بررسی اثر دمای باریکت بر میکروکرنش‌های شبکه‌ی نانوذات اکسید قلع

تهیه شده به روش سل-زل

لیلی مولتی زاده۴، فاطمه سهیهوند

گروه فیزیک، دانشگاه آزاد اسلامی واحد مشهد، مشهد، ایران

(دریافت مقاله: ۱۳۹۲/۸/۲۵، پذیرش نهایی: ۱۳۹۳/۱۰/۱۵)

چکیده: نانوذرات اکسیم قلع به روش سل-زل در دماهای مختلف باریکت، تهیه شدند. برای بررسی ساختاری و شکل ظاهری نانوذرات از برداشته شده در دماهای باریکت ۳۰۰، ۴۰۰ و ۵۰۰ می‌گردید که این نمونه‌ها تک فاز هستند. در این دماها با افزایش دما، قله‌ها تندی شدند که مربوط به تقویت نظم بلوری و کاهش اکثر مشکل‌های دست و نشان می‌دهند ناقص‌البومی، گچالی، نابجاگی‌ها، با افزایش دما باریکت,

کاهش یافته‌اند. میانگین اندازه بلورگاه‌ها به روش شریف به دست آمده با افزایش دما، نسبت بلوژه‌کشی، مقایسه شدند. نتایج بدست آمده از تحلیل ویلیامسن-حال، نشان می‌دهد که با افزایش دما اندازه بلورگاه‌ها افزایش و کرنش شبکه کاهش می‌یابند. تصور می‌شود که دست آمده از میکروکرنش‌های دمایی از دست داده‌های بدست آمده نانوذرات به خوبی

رشد کرده‌اند.

واژه‌های کلیدی: نانوذرات اکسید قلع، سل-زل، کرنش شبکه، ویلیامسن-حال، هالدروپ-وکنر

مقدمه

نرم‌سازی اکسیمثی شفاف به‌طور خاطر دو ویژگی هم‌پیمان

رساندنی کیماکی رساندی این پروتئین به طول موج‌های معنی‌داری. کاربرد زیادی در ساخت و فناوری نشان می‌دهد. از این دماها در ویلیامسن-حال، نشان می‌دهد که با افزایش دما افزایش و کرنش شبکه کاهش می‌یابند.

در سال‌های اخیر تلاقی پیش‌گذاری در زمینه‌ی ساخت و ساختاری نانوذرات در اکسیدکش می‌باشد. در این سال‌ها، عوامل مختلفی برای منشأ‌گذاری نانوذرات در اکسیدکش مانند سل-زل، هم‌پیمانی، برداشتن و وجود دارد. ویژگی‌های ساختاری مانند اندازه بلورگاه‌ها و ساختار مواد نانوذارت به صورت بسیار زیادی به روش ساخت و ساختار استفاده دارند [۱۱].

در سال‌های اخیر پژوهش‌های بسیار دما بر شکل‌گیری بلوری و اکسیدکش مانده بررسی شده است [۳-۱۰].
براي تصوير FESEM و TEM نيز از میکروسکوپ الکترونی ترکیبی موجود در آزمایشگاه مرکزی دانشگاه فردوسی و میکروسکوپ الکترونی روبیک مدلی موجود در دانشگاه تهران استفاده شد.

گرفتن نمونه با میکروسکوپ الکترونی ترکیبی در آزمایشگاه مرکزی دانشگاه انجام شد. در این مناسبات، نمونه به صورت گرم در حرارت شد. سپس با استفاده از مدلها مختلف، میانگین نانوزاندار که در شکه پلوری نمونه و ناتایی با یکدیگر مقایسه شدند. همچنین تصور با سخت از میکروسکوپ الکترونی نیز بررسی شدند. مراحل مختلف این بررسی در ادامه توضیح داده می‌شود.

رش ساخت و مشخصه‌ی پایه نانوذرات

روش تحلیل کواهی پراش پرتو X

پهنای قله‌های پراش در طیف‌برداری به دست آمده از پراش سنج سل-زل و با استفاده از برنامه‌های موجود در طیف‌برداری و تغییرات وابسته به شدت و پهنای قله‌ها راسایی اصلی رشد پلاستیک حرکت کرده و نوع ساختار نانوذرات بسته می‌شود.

