بررسی اثر دمای بازیخت بر میکروکرم‌های شکه‌ای نانوذرات اکسید قلع

تهیه شده به روش سل-زل

لیلی متلی زاده*، فاطمه سهیوند

گروه فیزیک، دانشگاه آزاد اسلامی واحد مشهد، مشهد، ایران

چکیده: نانوذرات اکسید قلع به روش سل-زل در دماهای مختلف بازیخت، تهیه شدند. برای بررسی ساختاری و شکل ظاهری نانوذرات از برای ستگ بروتو ایکس و تصویربرداری با میکروسکوب الکترونی استفاده شد. هگوهای پرتو بروتو ایکس نانوذرات تهیه شده در دماهای بازیخت 190، 300 و 550 درجه سانتی‌گراد تهیه شدند. در این گروه‌ها با افزایش دما، فلزهای نیترز شده‌اند که مربوط به تقویت نظم بلوری و کاهش کرنش شکه است و نشان می‌دهند ناپایداری نانوبلوری و چگالی نابرابری، با افزایش دمای بازیخت، کاهش یافت. با توجه به نتایج روش‌های دقت‌تری مانند روش ویلیامسون-حال مقایسه شدند. نتایج بهبود آمداز از تحلیل ویلیامسون-حال، نشان می‌دهد که با افزایش دمای لبرک‌های نانوذرات سازندگی شکه کاهش می‌یابد. تصویربرداری به دست آمده از میکروسکوب الکترونی تراکمی رنگ نشان می‌دهد که با افزایش دما، نانوذرات به خوبی رشد کرده‌اند.

واژه‌های کلیدی: نانوذرات اکسید قلع، سل-زل، کرنش شکه، ویلیامسون-حال، رشد کردن

مقدمه

نیم‌سانه‌های اکسید قلع شفاف به خاطر دو ویژگی همزمان، رساندگی الکتریکی نسبتاً بالا و شفافیت ایتپی زیاد در طول موج‌های مرمی، کاربرد زیادی در صنایع و فناوری نشان می‌دهد. ادامه دنیا از ریخت‌شناسی بلورک‌های مایع سازندگی در نانواختارها، نقش مهمی در تغییر و بهبود ویژگی‌های فیزیکی آنها دارد. [1-10]. اکسید قلع یک نیم‌سانه‌ای نوع n با شکاف‌های اتروزی نسبتاً پهن، حدود 3.6 الکترون ولت، در دمای اثره است. که به علت داشتن ویژگی‌هایی از قبیل: واکنش‌ریزسنتکتریکی بوم، ترکیب، حامل الکتریکی بالا کاربردهای داده، به عنوان نیم‌سانه اکسید قلع در ساخت سیال‌های گازی، باطنی‌های خورشیدی برای بانک، دستگاه‌های الکترونیکی، صفحه‌های نمایش بلور‌سای، مواد الکترودی و...

Imotevali@mshdiau.ac.ir

*نویسنده مسئول: تلفن و نمایر: (114) 05138805167

مسیر پست الکترونیک: imotevali@mshdiau.ac.ir
روش ساخت و مشخصه‌بندی نانوذرات X SnO

در این کار پژوهشی برای ساخت نانوذرات از شیمیاول-زل سل-ژل استفاده شد. در این کار، گروه هیدروکسیل را قلبی از استفاده می‌سوز. این روش در قطع مورد روش‌های دندانی می‌باشد. نانوذرات به تغییری بروز داده شدند. 1/2 برای ساخت نباتی روش ساخت به شیمیاول-ژل 0/0 در دمای سیمس محلول حاصل به مدت 50 ساعت در دمای 600 درجه سانتی‌گراد کریستال شد. روش ساخت فیلتر ژل و شیمیاول به فرمول بیان شده شد.
در اینجا پهنی شکلی ناشی از دستگاه با β_{obs} و پهنایش β_{uf} انداده گیری شده، با $eta_{\text{uf}}$ نشان داده شده‌اند.

\begin{equation}
\beta_{\text{uf}} = \beta_{\text{obs}} + \beta_{\text{uf}} = \frac{k^2}{u_{\text{obs}}} + \frac{4 \tan \theta}{\cos \theta}
\end{equation}

در اینجا، k مقیاس کرنش، β_{uf} پهنای انگرالی قله‌های موجود در طیف θ، β_{obs} انداده بلورگ‌ها و β_{uf} موج پهنای برگرفته است. در مدل USDM کرنش غیرخطی است و در USDM کرنش غیرخطی است و در پرای نفوذ می‌شود که شبکه کوچک است و در نتیجه β_{uf} را می‌تواند در نظر گرفت. از دستگاه [16] استفاده می‌شود.

