A survey of the thermodynamic of evaporate salts in one of the Yazd playas based on a ground sampling and remote sensing

Mohammad Akhavan Ghalibat\(^1\), Amir Hosein Konsary\(^2\)

1- Soil Sciences (Mineralogy), yazd University
2- Mining Dept., Yazd University
Email: makhavan@yazduni.ac.ir

(Received: 9/4/2006, received in revised form: 31/5/2007)

Abstract: This study was done in the wet marginal part of the Sirakrosh playa (Kevir) in Yazd, Iran, which is located in the northwest of Ardakan. The abundance of Ca and SO\(_4\) ions led to gypsum crystallization near the water table in the soil. From depth to the soil surface, the CaCO\(_3\) - CaSO\(_4\) \(2\)H\(_2\)O - NaCl-H\(_2\)O - PCO\(_3\) soil and water system change to CaSO\(_4\), 2H\(_2\)O - Na\(_2\)SO\(_4\) - NaCl-H\(_2\)O. From water table (100 cm under soil surface) to the soil surface, ionic power was decreased and activity coefficient was increased respectively. Therefore, near ground table, gypsum form and high concentration of Ca ions from gypsum lead to low amounts of exchangeable Na. This influence has been continued up to soil surface to achieve a relative balance. Replacement of Na with Ca on the exchangeable surfaces of soil and existence of SO\(_4\) ions formed NaSO\(_4\) inerals. The precipitation of 1800 ton per hectar natrium salts (sulfatic & coloric) was estimated with respect to the mean of annual evaporation (roughly 900 mm) in the studied site. The result also showed that the seventh bands of Landsat','7 are more important to differentiate between sulfate and chloride salts as well as sodium and calcium salts.

Keywords: Evaporate salts - Thermodynamic - Sulfate salinity type.
بررسی ترمودینامیکی نمکهای تبخیری در یکی از گودالهای نمکی استان یزد با نمونه برداری های زمینی و دور سنگی

محمد اخوان قائمی فارابی، امیر حسین کوهساری

1- رشته علوم کشاورزی، کامی شناسی، دانشگاه برد
2- دانشگاه مسجد سلیمان، دانشگاه برد
3- پست الکترونیک: makhavan@yaaduni.ac.ir

(دریافت مقاله: ۱۳۸۵/۰/۰۱ دارای تأیید نهایی: ۱۳۸۵/۰/۰۱)

چکیده: این کار پژوهشی در حاشیه مرتفع گودالهای نمکی (کویر) سیده کویر یزد در شمال غرب شهرستان اردکان انجام گرفت. غالب بودن پهنای کلسیم و سولفاتانه منجر به خرابی در نزدیکی سطح آب زیر زمینی در خاک شده است. از عمق تا نزدیکی سطح آب زیر زمینی تا سطح خاک سیستم آمک- زمین - کلسیم - کلرورسیدیم - آب و فشار گاز دی‌اکسیدکربن به سیستم زمین - سولفات سیدیم - کلسیم (CaCO₃-CaSO₄.2H₂O-8Cl-H₂O-PCO₂) سیدیم و آب (CaSO₄.2H₂O-Na₂SO₄-NaCl-H₂O) تغییر می‌یابد. نتایج حاصل نشان می‌دهد از عمق یک متری تا نزدیکی به سطح آب زیر زمینی تا سطح خاک به تدریج میزان قدرت بونی کاهش یافته و ضریب فعالیت بونی افزایش یافته‌است. از این رو در نزدیکی سطح ایستای افزایش گفته می‌شود که میزان کلسیم حاصل از جگ منجر به آبریزش میعانه کلسیم تقلیل محول و کاهش سیدیم تبدیل در سیستم زمین که این تأثر از تا سطح خاک ادامه پایه‌نگه نمی‌شود. تعداد نسبی نزدیکی شود. چسب چایی کلسیم به جای سیدیم روی سطوح نادی و وجود سولفاتانه در فاز آبی تشکیل کلیه‌های سولفاتانه سیدیم را به دنبال دارد که سرعت ته نشستی کلیه‌های سیدیم در نزدیکی با توجه به میانگین تبخیر سالانه ۳۰۰ میلیمتر در ناحیه مورد مطالعه ۱۸۰۰ تا ۱۸۰۰ تا ۱۸۰۰ در هکتار در سال بلور می‌شود. همچنین نتایج به دست آمده نشان داد که نوار ۷ لندست قابلیت بیشتری در تفکیک کلیه‌های تبخیری سولفاتانه از کلسیم و نیز کلیه‌های سیدیم از کلسیم را دارد.

