Influence of WO₃ and MnO₂ on the Bi-2223 high temperature superconductors, prepared by sol-gel technique

N. Tajaboe, M. R. Alinejad, N. Yussefi

Dept. of physics, Ferdowsi Univ. of Mashhad, Mashhad, Iran
E-mail: alinejad@ferdowsi.um.ac.ir

(Received: 13/10/2006, received in revised form: 2/6/2007)

Abstract: The Bi₁₋ₓSbxSr₁₋ₓ₋₀.₉₇Caₓ₊₂₋₀.₃ₓCuₓ₋₀.₁ₓOₓ superconductors are prepared by sol-gel method and the effect of WO₃ and MnO₂ additives on their properties are studied. Structural studies show that the find samples are homogeneous and are mainly composed of 2223 and lower percents of 2212 phases. Analysis of the X-ray diffraction patterns indicate that the penetration of W⁶⁺ ions into superconducting phase considerably increases for more than 2 wt% additives. Also, the penetrating W⁶⁺ ions preferentially occupy 4c and 2a crystallographic sites of Cu atoms. The electrical measurements show that the best superconducting properties obtain for the sample with 1 wt% of WO₃ additive, while superconductivity is weakened for higher amounts of WO₃. For the sample with 0.5 wt% of MnO₂ additive, the best superconducting properties are obtained after sintering at 830 °C.

Keywords: superconductivity, sol-gel, Bi(Pb)SrCaCuO, WO₃, MnO₂.
اثر ابررسناهای دمای بالاتر 2423 و

راه به روش سل-ژل

ناصر تجری، مهدوی محمد، رضا علی‌نژاد، نیما یوسفی

مشهد، میدان آزادی، پردیس دانشگاه فردوسی، دانشکده علوم پایه، گروه فیزیک

پست الکترونیکی: a linejad@ferdowsi.um.ac.ir

(دریافت مقاله 1288/08/22، دریافت نسخه نهایی 1288/08/23، دریافت نسخه نهایی 1288/08/23)
بر اساس اظهاراتی که از زمان کشف این مواد بالای ۱۸۶۶ میلادی کاربردهای متعددی برای آنها در زمینه اندازه‌گیری الکتریکی شدید (مثل مولدها، مبدل‌های برقی) و کابیلیتی نقش‌آفرینی در محصولات جدیدی و ذخیره انرژی مطرح شده است.

یکی از مهم‌ترین ویژگی‌های این مواد بالای چگالی جریان بحرانی آنهاست که افزایش آن هزینه سرمایه‌جویی تجهیزات ساخته شده از این مواد را کاهش می‌دهد. از این نظر، ترکیب

\[\text{Bi}_2\text{Pb}_2\text{Sr}_1\text{Ca}_2\text{Cu}_3\text{O}_{x+y} \]

بر اساس این شناخته‌ها است. (۱) و (۲) انجام شده است. (۳) تغییرات چگالی جریان روی تهیه پویا و پویا انجام شده است. (۴) به ترتیب مورد بررسی بودرول اولیه این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵) توزیع همگن‌تر اجرا (ب) واکنش‌هایی بیشتر مورد بررسی بودرول دمای ساختمدا (ت) چگالی جرمی بازاره، تکنیکی تولید ترکیب ۲۳۲ در آزمایشی است. (۶) یکی از این امر به خواص این مواد بالای ۲۳۲، روشن شیمیایی سلسله‌ای است. ژبل تئوره‌ای این روشن بودرول روش‌های دیگر (از جمله روشن واکنش در فاز جامد) باعث شده است. (۵)
همراه با تهیه محلول ماده محلول اسیدی پایه با حل گردین اسید (Mercck) به نسبت مولی برابر با تعداد کل کاتیون‌ها. به طور خاص از محصولات شرکت (Mercck) از ۹۹.۷ درصد محصول برای حل در
۵۰۰ میلی‌لوند استفاده شده و امینیاک (NH۴) به نسبت مولی ۲ بر ۱ شکلی کاتیونی است. به طور خاص با حل PH
نحوه که در آن حلال یپس، مقدار ۳۵ آمینیاک با تدابیر به آن اضافه شده، باید توجه داشته که پایه‌بندی از این محلول موجب اسید و سد می‌شود. از همین محیط ونگشته‌شده LDRA
پس از اتمام این فرایند، حالت زنده‌دن در محلول نهایی به وسیله یک فیلتر ریز تهیه می‌شود. سپس
ارویه نیز به نسبت مولی ۷ بر ۱ برای کل کاتیون‌ها به این ذل اضافه شده.

۱۰۰ مولی نه -
شیمی شدید. ذل بر کف داغ بشر مشهد که با توجه به حضور امینیاک ختاکشکنی است، لذا
برای خشک کردن ذل از میکرو تمیزی و نتایج استفاده شد. تا نهایت به همراه گرم‌دهی شد. با این
حتما می‌توان گفت که این ذل عاری از آب آرازی و بدون توجه فعالیت در دمای ۴۰۰ درجه با دهن
تریبیتیل، ذل از ۹۰ ساعت به طور کامل همگن شکست. مراحل ساختمان نمونه در شکل

۱ تشان داده شده‌اند.

