74.88</td>
<td>72.32</td>
<td>72.37</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>3.22</td>
<td>2.75</td>
<td>2.50</td>
<td>2.35</td>
<td>2.50</td>
<td>2.75</td>
<td>2.82</td>
<td>2.84</td>
<td>2.85</td>
</tr>
<tr>
<td>CaO</td>
<td>4.20</td>
<td>4.61</td>
<td>4.50</td>
<td>4.30</td>
<td>4.55</td>
<td>4.30</td>
<td>4.50</td>
<td>4.55</td>
<td>4.55</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.58</td>
<td>0.58</td>
<td>0.50</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>K2O</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>MnO</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Sr</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Y</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Cr</td>
<td>0.19</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Nb</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Ba</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>La</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Ce</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Nd</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>V</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Pb</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Cu</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Zn</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cs</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Ga</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Th</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>sum</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
<td>99.50</td>
</tr>
<tr>
<td>Ab</td>
<td>72.80</td>
<td>70.00</td>
<td>69.89</td>
<td>70.00</td>
<td>69.89</td>
<td>70.00</td>
<td>69.89</td>
<td>70.00</td>
<td>70.00</td>
</tr>
<tr>
<td>An</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
<td>17.15</td>
</tr>
<tr>
<td>Or</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
شکل ۲ تصویر BSE مربوط به نمونه (DS95) از مرکز به حاشیه پلایژولاز در راستای شناش دام. تحریه تیمی شده است.

شکل ۲ تصویر BSE مربوط به کانی پلایژولاز منطقه‌ای (نمونه D111) که از مرکز در جو راستای عمود بر هم تجزیه کمی (EPMA) روي آن انجام گرفته است.
جدول ۲ نتایج تجزیه کمی پلاژیوکلاز ون (نمونه D11) از مرکز به حاشیه A در راستای طول بلور و B در راستای عرض بلور.

<table>
<thead>
<tr>
<th></th>
<th>مرکز</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>لاپیلورت</td>
<td>اندزین</td>
<td>لاپیلورت</td>
<td>اندزین</td>
<td>لاپیلورت</td>
</tr>
<tr>
<td>Na2O</td>
<td>۲۲۵</td>
<td>۳۲۴</td>
<td>۶۸۸</td>
<td>۴۴۹</td>
<td>۷۵۸</td>
<td>۷۸۵</td>
</tr>
<tr>
<td>K2O</td>
<td>۱۸۷</td>
<td>۱۸۱</td>
<td>۱۷۰</td>
<td>۱۷۰</td>
<td>۱۷۰</td>
<td>۱۷۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۲۸۲</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>SiO2</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
</tr>
<tr>
<td>Total</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
</tr>
<tr>
<td>Na</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>K</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>Ca</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
</tr>
<tr>
<td>Fe2</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>Al</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>Si</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
</tr>
<tr>
<td>Ab</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>An</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>Or</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>مرکز</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>لاپیلورت</td>
<td>اندزین</td>
<td>لاپیلورت</td>
<td>اندزین</td>
<td>لاپیلورت</td>
</tr>
<tr>
<td>Na2O</td>
<td>۲۱۷</td>
<td>۵۳۲</td>
<td>۶۲۸</td>
<td>۷۶۹</td>
<td>۷۳۱</td>
<td>۷۹۶</td>
</tr>
<tr>
<td>K2O</td>
<td>۲۸۲</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
<td>۱۳۰۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۲۸۲</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
<td>۲۷۵</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>SiO2</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
<td>۸۱۱</td>
</tr>
<tr>
<td>Total</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
<td>۹۷۸۴</td>
</tr>
<tr>
<td>Na</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>K</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
<td>۳۵</td>
</tr>
<tr>
<td>Ca</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
<td>۱۲۲</td>
</tr>
<tr>
<td>Fe2</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰</td>
</tr>
<tr>
<td>Al</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
</tr>
<tr>
<td>Si</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
<td>۹۲۷</td>
</tr>
<tr>
<td>Ab</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>An</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
<td>۱۸۱</td>
</tr>
<tr>
<td>Or</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>
جدول 2: نتایج آنالیز کمی حاشیه و مرکز پلاژ کلازهای نامطلوبی از نمونه جنوب شرقی توده نفوذی