\begin{itemize}
\item [2] Uniform Deformation Model (UDM)
\item [3] Uniform Deformation Stress Model (UDSM)
\item [4] Uniform Deformation Energy Density Model (UDEDM)
\end{itemize}
که در آن β_0 و β_L به ترتیب عبارتند از هیند شدگی وابسته به توزیع‌های لورنتزی و گاوسی. در روش هالدر - واگنر، اندیشة Y_{ii} برای کره و کنش شدگی، رابطه 9 توصیف می‌شود [16].

\[
\left(a_{\text{ii}}^2 \right) = \frac{1}{2} \left(\frac{\beta_0}{\beta_L} \right)^2 + \frac{1}{2} \left(\frac{\beta_L}{\beta_0} \right)^2
\]

در این نتیجه تناسب خطا بین نتیجه (9) و کنش از رابطه Y_{ii} بدست می‌آید که در آن $\sigma = Y_{\text{ii}}$ مدل بایک ایجاد می‌شود [15]. در این رابطه 5 به رابطه 5 تبدیل می‌شود.

\[
\beta_{\text{RR}} \cos \theta = \frac{h^2}{2} + \frac{4 \sigma}{Y_{\text{ii}}} \sin \theta
\]

در اینجا Y_{ii} مدل بایک در راستای عمود بر دسته صفحات بتا h توسط $\beta_{\text{RR}} \cos \theta$ به رابطه 6 داده می‌شود. در این رابطه S_{h}^{2} نتایج به نمایانگر h و σ و σ ی شاخص‌های میلار هستند.

\[
\frac{1}{Y_{\text{ii}}} = \frac{S_{11}^2 (h^2 + K^2) + 1^2 (2S_{13} + S_{44}) + \frac{1}{4} (S_{33} - 2S_{13} - S_{44}) + h^2 K^2 (2S_{12} + S_{66})}{(h^2 + K^2 + L^2)^2}
\]

مقدار این نتایج برای ساختار قارچ‌گوشه‌ی $\beta_{\text{RR}} \cos \theta$ عبراندر از SnO_2 شکل 2 اکوگهای پراش پرتو X نمونه‌سازی شده به روش سل زل در دماهای بین 250 و 550 درجه سانتی‌گراد. نتایج به صورت S_{11}، S_{12}، S_{13} و S_{44} در مثلث هالدر-ویگنر در دسته $\beta_{\text{RR}} \cos \theta$ در تفاوت گرمایی 25 درجه سانتی‌گراد شده‌اند. همچنین نتایج شکل 2 اکوگهای پراش بیان شده در سایر اکوگه‌ها برای پراش بیان شده در امتداد ایزومتر رابطه 7 مطابق است. با جایگزینی u در رابطه 6، معادله‌ی $S_{33} - 2S_{13} - S_{44}$ به عنوان ضریب از کنش شکل بیان شده و به صورت

\[
\frac{1}{Y_{\text{ii}}} = \frac{1}{2} \frac{2Y_{\text{ii}}k^4}{\beta_{\text{RR}} \cos \theta}
\]

ی ویلیامسون- هال به رابطه 7 اصلاح می‌شود [15].

\[
\rho_{\text{RR}} \cos \theta = \frac{h^2}{2} + \frac{4 \sigma}{2Y_{\text{ii}}} \sin \theta
\]

در اینجایی در نتایج برای ساختار قارچ‌گوشه‌ی $\beta_{\text{RR}} \cos \theta$ می‌تواند به تغییر شکل رابطه 8 با هنر مربوط به نتایج به رابطه $u = \sigma^2 / 2Y_{\text{ii}}$ انجام شود با دقت بسیار خوب و بدون اثرات عامل مربوط به کنش در دسته $\beta_{\text{RR}} \cos \theta$ دسته را داده [15].

همگنی که در کلگی پراش هموشی و در دقیقه بدشد استفاده از توابع رایج و در نتیجه توصیف شکل خطوط پراش استفاده می‌شود. هالدر و واگنر تغییر برای بهبود انگریزی

\[
\beta_{\text{RR}} = \beta_0 + \beta_L
\]

تابع ویت به صورت زیر ارائه داده [18].

\[
\rho_{\text{RR}} \cos \theta = \frac{h^2}{2} + \frac{4 \sigma}{2Y_{\text{ii}}} \sin \theta
\]

- Voigt function
پلورکها جدایاگرده قله محاسبه شد و میانگین آنها به‌دست آمد و نتایج در جدول ۱ گزارش شدند. میانگین اندازه پلورکها به‌دست آمده از شیب برای شاخه‌های که از مبدأ می‌گذرد و از روش میانگین گیری، نتایج تقیبی یکسانی ارائه می‌کند و نشان می‌دهد که با افزایش دما اندازه پلورکها افزایش یافته است.