روش ساخت و مشخصه‌ی پایه نانوذرات

در این کار پژوهش برای ساخت نانوذرات از روش سل-زل استفاده شد. در این روش، از گرفتن نمونه، ایجاد نازک، و واکنش پدیداری بروخورد از راه تهیه شده با این روش نسبت به روش‌های دیگر از همگنی و خلوص بالاتر و نیز کمک به کاهش دگرگونی MC، و 10 آنالوژی محلول حلالی سپس محلول حلال به مدت 5 ساعت در دمای 80 °C به سپس محلول حلال خالص و 100 °C با استفاده از سیستم میکروستانی هم زده شد. هنگام هیدرولیز اسیدستیک (عامل مهتابی) با نسبت مولی 3 به یک نسبت به کل را به کل قلع و اتانول (عامل لیپومراس) با نسبت مولی 2 به یک نسبت به کل قلع کرده و به آرامی به محلول اضافه می‌شود. محلول حلال به مدت 3 ساعت در دمای 120 °C دست و محلول حلال به مدت 3 ساعت در دمای 100 °C آسیبی شده و محلول همگکننده حلالی از مخلوط آب و دمای در بشکه نشده و به مدت 30 دقیقه در دمای 80 °C در حمام می‌گردد و به محلول غیرمستقیم گرمداشته شده و مخلوط در محلول غیرمستقیم گرمداشته شده.

پهنای قله در مدل D رابطه 1 و 2 نشان می‌دهد.

\[
D = \frac{\beta_1}{\cos \theta} \quad \text{a} \quad \cos \theta = \frac{\beta_1}{D}
\]

در این رابطه D میانگین اندازه بلورک‌ها، \(\beta_1 \) پهنای قله در نیم ارتفاع X ناتئ اثر شکل (باری دراز) گویی برای یک \(\beta_1 \) طول موج پرتو ایکس است. در حالی که \(\beta_1 \) قله لورنتسی (کوشی) کامل می‌باشد مقدار پهنای قله \(\beta_1 \) رابطه 1 و 2 در حالتی که نیم‌برخ قله لورنتسی (کوشی) کامل می‌باشد مقدار پهنای قله از رابطه 3 به دست می‌آید.

شکل 1: نمونه‌های پلاستیک حرکت کرده و نوع ساختار نانوذرات
در انجا پهن شدگی ناشی از دستگاه با β_{in} و پهن شدگی اندازه گیری شده، با β_{obs} نشان داده شده‌اند.

$$\beta_{\text{D}} = \beta_{\text{obs}} - \beta_{\text{in}}$$

از انجا که در اغلب روش‌های تولید مواد ناپو، ریز شدن داهن همراه با کرتش در شبکه است، برای کاهش خطا در تعبیه اندازه بلوک‌ها باید هم‌زمان سهم ریز شدن بلوک‌ها و افزایش کرنش در پهنای قله‌ها را در نظر گرفته و انجا بلوک‌ها

$$\beta_{\text{U}} = \frac{1}{\cos \theta} \tan \theta$$

اگر پهن شدگی قله‌ها فقط ناشی از اندازه بلوک‌ها و کرنش در نمونه باشد، و یا به عبارت دیگر اگر اندازه دستگاه صحیح نشون این دو اثر هر دو باید در پهن شدگی خطوط پر شوند در نظر گرفته شوند.

برای تعبیه کرنش ناشی از تغییر شکل شبکه، بسته به پهنی قیناعی یا پهنی قیناعی کرنش، می‌توان از یکی از روش‌های اصلاح شده ویلیامسون- هال (W-H) استفاده کرد.

1- Williamson-Hall (W-H)
2- Uniform Deformation Model (UDM)
3- Uniform Deformation Stress Model (UDSM)
4- Uniform Deformation Energy Density Model (UDEDM)

در اینجا پهنی قیناعی ناشی از دستگاه با β_{in} و پهن شدگی اندازه گیری شده، با β_{obs} نشان داده شده‌اند.

$$\beta_{\text{D}} = \beta_{\text{obs}} - \beta_{\text{in}}$$

از انجا که در اغلب روش‌های تولید مواد ناپو، ریز شدن داهن همراه با کرنش در شبکه است، برای کاهش خطا در تعبیه

$$\beta_{\text{U}} = \frac{1}{\cos \theta} \tan \theta$$

اگر پهن شدگی قله‌ها فقط ناشی از اندازه بلوک‌ها و کرنش در نمونه باشد، و یا به عبارت دیگر اگر اندازه دستگاه صحیح نشون این دو اثر هر دو باید در پهن شدگی خطوط پر شوند در نظر گرفته شوند.

برای تعبیه کرنش ناشی از تغییر شکل شبکه، بسته به پهنی قیناعی یا پهنی قیناعی کرنش، می‌توان از یکی از روش‌های اصلاح شده ویلیامسون- هال (W-H) استفاده کرد.