واژه‌های کلیدی: نمکهای تبخیری- ترمودینامیکی- نوع سولفاتانه‌ها- شوری.
در شرق اردنستان واقع شده است به اشکال گل کلمی در حاشیه کانکب و محل تباث نمک اشتهار
آبریز کوره میان اراک اشاره می‌کند. در پایگاه ملیدان علوم زمین گشود [12] به شورایه-
های خوزه کلرورها و سولفاتها و وجود سولفاتهای غیرانتهایی کاتیون جنوب سنین
انشاده می‌دارد. در این کار پژوهشی با بررسی‌های میدانی و نمونه‌برداری از نمک‌های
تیخیری تیمکل شده بر سطح خاک‌های شور و شورا و هم‌مانی مقاومت ریزبادی طبیعی باستانی
آن موضع‌ها سیده شده است. این باره بین نوع کانکه تیخیری، رفتارهای ظریف‌تر و بی‌گرایی
در منطقه موردطالعه و داده‌های سال‌های راپور‌ها کند.

روش کار
پس از انتخاب ناحیه‌ای در حاشیه جنوب غربی کوره سیاه که در نوع ناهمواران حاشیه‌ی مرطوب
روی ده نشسته‌های کوارتزی کاتیون با تعمیم پارامترهای توبوکراتیک مانند درصد شربت، راست‌اتیمات
جغرافیایی و ارتفاع، مناطق مشابه با روش سامانه‌های اطلاعات جغرافیایی [6] شناسایی سندن
(شکل 1). نواحی مورد بررسی با کد سه رقمی که از چه به راست بینه‌گره ارتفاع، راستا و شبیه
است تفکیک شده. در شکل 2 یک ترکب نواری 40 و 1، از تصرف سال‌های مورد مطالعه در استان
مرطب به مهر سال 2000 میلادی به همراه لایه‌ای شکستگی مطلوبی از هم شکستن داده
شد است. این ترکب نواری در رنگ‌های سه گانه سرخ، سبز و ایتی دارای رنگی شیبی به وضع
ظرفی ناحیه مورد بررسی است.

شکستگی مطلوبی به کانکه در نظر گرفته شد که تا دقایق آن به سمت مرکز کوره سیاه که
(کوره اردکان) رسیده است. نشان آن به سمت حاشیه کوره (نوع ناهمواره جلگه‌ای ریسی) است. از تعمیم
موضع‌های کارگزاری شده از ردیابی سطحی 249-260متری نمونه برداری شد، این ها
و کاتیونهای کلرورهای نمونه‌های خاک به نسبت 1 به 5 خاک و آب اندازه‌گیری شدند، نسبت
یون کلری به بیون سولفاتهای پراکنده از ناحیه آنتونی به میزان کلر به سولفاتهای
مانده و یا نسبت کلر به سولفاتهای کمتری را نشان می‌دادند. برای رده‌بندی
ناحیه‌ای مورد مطالعه، استفاده شد. برای مطالعه تکمیلی از موقعیتهای که پیشتر سولفاتهای
بوندید و یا نسبت کلر به سولفاتهای کمتری را نشان می‌دادند، برای رده‌بندی
سولفاتهای سدیم استفاده شد. از موقعیتهای مورد نظر تراشان و نیرم خاک حفاری سوزن
گرفت تراشان به عمق 3متر و طول 10 متر و نیرم‌خاک خاک با ابعاد 4متر در یک متر و با
عمق 1 4متر حفر شدند. موقعیت نیرم‌خاک در مختصات طول 45 درجه و 49 دقیقه و 10
ثانیه شرقی و عرض 32 درجه و 39 دقیقه و 40 ثانیه شمالی قرار دارد. پس از مطالعه
بررسی ترموذینامیکی نمکهای تبخیری در یکی از...
شکل 1 موقعیت شبکه مطالعاتی (شکل پایینی) با مقیاس 1:12,500 و نقشه زمین‌شناسی نظر آن (بالا سمت چپ) و تصویرگرایی نظر آن (بالا سمت راست) با مقیاس‌های اولیه 1:12,500.