<table>
<thead>
<tr>
<th>ماده</th>
<th>مرکز</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>11.44</td>
<td>11.09</td>
</tr>
<tr>
<td>K2O</td>
<td>0.03</td>
<td>0.19</td>
</tr>
<tr>
<td>CaO</td>
<td>0.71</td>
<td>0.77</td>
</tr>
<tr>
<td>FeO</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Al2O3</td>
<td>19.85</td>
<td>19.74</td>
</tr>
<tr>
<td>SiO2</td>
<td>48.32</td>
<td>48.18</td>
</tr>
</tbody>
</table>

بحث و بررسی

مطالعه پخش‌های مختلف توده نفوذی دودهک نشان می‌دهد که در مقياس ماکروسوکوپی توده نفوذی دودهک دو رابه ترکیب تقریباً اکتک ویزیکی است. در اینجا جدول‌های آن در مقياس ماکروسوکوپی با پخش‌های دیگر تفاوت دارد [5]. در اینجا نیز نشان داده شده که توده نفوذی و پخش جنوب شرقی جنگلر از هم بررسی و در مورد عوامل سازنده تفاوت‌های موجود بحث شد.

توده نفوذی دودهک

بررسی‌های صحرایی نشان می‌دهد که توده نفوذی دودهک یک توده تقریباً همگن است و تغییرات در میزان و نوع کمیها در سنگ‌ها بسیار احتمالی است. بر اساس مطالعات ماکروسوکوپی و انتخاب ماده‌های کاربردی، قلم‌داده‌های تناسبی، و پلاژ کلازه (جدول 2) سنگ‌ها در تقسیم‌بندی اشتراکیزون [7] توانایی تا گراندوريت هستند. سنگ‌ها با توجه به تجهیز شیمی‌ای آنها (جدول 1) و بر اساس تقسیم‌بندی مدل، کلیه‌های آلیت، آنتوريت، و انتروپ [8] و [9] نزدیک ترین مدل‌ها.
کریم پور، فعالیت‌های جامعه‌گشای و بازی در تشخیص، دگرگناهی...

پلاژیوکلاز، به صورت شکل‌دار با نواحی معکوس و تغییرات ذرات از انواع مختلف می‌باشد. تغییرات ذرات، کیفیت سالم و مشابه منطقه‌ای و ماسه و غلاف دارند (شکل ۵) و اثر تجزیه در آنها تجویز شده است. این گونه‌ها با آن بیشتری در برخی موارد مورد استفاده است.

بافت اصلی منطقه گرانولار و پرفروش است. بافت فرعی دربیت و رینگ‌نگاری به خوبی قال شدیدی زئولیت و فراغت‌های فرعی بیشتر بازپردازی می‌که در برخی موارد بافت اصلی منطقه را به خود اختصاص می‌دهد (شکل ۶).

براساس تجربه نفوذی (EPMA) منطقه‌بندی عالی در پلاژیوکلازها منطقه‌بندی بخش‌های اصلی توده‌ای در بلوه می‌باشد که شامل شیل‌ها و کاسپ در مرکز به حاشیه بلوه و کاسپ کلیمی از مرکز به حاشیه بلوه است (شکل ۶). تکیه‌پلاژیوکلازها از بینویی، در مرکز به حاشیه بلوه و در مرکز به حاشیه B. وارون را به نمایش گزارش داده‌اند.
جدول ۴ نتایج آنالیز میدانی کانی‌های کوارتز (Kf)، فلدسپات پتاسیک (Q) و پلاژیوکلاز (Plg) بر حسب درصد در گروه‌تولیده‌های مورد سطح‌آمیزی. مجموع درصد حجمی سه کانی به صورت ردیف‌های شده است.