برای تعیین میانگین اندازه پلورکها از روش سه‌ضلعی برای ψ و χ با استفاده از داده‌های قله‌های الگوی پراشی رسماً شد. این نمودارها در شکل ۳ آوردند. در این نمودارها با پیش ضخامت که از مبدأ می‌گذرد و تعیین شیب خط، اندازه پلورکها به‌دست آمده همچنین با به کارگیری رابطه (۱) برای تعیین قله‌های اصلی، اندازه پلورکها برای شیب خلل کناره‌گیری شده است.

جدول ۱ اطلاعات ساختاری به‌همنه قله و اندازه میانگین اندازه پلورکها اکسپید قله به‌دست آمده از تحلیل الگوی پراش برای اندازه‌های ۳۵۰، ۴۵۰، ۵۵۰ و به‌عدداً به‌صورت

<table>
<thead>
<tr>
<th>دمای پراش (°C)</th>
<th>hkl</th>
<th>ψ(°)</th>
<th>FWHM 2Theta (°)</th>
<th>D(nm)</th>
<th>میانگین (nm) برای شیب خلل (nm)</th>
<th>گرنگانه از مبدأ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵۰</td>
<td>۱۱۰</td>
<td>۳۶۸</td>
<td>۳۷۴</td>
<td>۳۴.۷۱</td>
<td>۱۸۴۸</td>
<td>۱۱۶۱</td>
</tr>
<tr>
<td></td>
<td>۱۰۱</td>
<td>۳۳۹</td>
<td>۴۰.۱</td>
<td>۱۱۴۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۱۱</td>
<td>۵۱.۸</td>
<td>۴۸۴</td>
<td>۱۹.۹۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۵۰</td>
<td>۱۱۰</td>
<td>۲۶۷۲</td>
<td>۴۳۶</td>
<td>۲۵.۳۹</td>
<td>۲۴.۳۱</td>
<td>۲۴.۱</td>
</tr>
<tr>
<td></td>
<td>۱۰۱</td>
<td>۳۴</td>
<td>۵۳۵</td>
<td>۴۴.۵۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۱۱</td>
<td>۵۱.۹</td>
<td>۴۱۳</td>
<td>۲۳.۵۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۵۰</td>
<td>۱۱۰</td>
<td>۲۶۸۲</td>
<td>۴۷۷</td>
<td>۲۸.۷۲</td>
<td>۲۶.۵۹</td>
<td>۲۸.۸۲</td>
</tr>
<tr>
<td></td>
<td>۱۰۱</td>
<td>۳۲۴</td>
<td>۵۵۹</td>
<td>۲۵.۵۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۱۱</td>
<td>۵۱.۹</td>
<td>۵۴۲</td>
<td>۲۵.۵۹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
برای به دست آوردن کرنش شیب و مقادیری از برای میانگین اندازه بیضوکه از روش‌های ویلیامسون-حال و UDM هالر-واتک استفاده شد. با توجه به آزمایش چهار در مدل نمودار تغییرات $\beta_{nkl} \cos \theta$ نسبت به $\text{Sin} \theta$ را در (شکل 2) نشان داده شده‌اند. این نمودار تغییرات دما در 3 اوره شده‌اند همچنین در هر نمونه، به نقاط دست امده یک خط برای شده و شیب خط و عرض از مبدأ آن تعبیه شد. با توجه به رابطه (شکل 3) و با دانستن شیب خط و عرض از مبدأ آن، به ترتیب، کرنش شیب و اندازه‌بیپک‌ها تعبیه شدند. همین ترتیب با توجه به $\beta_{nkl} \cos \theta$ را در محاسبه USDM نمودار $\text{Sin} \theta/Y_{nkl}$ نمودار را بر حسب $\beta_{nkl} \cos \theta$ برای سه نمونه رقم شدند و با برای شکل نشان داده شده و مانند موجودات نیم‌پیش دها در $\text{Sin} \theta$ نمودار، به نقاط دست امده یک خط برای شده و شیب خط و عرض از مبدأ آن تعبیه شد و از آنجا کرنش شیب و میانگین اندازه بیپک‌ها با استفاده از این مدل، به‌دست آمده. این نتایج نیز در جدول 2 وارد شده‌اند.