۱۰۰ مولی نه -
شیمی شدید. ذل بر کف داغ بشر مشهد که با توجه به حضور امینیاک ختاکشکنی است، لذا
برای خشک کردن ذل از میکرو تمیزی و نتایج استفاده شد. تا نهایت به همراه گرم‌دهی شد. با این
حتما می‌توان گفت که این ذل عاری از آب آرازی و بدون توجه فعالیت در دمای ۴۰۰ درجه با دهن
تریبیتیل، ذل از ۹۰ ساعت به طور کامل همگن شکست. مراحل ساختمان نمونه در شکل

۱ تشان داده شده‌اند.
چگالی چگالی نمونه‌های فرضی، بنابراین، بر اساس مدل‌سازی و ابزار آنها با دقت‌های 1000/0.002 تغییر شد و نظریه ابزاربرداری نمونه‌های حاصل با مشاهده آزمایش‌های آزمایشگر تایید شد. واژه‌گری همچنین مقاومت الکتریکی نمونه‌ها به روش شرایط بررسی و با استفاده از سیستم جریان تابت 140 mA اندازه‌گیری شد.

برای اندازه‌گیری چگالی جریان برخی نمونه‌ها در دمای K77 نمونه‌های استوانه‌ای شکل به قطر حدود 18 mm و ارتفاع 3 mm از یک بند فرآیند اصلی پوشش شده شد. انگش دو اشغال الکتریکی در مقایسه این استفاده ایجاد منحنی ولتاژ جریان آنها در دمای K77 با اعمال تهیه‌های جریان 27 تایید رسم شد.

![Diagram](https://example.com/diagram.png)
نتایج و بحث

الگوهای پراش بر اساس X از نمونه اصلی و نمونه‌های حاوی درصد‌های مختلفی از WO3 وجود دارند که به نمونه‌های تغییر چشمگیری می‌کنند. در ضمن، در نمونه‌های WO3 وجود وجود ندارد. نتایج نشان دهنده شکل ۲ مشابه متان شده است که وارد دانه‌های قرار گرفته و با آنها واکنش شیمیایی داده است. مقایسه طرح‌های تغییر نمونه‌های مختلف نشان داد که با تغییر در مقدار ورزی WO3 شدت آلیهای مربوط به فاز ۲۳ درصد افزایش می‌یابد که این امر نشان دهنده رشد بیشتر ذرات این فاز است. لذا می‌توان گفت که تغییرات ناخالصی تغییرات درصد نشان داده که درصد فاز ۲۳ درصد افزایش یافته و فاز ۲۳۱۲ غالب است.

![Image of diagrams](image-url)
نتایج اندک‌های مقاومت و وزه‌ای الکتریکی نمونه‌های که حاوی درصد‌های مختلف افزودنی MnO₄⁻ و WO³⁻ بوده‌اند در شکل ۳ نشان داده شده‌اند. بررسی این نتایج نشان می‌دهد که نمونه‌های افزودنی افزودنی با تغییر در دما به‌صورت نشان‌گیرنده نمایش داده می‌شود. نتایج اثبات‌گرایی برای موارد خاصی حاصل از جریان‌های الکتریکی که می‌تواند به تغییر ابرسانایی هستند را در مساحت زیر حوزه‌ای بر عهده دارد و لذا جریان‌های الکتریکی و رایانه‌ای مرحک را در حالی است که افزایش مقدار انتقال به بیش از ۲٪ وزنی، سبب فرآیند جریان‌های الکتریکی به دو رون فاز ابرسانایی و تغییر این فاز می‌شود. نمودار تا دمای WO³⁻ هنگام افزایش وزنی ۶٪ مشاهده شده.

![Graph](image-url)

شکل ۲: ارتباط دمای متقاطع وزه‌ای الکتریکی نمونه‌های حاوی درصد‌های مختلف WO³⁻.

![Graph](image-url)

شکل ۳: تغییرات دمای الکتریکی برای موارد مختلف جریان‌های الکتریکی با درصد وزنی WO³⁻.
شکل ۵ طرح پراش پرتو X نمونه حاوی ۴۰۰ درصد ورتنی افزودنی