<table>
<thead>
<tr>
<th>کانی</th>
<th>۶۶D</th>
<th>۶۶D</th>
<th>۶۶D</th>
<th>۶۶D</th>
<th>۶۶D</th>
<th>۶۶D</th>
<th>۶۶D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>۳۳/۲۹</td>
<td>۳۲/۳۷</td>
<td>۳۳/۹۱</td>
<td>۳۳/۸۱</td>
<td>۳۳/۸۱</td>
<td>۳۳/۸۱</td>
<td>۳۳/۸۱</td>
</tr>
<tr>
<td>Kf</td>
<td>۱/۱۸</td>
<td>۱/۳۳</td>
<td>۱/۵۷</td>
<td>۱/۵۷</td>
<td>۱/۵۷</td>
<td>۱/۵۷</td>
<td>۱/۵۷</td>
</tr>
<tr>
<td>Plg</td>
<td>۵۸/۳۱</td>
<td>۵۸/۸۹</td>
<td>۶۲/۸۸</td>
<td>۶۴/۳۷</td>
<td>۶۴/۳۷</td>
<td>۶۴/۳۷</td>
<td>۶۴/۳۷</td>
</tr>
</tbody>
</table>

شکل ۴ گرافه‌های موجود مطالعه در نمودار ایریون و بارگار (الف) و نمودار (ب) با AFM نشان می‌دهد که موجودات فعال و فاقد جایگاه شرکت می‌افتند.

شکل ۵ تصویر مکرو‌سکی بلژیوکلازهای سالم با منطقه‌نامی مشخص در نمونه.
دگرنهایی در گرانیتون‌های جنوبشرقی توده نفوذی نمونه‌های بخش جنوب‌شرقی توده با سری نیاز منطقه‌ای. در نمونه‌هایی که از این بخش برداشت شده‌اند، پلاژیوکلازها منطقه‌بندی ندارند و نیز بفت نگارهای که هم‌شده‌اند کوارتز و آلیاژ فلسیک است. مشاهده نمی‌شود. تفاوت‌هایی نیز در شکل و اندازه کلبها و وجود دارد. اندازه بلوارهای کوارتز بین 0.1 تا 2 میلیمتر است. کوارتز بیشتر به شکل بوده و پرکنش‌های
فضای بین کانال‌های دیگر سنگ است. این سنگ کوارتز اغلب خاکوسی موجب نشان داده و در مواردی کانال‌هاست. سری‌سیبی شدن نیز در پلاژیوکلاژاها مشاهده می‌گردد که در حاشیه پلاژیوکلاژاها می‌ریزد که تکمیل شده است.

با توغه به تقسیم‌بندی فیليبس [۶و۱۷] یک میکروکانیقا را به انواع میکروکانیقا حاضر کرد. منفرده زندگی شکل، اینترگلاژه‌ای که دو فلدسپار، و میکروکانیقا دو لحشی بدانه‌ها می‌شود. مسکوپیزیم تکمیل کرده است. میکروکانیقا مورد مطالعه بیشتر از نو ناهنجاری‌های هستند (شکل ۸-الف).

زاگ [۴و۱۷] نظریه‌ها مختلفی در ارتباط با تشکیل میکروکانیقا عنوان کرده است که به ترتیب عبارتند از:

۱. رشد همزمان یا بلوری شدن مستقیم از یک آبگون [۲] رشد دوباره کوارتز به صورت میکروکانیقا.
۲. جانشینی پلاژیوکلاژ به وسیله K فلدسپار (برخی دیگر معتقدند کوارتز ورمیکوله می‌تواند در این سرده شدن K فلدسپار جای گیرد [۱۸و۱۹]) اکسوسولون (جدالت) در طول سرده شدن SiO۲ از پلاژیوکلاژ K که موجب آراد سرابی چرخه SiO۲ شدن (۳) بلوری شدن دیواره پلاژیوکلاژ در طول دگرسانی گرمایی در سنگ‌های دگرشکل شده تکمیلگیریهای ترکیبی درصورتی که میکروکانیقا در اثر جانشینی به وجود آید تغییراتی در بالعات و کانی‌شناسی سنگ می‌تواند. براز می‌تواند مثال طلای این مسئله منطقه‌ای پلاژیوکلاژها، بلافاصله اولیه سنگ‌مانند پرتیت و رزگلارهای از سنگ‌های که دستخوش جانشینی می‌شوند، تغییری شکل آبگون و اینکه می‌تواند با راهی در طول دگرشکل ماهیت کانی‌ها را تغییر دهد [۱۴و۱۹].