شکل 2 ترکیب نواری 1-4 و 1-7 از اندازه 7-8-7-5-7-5 که ترکیب به چگونگی دیواری ناحیه مورد مطالعه است و شبکه‌ای از ایجادهای همگون تفکیک شده و به رنگ سبز دیده می‌شود.
روابط تبدیلی یونی و خلأیات و ته نوشته گچ را می‌توان در رابطه زیر خلاصه کرد:

\[
Ca^{2+} + [\text{Na}^+] \rightarrow a\text{Ca}^{2+} + \text{Na}^+
\]

\[
\text{Ca}^{2+} + \text{SO}_4^{2-} + 2\text{H}_2\text{O} \rightarrow \text{CaSO}_4 \cdot 2\text{H}_2\text{O}
\]

که در آن [\text{Na}] سطح تبدیلی کلیده‌های خاک با به‌منظور است. تاثیر حلولیت گچ از رابطه.

\[k = a\text{Ca}^{2+} \times a\text{SO}_4^{2-} \times a_{\text{H}_2\text{O}}^2\]

محاسبه شده روابط تبدیلی را با توجه به تاثیر حلولیت گچ و رابطه کلیده‌های می‌توان چنین خلاصه کرد:

\[S_{\text{Na}/\text{Ca}} = k'_{\text{Ca} \cdot \text{Na}} \gamma_{\text{Na}/\text{Ca}} \sqrt[3]{\gamma_{\text{Ca}} \gamma_{\text{Na}}}
\]

\[k'_{\text{Ca}2+} = \gamma_{\text{Ca}2+} \times \gamma_{\text{SO}_4^{2-}} \times \text{C SO}_4^{2-} \times \text{C SO}_4^{2-} \times \gamma_{\text{Na}2+} \gamma_{\text{Ca}2+} \gamma_{\text{SO}_4^{2-}}
\]

ضریب فعالیت برای هر یک از یون‌ها معادل است با:

\[\gamma_{\text{Ca}} = \gamma_i^4; \gamma_{\text{SO}_4} = \gamma_i^4; \gamma_{\text{Na}} = \gamma_i
\]

از رابطه پایستگی جرم یون‌های کلیسی و سولفات و حلولیت گچ می‌توان نوشت:

\[F = T_{\text{Ca}} + T_{\text{SO}_4} - \left(C_{\text{Ca}} - k'_{\text{Ca} \cdot \text{Na}} \right) W/\gamma_{\text{SO}_4} - \left(T\text{Na}_{\text{Na}} T\text{Cl} \right) - S(1-\gamma_{\text{Na}}) = 0
\]

که در آن \(F\) چگونگی تعادلی را با تغییرات شدن به صفر نشان می‌دهد که در آن \(\gamma_{\text{Na}}\) نسبت بیشینه تبدیلی است و \(T\text{Ca}_{\text{Ca}}\) و \(T_{\text{SO}_4}\) به ترتیب کل سولفات‌های ذخیره از احتمال گچ و کل کلیسی تبدیلی در فاز کلین‌های و ذخیره از احتمال گچ را نشان می‌دهد.

بررسی نتایج

شکل 7 با نوچه به‌روابط آماری بین نسبتهای گچ به سولفات و مگنتوراکیت لدست 7 و رده‌بندی تصویر با نسبت کلی به سولفات به دست آمد. به‌طوری که در تصویر دیده می‌شود، از جمله رشته‌بندی به سمت کویر نوع نمک‌ها از کلیده‌های می‌تواند و در حاشیه‌های مرطوب به سو سولفات‌های می‌گردد. شکل 4 به روش مشابه شکل 3 تصویر با نسبت سدیم به کاتیون‌های دیگر رده‌بندی شده است. در شکل 4، نسبت کاتیون‌های سدیم است که در دووسیحی حاشیه مرطوب و سدیم تغییراتی چون پیش‌انگر انواع سدیمی کلیسی و سدیم متغیری را نیز مشاهده نمود. جدول‌های 1، 2 و 3 که‌های سدیمی و فسفیکی- فیزیکی‌های ایجاده‌گری شده را در نودومه‌های شیمیایی، آب، خاک و شیمیایی خاک را در حاشیه مرطوب نشان می‌دهد. به‌منظور محاسبه قدرت بونی از رابطه یک استفاده شد. برای مثال با
احوان قابلیاف، کوهساری

توجه به نتایج محصولی پیوندی کلیسیه‌ای جدول یک واقعی نشده، در نهایت مقداری آن در حدود 125 نمونه بر متر مکعب

\[\text{Na}^+ = 87, \quad \text{Ca}^{2+} = 77, \quad \text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