1- Williamson-Hall (W-H)
2- Uniform Deformation Model (UDM)
3- Uniform Deformation Stress Model (UDSM)
4- Uniform Deformation Energy Density Model (UDEDM)
که در آن \(\beta_c \) و \(\beta_L \) به ترتیب عوامل برتری از پهلو شدگی و استیت به توزیع‌های لورنتسی و گاوسی در روش هالدر-واتنر، اندارهٔ مولکول‌ها و کرنش شکل را برای توصیف می‌شوند [16]

\[
\frac{1}{\Delta
abla_{
abla}} = \frac{1}{\Delta
abla} + \frac{1}{\Delta h
abla}
\]

که در آن \(\Delta
abla \) و \(\Delta h \) به ترتیب استیت به توزیع‌های لورنتسی و گاوسی در روش هالدر-واتنر، اندارهٔ مولکول‌ها و کرنش شکل را برای توصیف می‌شوند [16].

\[
\beta_{hl} \cos \theta = \frac{\Delta L}{\Delta h} + 4 \frac{\sigma}{\Delta h} \sin \theta
\]

در این معادله، \(\beta_{hl} \) مولکول‌ها و کرنش شکل را برای توصیف می‌شوند [16].

\[
1 = \frac{S_{11} (h^2 + K^2) + 1^2 (2s_{13} + s_{44})}{(h^2 + k^2 + l^2)^2}
\]

\[
1 = \frac{S_{33} - 2s_{13} - s_{44}}{(2s_{12} + s_{66})}
\]

\[
\frac{1}{\Delta
abla_{
abla}} = \frac{1}{\Delta h
abla} + \frac{1}{\Delta h
abla}
\]

\[
\beta_{hl} \cos \theta = \frac{\Delta L}{\Delta h} + 4 \frac{\sigma}{\Delta h} \sin \theta
\]

\[
\beta_{hl} \cos \theta = \frac{\Delta L}{\Delta h} + 4 \frac{\sigma}{\Delta h} \sin \theta
\]

\[
\beta_{hl} \cos \theta = \frac{\Delta L}{\Delta h} + 4 \frac{\sigma}{\Delta h} \sin \theta
\]
بلورکها جدایی‌انگی در فله محاسبهشت و میانگین آنها به‌دست‌آمد و نتایج در جدول 1 گزارش شدند. میانگین اندازه‌ی بلورکها به‌دست‌آمد از شیب پراش خفی که از میانه‌ی می‌گذرد و از روش میانگین‌گیری، نتایج تقیبی یکسانی ارائه می‌کند و نشان می‌دهد که با افزایش دما اندازه‌ی بلورکها افزایش یافته است.

برای تعیین میانگین اندازه‌ی بلورکها از روش شرر، با توجه به رابطه \(\cos \theta \) و به‌دست‌آمده از آن به‌دست‌آمده از داده‌های قله‌های اکسید، برای تعیین شیب، از جدول 5-50 درجه سانتی‌گراد، میانگین اندازه‌ی بلورکها از شیب پراش خفی مناسب به‌دست‌آمده است.

جدول 1 اطلاعات ساختاری به‌نیا و اندازه‌ی میانگین، اندازه‌ی بلورکها اکسید قلی به‌دست‌آمده از تحلیل اکسید قلی پرانیا پویا برای سه قله اصلی بنا بر استفاده از روش شرر.

<table>
<thead>
<tr>
<th>دمای پراشت (°C)</th>
<th>hkl</th>
<th>20(deg.)</th>
<th>FWHM 2Theta (°)</th>
<th>D(nm)</th>
<th>میانگین (nm)</th>
<th>پراش خفی گراند آماده (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>110</td>
<td>3648</td>
<td>0.374</td>
<td>33.81</td>
<td>21.48</td>
<td>21.61</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>3396</td>
<td>0.401</td>
<td>31.47</td>
<td>20.28</td>
<td>19.98</td>
</tr>
<tr>
<td>450</td>
<td>110</td>
<td>3642</td>
<td>0.336</td>
<td>25.59</td>
<td>24.11</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>3396</td>
<td>0.413</td>
<td>22.5</td>
<td>22.3</td>
<td>22.2</td>
</tr>
<tr>
<td>550</td>
<td>110</td>
<td>3682</td>
<td>0.297</td>
<td>28.72</td>
<td>26.59</td>
<td>26.82</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>3396</td>
<td>0.349</td>
<td>25.8</td>
<td>25.6</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>51.9</td>
<td>0.363</td>
<td>25.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
برای بدست آوردن کرنش شیب و مقدار واقي تری برای میانگین اندازه بلوک‌ها از روش‌های یولیاسون- اسپیلر و UDM-واگتر استفاده شد. با توجه به رابطه ۴ در مدل نمودار تغییرات $\beta_{\text{hkl}} \cos \theta$ نسبت به $\sin \theta$, این نمودارها در شکل ۴ اورده شده‌اند و همچنین در هر نمودار به نقاط به دست آمده یک خط برای نشان داده شده و شیب خط و عرض از مبدا آن تعیین شد. با توجه به رابطه ۴ و با داشتن شیب خط و عرض از مبدا آن، به ترتیب، کرنش شیب و انداده بلوک‌ها تعیین شدند. به همین ترتیب با توجه به رابطه ۵ در مدل UDM نمودار $\beta_{\text{hkl}} \cos \theta$ را بر حسب $\sin \theta / Y_{\text{hkl}}$ نمودار تغییرات $\beta_{\text{hkl}} \cos \theta$ را بر حسب $Y / \sin \theta$ برای سه نمونه کرنش شیب و انداده بلوک‌ها تعیین شدند. با توجه به رابطه ۶ در مدل UEDDM، نمودار میانگین مدول یاک در استفاده از رابطه ۶ و ۱۸۱۴ به دست آمده که به مقدار گزارش شده بسیار نزدیک است [۱۹]. نتایج به دست آمده از این مدل‌ها در جدول ۲ اورده شدند. با استفاده از نتایج به دست آمده نمودار تغییرات کرنش نسبت به میانگین اندازه بلوک‌ها برای نمونه‌های تهیه شده در دمایه بازیابی مختلف