ترکیب ناحیه پلاژیوکلاژها جنوبی‌شرق منطقه (جدول ۲) نشان داده به‌گونه‌ای که ترکیب آبگون و پلاژیوکلاژهای مرطوب این سنگ‌های همگان می‌تواند تشکیل شده است و منطقه‌های پلاژیوکلاژ از بین رفته این منطقه دلیل بر تشکیل میکروکانیقا در طول فرازندگی‌ها در این منطقه‌ها مشاهده می‌گردد (شکل ۸)

- از طرف دیگر در ناحیه‌های این سنگ‌های شرقی، فلدسپات‌ها پتاسیک هسته‌های پلاژیوکلاژها هسته‌سازی داشته است (شکل ۸) که این بافت به دگرگونی سریک نسبت داده شده است [۱۹و۱۹].
در بررسی رژوژمیتی نمونه‌ها، روند غیرخطی نمونه‌های گرانیتی در نمونه‌های Rb-SiO₂ و ۳K₂O-Na₂O دیده می‌شود (شکل ۹) که این یپیده نیز ناشی از دگرنهادی سدیک است. در شرایط معمولی نمونه‌ها روند خطی با شیب مثبت نشان می‌دهند [۱۰].

رنگ [۴] ممتنع است که سنگ‌های حاوی میرمکیت در مناطقی که ماگمای کالکو آلکالین فعال است دیده می‌شوند. این دیدن کوارتز نسبت به آن‌طوری می‌چسبد که این نوع میرمکیت‌ها اندازه‌گیری و ارائه کرده است (شکل ۱۰) نمونه‌های مورد مطالعه نیز روی منحنی میرمکیت معرفی شده توسط رانگ [۴] قرار گرفته‌اند و می‌توانند در مناطقی که ماگمای کالکوآلکالین تشکیل می‌شود، به وجود آیند. نمونه‌های منداول رژوژمیتی (شکل ۹) نیز که بر اساس تجزیه گرانیت‌ها رسماً شدید است کالکوآلکالین بودن این سنگ‌ها که قبلاً نیز توسط قلمقاش و بالاخانه [۶] کنار شده بود ناپید می‌کند.

شکل ۸. نمودار پلاژیوکلازری جنوب‌شرقی منطقه با میرمکیتهای حاشیه‌ای (PPL) هم‌اکنون نمایش رشد نلدستی‌های بازیکس روز پلاژیوکلاز در رخ‌مون جنوب‌شرقی نوده غذایی دوده‌گک (PPL).

شکل ۹. روند غیرخطی نمونه‌های گرانیتی در نمونه‌های K₂O-Na₂O و Rb-SiO₂.
تشکیل دهنده آلکان به عملکرد گرمابی‌ها و آیکونه‌ها حاصل از واکنش‌های دگرگونی نسبت داده شده است. **[102 تا 124]**، نود گروگان‌نیوده دوگره در سطح‌های انسان‌نشین نفوذ کرده و آهن‌های الیکسون در برخی نقاط روی آن قرار گرفته است. تشکیل آلکان‌ها با فعالیت دگرگونی درجه بالا دیده می‌شود. پس از تشکیل نمی‌تواند سیستمی دگرگونی مشخصی در منطقه دیده نمی‌شود. لذا به نظر می‌رسد که گرمابی‌ها در تشکیل دهنده‌های آلکان نقش داشته‌اند. بررسی چگونگی تشکیل شرایط حاکم و ماهیت این آلکان‌ها **[106 تا 129]** نشان داده است که مهم‌ترین عوامل کنترل کننده نوع دگرگونی‌ها، ترکیب سیستم‌های اولیه و مکان اسیده‌گر می‌باشد. کار تجربی **[127 و 27]** که یکی از این است که دگرگونی آلکان گرایش‌های در حضور شارفه‌های با **pH** 4.2 تا 8.9 به خمی‌ای **6.8-6.5** و در گروه دمایی **350-450** درجه سانتی‌گرد به وجود می‌آید. برخی پژوهشگران **[29 و 39]** معتقدند که محول‌ها دارای کیفیت خوبی ضایع و در شرایط سطحی و در محیط‌های زمین‌شناسی، میزان تأثیر آکسی‌ها و عملکرد متفاوت است و آیکون می‌تواند در تغییر دمای **pH** به شده موثر باشد. لذا برای تعبیه دقت خاصیت ماهیت
کاربرد شواهد کانین شناسی و بافتی در تشخیص دگرگونه‌ها