حسب میلی هم ارز بر لیتر فقرت پیوندی برای است با 125، کلیولوئی بر متر مکعب

\[\text{Na}^+ = 87, \quad \text{Ca}^{2+} = 77, \quad \text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

برای مثال ضرب فعالیت با قدرت پیوندی 125، کلیولوئی بر متر مکعب برای است با 145

\[\text{Na}^+ = 87, \quad \text{Ca}^{2+} = 77, \quad \text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

برای بخش، کلیولوئی برای برای 125، و برای بخش، کلیولوئی برای 125

\[\text{Na}^+ = 87, \quad \text{Ca}^{2+} = 77, \quad \text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

شما در انتهای برای سهولت محاسبه از غلات به جای فعالیت استفاده شده که به اندازه‌گیری مستقيم غلظت کلیسی را بسته دوباره در رابطه 10 فقره به راهنمایی که به عمل آمده، کلیولوئی سنگی با 125 درصد محاسبه شده و طرفین نتایج کلیسی خان می‌ماند. هم ارز بر کلیولوئی به دست آمده از این روش 1995 = 0.531 = (0.5-102) = S

\[\text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

به راهنمایی که به عمل آمده، کلیولوئی سنگی با 125 درصد محاسبه شده و طرفین نتایج کلیسی خان می‌ماند. هم ارز بر کلیولوئی به دست آمده از این روش 1995 = 0.531 = (0.5-102) = S

\[\text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

به راهنمایی که به عمل آمده، کلیولوئی سنگی با 125 درصد محاسبه شده و طرفین نتایج کلیسی خان می‌ماند. هم ارز بر کلیولوئی به دست آمده از این روش 1995 = 0.531 = (0.5-102) = S

\[\text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]

به راهنمایی که به عمل آمده، کلیولوئی سنگی با 125 درصد محاسبه شده و طرفین نتایج کلیسی خان می‌ماند. هم ارز بر کلیولوئی به دست آمده از این روش 1995 = 0.531 = (0.5-102) = S

\[\text{Mg}^{2+} = 73, \quad \text{Cu}^{2+} = 70, \quad \text{K}^+ = 40, \quad \text{Cl}^{-} = 14, \quad \text{SO}_4^{2-} = 39, \quad \text{HCO}_3^{-} = 50 \]
بررسی ترمودینامیکی نمکهای بیشتری در یکی از...

شده برای افکارهای دیگر در جدول 2 آرائه شده است. با توجه به مقادیر F (جدول 2) از عمق نا سطح بر میزان پایداری سیستم اضافه می‌شود و با توجه به این F به مقدار صفر نزدیک می‌شود، می‌توان چند د کلید نمک همکنون تعادل کامل برقرار نشده و سیستم همکنون ناپایدار است.

یافته به سطح خاک را در حال و در یک هکتار در حاشیه کورس سنگ که از کرید، کردر

شکل ۳ تصویر دو دنباله شده از نوار هفت ماهواره اندست ۷ بر حسب همبستگی آماری با نسبت بیون کلید به پیون سولفات برحسب میلی هرم از بر اثر نرخ شیرایه خاک و آب (کریک، به‌هنج) به طوری که تغییر رنگ از آبی به سرخ مربوط به افزایش نسبت بیون کلید به پیون سولفات است.
شکل 4 تصویر رده‌بندی شده از نواز هفت‌فازه‌ای لندسنت بر حسب گسترش آماری بر نسبت یون سدیم به مجموع یون‌های کلسیم و مانژن به محاسبه میلی‌هم از یک لیتر در شهریه‌ای خاک و آب (اگر به پیچ) به طوریکه تغییر رنگ از آب به سرخ مربوط به افزایش نسبت سدیم به مجموع کلسیم و مانژن است.