MnO

را نشان می‌دهد. نمونه‌های دیگر از این خانواده که حاوی بیش از ۴۰۰ درصد ورتنی

MnO

بدوند، در مرحله نفوذی دوب شدن به ساختار کامل چشمگیر مدام تشکیل فاز ابرسانانی در حضور ناخالصی منگزین دیده شد. طرح پراش شکل ۵ نشان می‌دهد که نمونه مشکلی از دو فاز ۲۲۲۲ و ۲۲۱۲ است. از مقایسه سطح زیبر شبدترین قله‌های پراشی، نسبت فاز ۲۲۳۳ به ۲۲۱۲ در حدود ۱/۱ برابر می‌شود. پس از مقایسه این کمی پراشی با ساختار راستگوش با نرم افزار Celref تایپ‌های شیمیایی \(\text{α} \) = ۵۸۸۲۰، \(\text{β} \) = ۵۶۹۳۹ و \(\text{γ} \) = ۵۶۵۸۶ \(a = b = c = 2.7425 \) و \(a = b = c = 2.7411 \) که آنگسترم برابر فاز ۲۲۱۲ بسته می‌شود. نتایج قبلی نشان می‌دهند که پیوند \(\text{Cu}^{2+} \) با \(\text{Mn}^{2+} \) جانشینی در \(\text{CuO} \) با شمع بزرگ‌تر و بار الکتریکی کمتر در شبکه چندوری فاز ابرسانانی شود \([13]\). جانشینی جزئی بین با شمع کوچکتر و بار الکتریکی بیشتر مواد افزودنی موجود تیتانیو، کوارتز، کالس و آبنوس و کاهش پارامتر \(c \) می‌شود که این امر افزایش دمای گاز و کاهش دمای تشکیل فاز ۲۲۲۲ را به دنبال دارد. از دیگر سوی، تغییرات پارامتریک مسیرگذاری این الکترودهای ابرسانانی موجب خودم توانست موجب کاهش طول عمر زوج‌های کوبه و در نتیجه تضعیف ابرسانانی شوند. لذا می‌توان گفت که کمپوزیت بهبود یافته پرتو افزودنی

MnO

وجود دارد که بر اساس نتایج به دست آمده در این کار پژوهشی در فاصله ۱۰ تا ۲ درصد جرمی است. این گزاره از افزودنی در نمونه حاوی ۴۰۰ درصد افزودنی

MnO

پس از نفوذی در دمای \(820^\circ C \) به ۸۵۰ درجه C به دست آمده که نشان می‌دهد مشاهده مرحله ابرسانانی در دمای \(799^\circ C \) به حالت تجویشی \(820^\circ C \) در حالت چسبیده ابرسانانی را مشاهده می‌کند.

(الف) افزایش امکان تشکیل لایه‌های CuO که یک خاصیت این نمونه‌ها با سایر هایMS در طریق سی سازوارگر زیر خواص

MnO

WO

از نوعی این سازوارگر زیر خواص

MnO

WO

(ب) پرهمکنش مغنیتی با الکترودهای روج‌های کویر.

MnO

WO

(پ) چوش بهتر حوزه‌های ابرسانان در حضور قزانیات و WO

ت) حضور در مزر دانه و ایجاد مراکز میاج مانگیلیک.

که دو مورد اول از آثار مکروسکوپیکی و دو مورد دیگر از جمله آثار مکروسکوپیکی

الفزیکی های بیا محسوب می‌شود. مطالعات مشابه کمک به یک این سازوارگر زیر خواص

MnO

WO

مشاهده شده در این کار ساده نیست و مستلزم بررسی‌های نظیری و تجربه بسیار دقیق است.
پیکر مورد از تصاویر میکروسکوپ الکترونی روانشی از نمونه اصلی در شکل ۶ نشان داده شده است. چون پیکر خاکستری روشن در این شکل مربوط به فاز ۲۲۲۳ و خاکستری تیره مربوط به فاز ۲۲۱۲ است و مناطق سیاه رنگ مربوط به حفره‌های موجود در سطح و باستانه است. نانو‌سایر سوزنی شکل فاز ابرسانا با تراکم‌های حاصل از روش سل-زل مطابقت دارند [۱۶].

شکل ۵: الگوی پراش پرتو X نمونه حاوی ۵٪ درصد زنی افروشی، MnO۲.

شکل ۶: تصویر SEM نمونه اصلی.
بردشیت

بر اساس این بررسی، ابر اسید آلیاژی (W, O) به چهار نمونه که با عناوین می‌شود که برای نکاتی نیازمند درجه دو از این ابر اسید از منظوره‌ها به‌طور مانند WO₃، WO₂ و WO به‌طور معمول برای محاسبه و سرعت نمونه‌برداری از ترانسمی گردانه‌ها به‌طور معنی‌داری تحقیقات یافته‌ای هستند. در حضور این نتایج، نمایشگر این ابر اسید آلیاژی نمونه‌ها بین ۴۲ تا ۱۰۷ که با جریان جوشانه به WO₃ ۳۲ A/cm² دست می‌آید. افزایش درصد ناخالصی به WO₃ به‌طور پیش‌گیری ۲٪ تضعیف خواص ابر اسید آلیاژی را به دنبال دارد. که ناشی از نفوذ گسترده پهنای W₃ به درون فاز ابرساتنی از دیگر سوی به‌طور نشان‌دهنده واردات این ابر اسید آلیاژی برای نمونه‌برداری ۶۰ درصد و ناخالصی منفی ۱۰ درصد از تفنگچی در دمای ۸۳°C به‌طور می‌آید.

مراجع