شکل 2. نمودار داده‌های برای استفاده از مدل UDM برای نمونه‌های تهیه شده در دمایه‌ای بازیافت مختلف.
پرسی اثر دمای بازیخت بر میکروکرنش‌های شبکه‌ی ... 499
جرد ۲۴ شماره ۳، پاییز ۱۳۹۵

شکل ۵ نمودار تغییرات کرنش نسبت به میانگین اندازه‌ی بلورکه‌های بعدست آمده از سه روش الف، UDM، USDM و پ. UDEDM

جدول ۲ نتایج بعدست آمده از تحلیل الگوهای پراش ناحیه‌ای ایکس با استفاده از مدل‌های مختلف. میانگین اندازه‌ی بلورکه‌ها ۵ تنش شبکه، ۵ کرنش شبکه، ۵ جگالی انرژی.

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>نور و پیلیاوسون-حال</th>
<th>UDM</th>
<th>USDM</th>
<th>UDEDM</th>
<th>دما (°C)</th>
<th>نور و پیلیاوسون-حال</th>
<th>UDM</th>
<th>USDM</th>
<th>UDEDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰۰</td>
<td>۳۱۶۱</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۵۵۱۲</td>
<td></td>
</tr>
<tr>
<td>۴۵۰</td>
<td>۳۴۸۱</td>
<td>۲۹۱۲</td>
<td>۱۱۶</td>
<td>۱۱۴</td>
<td>۲۹۱۲</td>
<td>۱۱۶</td>
<td>۱۱۴</td>
<td>۵۷۲</td>
<td></td>
</tr>
<tr>
<td>۴۰۰</td>
<td>۳۴۸۱</td>
<td>۲۹۱۲</td>
<td>۱۱۶</td>
<td>۱۱۴</td>
<td>۲۹۱۲</td>
<td>۱۱۶</td>
<td>۱۱۴</td>
<td>۶۴۶۳</td>
<td></td>
</tr>
<tr>
<td>۳۵۰</td>
<td>۳۱۶۱</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
</tr>
<tr>
<td>۳۰۰</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵۰</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۰۰</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵۰</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۲۷۱۱</td>
<td>۱۰۵</td>
<td>۱۲۴</td>
<td>۶۴۶۳</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
بررسی تکرار میکروسکوب الکترونیFESEM
تصمیم گرفته شده با میکروسکوب الکترونیFESEM در
شکل ۸ اورده شده‌اند. این تصاویر از نانوذرات پیش از ساییدن
نهاپی که برای جدا شدن نانوذرات صورت گرفت، فرآیند رشد
نانوذرات با دمای بازیخت به خوبی دیده می‌شود.
پیش از تصویر برداری، نکشت نمونه‌ها در هاون به
خوبی سابیه‌شده و سپس پس از فرآیند آماده‌سازی تصویر

آنها به‌سازی دو نمونه بازیخت شده در دمای
۳۵۰و۵۵۰ درجه سانتی‌گراد به‌سازی دهنده. این تصاویر در
شکل ۹ اورده شده‌اند. در این تصاویر می‌توان دیده به خوبی
نواحی بازیخت شده در دمای ۵۵۰ درجه سانتی‌گراد، به
شکل ۷ مقایسه میانگین زمان‌های بلورکوهی‌های نانوذرات اکسیدقلع بر حسب دما‌های بازیخت ۳۵ و ۵۵ به دست آمده از تحلیل الگوهای پراش پروتو ایکس با استفاده از مدل‌های مختلف.

شکل ۶ مقایسه کرنش شیکی نانوذرات اکسیدقلع بر حسب دما‌های بازیخت ۳۵ و ۵۵ به دست آمده از تحلیل الگوهای پراش پراتو ایکس با استفاده از مدل‌های مختلف.

شکل ۷ مقایسه میانگین اندامژی بلورکوهی‌های نانوذرات اکسیدقلع بر حسب دما‌های بازیخت ۳۵ و ۵۵ به دست آمده از تحلیل الگوهای پراش پروتو ایکس با استفاده از مدل‌های مختلف.

و در دمای ۳۵۰nm حداکثر ۴۵ است.
بررسی اثر دمای بازیخت بر میکروسکوپهای شبکهی

شکل 8 تصاویر گرفته شده با میکروسکوپ FESEM از نمونه‌های تهیه شده در دمای بازیخت الف. ۳۵۰ ب. و پ. ۵۰۵ درجه سانتی‌گراد.

شکل 9 تصاویر گرفته شده با میکروسکوپ TEM از نمونه‌های تهیه شده در دمای بازیخت الف. ۳۵۰ ب. و پ. ۵۰۵ درجه سانتی‌گراد.

برداشت

نانوذرات اکسید قلع به روش سل-زل تهیه و در دماهای مختلف بازیخت شدند. با استفاده از الگوهای پرتو ایکس، تشكل فاز روتانی و نک فاز بودن نمونه‌ها تایید شد. بررسی الگوهای پرتو X نمونه‌ها با مدل‌های مختلف نشان دادند که کرنش‌های شبکه، همگی همسانگرد هستند و با افزایش دما،