جدول ۱ محتوای بیونی املاح فاصله فاصله آب به نسبت ۱/۵ خاک و آب:

<table>
<thead>
<tr>
<th>کانی‌ها (میلی‌هم از یک لیتر)</th>
<th>عمق (cm)</th>
<th>افق</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_3^-</td>
<td>HCO_3^-</td>
<td>SO_4^{2-}</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
<td>700</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>1200</td>
</tr>
</tbody>
</table>

جدول ۲ ترسیم از ویژگی‌های فیزیکی و شیمیایی شیرابه ۱۵ (خاک و آب) و خاک:

<table>
<thead>
<tr>
<th>Na_2SO_4،درصد</th>
<th>CaCO_3،درصد</th>
<th>$\text{CaSO}_4·2\text{H}_2\text{O}$</th>
<th>$\text{EC}·\text{dS}·\text{m}^{-1}$</th>
<th>pH</th>
<th>عمق (cm)</th>
<th>افق</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>672</td>
<td>800</td>
<td>A_2</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>672</td>
<td>1000</td>
<td>A_1</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>10</td>
<td>6</td>
<td>672</td>
<td>200</td>
<td>B_2</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>672</td>
<td>300</td>
<td>B_2</td>
</tr>
<tr>
<td>0,3</td>
<td>14</td>
<td>2</td>
<td>0,2</td>
<td>372</td>
<td>700</td>
<td>B_2</td>
</tr>
</tbody>
</table>
برداشت
با توجه به نتایج به دست آمده می‌توان چنین جمع‌نمایی کرد که در نوع جلگه‌ای رسی و در حاشیه مرزولب قوده‌الهی‌ای سختی به دنبال افزایش میزان رس و سیل در خاک و در نتیجه افزایش ظرفیت تبدیلات کاتیونی شرایط بیار جداسازی کاتیون‌ها از نمکهای محلول و به نتیجه دوباره نمک‌ها فراهم می‌شود. فضاهای بین کادانه‌های رسی با خاله و فرچ زیست حوزه فراهم کردن حمود و فضاهای موبیل خاک از سطح سطح زیر زمینی، نظیر ستروهای زنبیلی تبدیلی عمل کرده است. و بودن ضریب فعالیت بیومن در عمق منجر به افزایش ظرفیت بینی به ویژه کاتیون‌ها و آنیون‌ها دوشرطی در عمق می‌شود و شرایط را برای جابه‌جایی و انتقال به سطح خاک ضمن تبخیر آب از سطح خاک فراهم می‌آورد. کاتيون‌های متغیری سدیم با بیشترین سیلان ضریب فعالیت در سطح خاک در رابط با کلسیم، شرایط به نتیجه پرداختن نظیر سولفات سدیم را فراهم کرده است. در نتیجه سطح، آب زیر زمینی در بخش عمق تقریباً جای خاک که از آب موجب افزایش شار نسبی گزار دی اکسیدسربی به می‌خواند نا حذفی در انحلال اهک و افزایش ظرفیت بیومن کلسیم موتور باشند. این تاثیر با کاهش درصد اهک (جدول 2) از سطح به عمق خاک می‌تواند مرتب‌سازی و دیل ناحیه بودن آهک و فعالیت ناجی پیوندیکی به دنبال شوری باقی خاک، نشان آهک را می‌توان در سیستم خاک ناجی فرض کرد. این وضع در شرایط طبیعی با توجه به ویژگی‌های ترمودینامیکی حاکم بر محیط بیانی و کویر جلگه رسی با نوع آنیونی شورایه‌های سولفاتی کلرید، که کاتیون غالب سدیم منجر به تشکیل کانی‌هایی با ارزش اقتصادی نظیر سولفات سدیم در سطح خاک شده است.
مراجع
[1] حاجی میراژی‌الدین م، "بررسی توزع فلوئوزی پلاکایی سیاه کوه اردنیان با نگهداری بر سطح انسانی و خاک، پژوهش کارشناسی ارشد، آبی‌شانزه، تهران (۱۳۸۵). ۱۵۱ص.
[2] ترشی، خ، مطالعه رضوی‌نشینی ژئوشناسی و توزع فلوئوزی پلاکایی روزان کلیک نوا و عقده در ایران مرکزی (استان یزد)، رساله دکتری، زمین‌شناسی، دانشگاه آزاد اسلامی (۱۳۷۸).
[10] میهمانی، ا، توزیع توزیع فلوئوزی شهر آب (بند آباد)، مجله علمی پژوهش‌های کشاورزی، ادبیات و علوم انسانی دانشگاه اصفهان. (۱۳۷۸) شماره ۱۸ و ۱۹.
[11] قدیمی عروس محله ف، بررسی انتخابی به منظور تعیین وضعیت محیطی سولفات سدیم کروم مشکی اراک، کنفرانس مدد ایران. پاک‌های ملی دانشگاه علوم زمین کشور (۱۳۷۷)
http://ngdir.ir.
[12] پاک‌های ملی دانشگاه علوم زمین کشور، توان مددی استان سمنان.