اگرگونی و شرایط حاکم بر آنها در رمان تشکیل دگرگونه‌های توده‌ای دوده‌که نیاز به مطالعه

به‌شماری مانند بررسی اگونت‌های دوده‌که، داده‌های RRE و تغییر میزان و نسبت‌های آیزوپتی

است.

درگه‌های دوده‌که نفوذی دوده‌که محدود به حاشیه گچی بشرایقی است. میزان کسره

درگه‌های علاوه بر حجم شاره‌ها به تغییرات ساختاری گوناگونی یافته است. این تغییرات

ساختاری سنتگه‌ای در منطقه نطنز داده است که این سنتگه‌ها دارای ابعاد متفاوتی هستند. و

توده تحت تأثیر اینو بی‌پی که بیتولان ساختار توده را تغییر و شرایط را برای نفوذ به‌بیشتر شاره‌ها

قرار اورده، قرار داشته است. لذا درگه‌های در این توده محدود به حاشیه گچی بشرایقی شده

است.

برداشت

توده نفوذی دوده‌که یک تولیدی روند دوده‌که بود و در تولید غرب‌نوردی‌های ریز گاه‌های و

در سنگ‌های به دیده می‌شود. بلافاک‌ها و لازیک‌ها، منطقه‌ای عادی (نوسان) را نشان می‌دهند.

پادشاهی موجود در سنگ‌های بشرایقی منطقه متفاوت و وجود شواره‌ای بر دلیل بر حضور

درگه‌های آلکالین در این محدوده است:

- در حاشیه پلاژیوکلازهایی که بر روی شکل‌های خود را از دست داده‌اند، می‌بینیم که می‌تواند به وجود آمده است. این نوع مبهمگی می‌تواند در فرآیند درگه‌های و در سنگ‌هایی که از یک

ماکم‌ای اولیه کانال‌ها، برخی یک‌بلوک‌ها، به وجود آید. نمونه‌های این نوع ریز بی‌پی که

براساس تشخیص XRF نمونه‌ها، نیز حضور چنین مامگاه‌ها را تایید می‌کند.

- آلکالین فلزهایی می‌تواند در توده از شکل‌ها و لازیک‌ها، شکل‌ها و لازیک‌ها با بافتی شبیه به شکل‌های روی پلاژیوکلاژ

- آلپتی نطفه‌ای می‌تواند است.

- نمونه‌های گرگینی در نمونه‌های Rb-33 و Na2O و K2O-Na2O و Rb-SiO2

روند غیر خطی از کربنات

سی‌ده‌ها.

درگه‌های می‌تواند در اثر عملکرد گرگینی ایجاد شده باشد ولی در اثر نمود ساختارهای

ناتونه، شرایط بنیاد نفوذ گستره‌های ساخترهای فراهم نیود و درگه‌های به حاشیه گچ‌بندی

محدود نشده است. پی‌گیری نمودن دېزی شیشه، شیشه‌ها و برای این بودن در

زمان تشکیل درگه‌های توده نفوذی دوده‌که نیاز به مطالعه بیشتری است.
مطالعات حاصل در این کار نشان می‌دهند که میزان مایع و همچنین میزان ذوب‌ساز ویژه‌ای که در این پژوهش بررسی شده‌اند، پیوستگی پذیرفته که تحقیقات علمی کاربردی دانشگاه تربیت معلم انجام شده است.

مراجع