شکل ۶ نمودار داده‌های پراش با استفاده از مدل UDM برای نمونه‌های تهیه شده در دمایه بازیابی مختلف
شکل 5 نمودار تغییرات کرنش نسبت به میانگین اندازه‌گیری بلورکه‌ها به دست آمده از سه روش الف، میانگین اندازه‌گیری بلورکه‌ها به دست آمده از سه روش الف، UDEM و USDM.

جدول 2 نتایج به دست آمده از تحلیل‌های پرتو ایکس با استفاده از مدل‌های مختلف D میانگین اندازه‌گیری بلورکه‌ها. در این شیبک، 5.

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>شتر</th>
<th>USDM</th>
<th>UDEDM</th>
<th>USDM</th>
<th>UDEDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (nm)</td>
<td>D (nm)</td>
<td>σ (MPa)</td>
<td>D (nm)</td>
<td>σ (MPa)</td>
<td>D (nm)</td>
</tr>
<tr>
<td>350</td>
<td>2141</td>
<td>2711</td>
<td>1.5</td>
<td>4411</td>
<td>1.5</td>
</tr>
<tr>
<td>450</td>
<td>2413</td>
<td>3953</td>
<td>1.5</td>
<td>3953</td>
<td>1.5</td>
</tr>
<tr>
<td>550</td>
<td>2482</td>
<td>3153</td>
<td>1.5</td>
<td>3153</td>
<td>1.5</td>
</tr>
</tbody>
</table>
شکل ۶ مقایسه کرنش شیکه‌ای نانوذرات اکسیدقلع بر حسب دماهای باریکت ۵۰۰ و ۵۵۰ درجه سانتی‌گراد با استفاده از مدل‌های مختلف

شکل ۷ مقایسه میانگین اندازه‌ی بلوک‌های نانوذرات اکسیدقلع بر حسب دماهای باریکت ۳۵۰ و ۵۵۰ به دست آمده از تحلیل الگوهاي پراش به ترتیب اینک با استفاده از مدل‌های مختلف

بررسی تصاریف میکروسکوپ الکترونی FESEM تصویر گرفته شده با میکروسکوپ الکترونی FESEM در شکل ۸ نشان داده می‌شود که جامعه‌ی نانوذرات چون نانوذرات پیش از ساییدن شکل نهایی به خوبی جدا شدند.

پیش از تصاریف برداری، نمونه‌ها در هاون به خوبی ساییده شده و سپس پس از فرآیند آماده سازی تصاریف
بررسی اثر دمای بازیخت بر میکروکرنشی شیبکه ...

۸ تصاویر گرفته شده با میکروسکوپ FESEM از نمونه‌های تهیه شده در دمای بازیخت ۳۵۰ پ. و ۵۵ درجه سانتی‌گراد.

۹ تصاویر گرفته شده با میکروسکوپ TEM از نمونه‌های تهیه شده در دمای بازیخت ۳۵۰ پ. و ۵۵ درجه سانتی‌گراد.

ابن کرون‌ها که با پایندی که نشان دهنده کاهش نواص בלوری با افزایش دمای بازیخت است. دیده می‌شود که با حذف اثر کرون شیبکه با استفاده از روش‌های ویلیامسون-هال، می‌توان اندام بلورک‌ها را با دقت بیشتری به دست آورد. اندام بلورک‌ها به‌دست آمده با استفاده از روش ویلیامسون-هال، بزرگتر از مقداری بعدست آمده با روش شتر هستند. این نتایج نشان می‌دهد که نانورات اکسید فلئ به روش سه-زل تهیه و در دمای مختلف بازیخت شدن. با استفاده از اگوهای پروتو پروتو ایکس، تشکیل فاز روتایل و نک فاز بودن نمونه‌ها تایید شد. بررسی اگوهای پروتو X نمونه‌ها با مدل‌های مختلف نشان دادند که کرون‌های شیبکه همگی همسان‌گرد هستند و با افزایش دما.

FESEM

