Geothermometry of skars in the Nain ophiolitic mélangé
(Isfahan Province)

Gh. Torabi, I. Noorbehesht, N. Shirdashtzadeh, T. Pirnia

Department of Geology, Isfahan University
E-mail: Torabighodrat@yahoo.com

(Received: 11/7/2006, received in revised form: 26/5/2007)

Abstract: One of the metamorphic rocks in the Nain ophiolitic mélangé is skarn which is formed during the contact metamorphism of intrusive tonalites with their neighboring limestones and carbonate parts of banded cherts. Minerals of these skarns consist of carbonate (calcite), clinopyroxene (diopside), garnet (grossular-andradite), wollastonite, sphen and epidote. Also tonalites contain quartz, plagioclase (albite), alkali feldspar (orthoclase), garnet (almandine-spessartine) and prehnite. Based on mineral assemblages of Nain skarns as well as geothermometry of feldspars existing in relevant granites and also applications of different calibrations of garnet-clinopyroxene geothermometer, the Nain skarns form at temperatures of about 440 to 630 °C at low pressure during a contact metamorphism which has occurred at hornblende hornfels to pyroxene hornfels facies.

Keywords: geothermometry, Nain, ophiolite, skarn, tonalite.
زمین دماسنجی اسکارن‌های موجود در افیولیت ملانز نایین
(استان اصفهان)

قدرت ترایی، ایرج نوری‌پور، طریق شیرودشت زاده، تهمتی پرینی
گروه زمین شناسی، دانشگاه اصفهان
پست الکترونیک: Torabighodrat@yahoo.com

(دریافت مقاله 1386/04/20، دریافت نسخه نهایی 1387/03/15)

چکیده: از سنجش‌های دگرگونی موجود در افیولیت ملانز نایین می‌توان به اسکارن‌ها اشاره کرد. اسکارن‌ها حاصل ذریگونی مجاورشان توده‌های فندقی تونلی‌پی با سنگ‌های آهکی مجاور و بخش‌های کربناته چرب‌های نواری هستند. به این ترتیب بخش‌های آهکی به اسکارن و بخش‌های نواری که شامل امکانات و لاشه‌های چرب است، به مرحله نواری یا تبدیل شده‌اند. اسکارن‌ها خاکی کاتی‌های کربنات (کلیزیت). کلیزیت‌های ویژه (گروسوبرنت، آنتراپین، و لاسونین) و اپیدوت‌های کاتی‌های موجود در تونلی‌پی لیفت شیمی و توزیع اسکارن‌ها برعهده است. توزیع اسکارن‌ها به مجموعه‌کلی موجود در اسکارن‌ها و با استفاده از زمین دماسنجی کانالپورپرسن، با سنجش‌های مختلف، نایین توزیع اسکارن‌ها در حدود 40 °C و 65 °C رعایت این دگرگونی در حد رخساره هورونفلس نایین می‌باشد.

واژه‌های کلیدی: اسکارن، افیولیت، تونلی‌پی، زمین دماسنجی، نایین.
مقدمه

به منظور برآورد و محاسبه شرایط فشار و دما حاکم بر محیط‌های دگرگون، نا کتن روی‌های گوناگونی توسط پژوهشگرانی بیشترین دقت و کاربردی Fe-Mg دماسنج‌گرانت - کلینوپروکسن است. این زمین دماسنج براساس تبادل بین گازان و کلینوپروکسن است که بهترین نتیجه را در مورد غلظت‌های Ca و Al ایجاد نموده‌است. این زمین دماسنج می‌تواند تا یک دما با آتش بیشتر از آنها که تا کلینوپروکسن هر اثر به‌نام دیگر باشد. به طور کلی این اسکارنها با توجه به مجموعه کانی‌های موجود در آنها نیز زمین دماسنج‌های نفوذی توسعه‌ی هر اثر آنها به‌طور مداوم فشار و دما با استفاده از زمین دماسنج‌گرانت - کلینوپروکسن با سنجش‌دهنده‌های مختلف مشخص شوند. این کار بروزهای به بررسی سنگ شناختی، کلی، شناختی و شرایط دما و فشار حاکم بر تشکیل این اسکارنها خواهد پرداخت.

زمین شناسی منطقه

ملزق افیولیتی شمال نابین با روند شمالی - جنوبی یکی از افیولیتهای موزوزیک اطراف صفحه شرق-ایران مرکزی است که در لبه غربی زون ایران مرکزی و در گستره جغرافیایی ۲۵° - ۵۵° شرقی و ۱°۲۰′ - ۳۳° شمایی قرار گرفته است.

از سمت شرق به ناحیه‌های ترشی‌ریز و از غرب به ناحیه‌های نفوذی دیوریتی محدود است. در شکل (1) نقشه‌زمین‌شناسی منطقه شمال نابین و محل‌های رخ دهنده سنگ‌های گرگون در افیولیت‌های نابین آورده شده‌اند. از جمله راه‌های دسترسی به منطقه مورد نظر می‌توان به مسیر غربی-شرقی اصفهان-کوهدشت-نابین و نیز مسیر جنوبی-شمالی پرد-رکنکان-باپاین اشاره کرد.

از نظر سنگ‌شناسی این سکال افیولیتی به ترتیب شامل آمکه‌های پلاژیک-پزار، گداره بالشی، دایک‌های دیباژی، پلاتوپروکسن، گاریبو، پیر‌پروکسنیت، و پریدوتیت‌های گونه‌های است که لیست‌شناسی و رتبه‌گذاری نیز در طول دگرگسایی‌های بیشتری در آنها به وجود آمده‌اند. سنگ‌های آمکه کرتانه بالشی آن مجموعه افیولیتی را پوشش‌دادند (1). ولی سنگ‌های امکان‌می‌کند که به اسکارن‌های تبیز-شده‌اند مشخص نیست، ولی مطمئناً قدمتی تاز از کرتانه بالشی مستند.
شکل ۱. نقشه پراکندگی افیولیت‌های ایران و موقعیت ناحیه مورد مطالعه، نیز نقشه زمین‌شناسی منطقه شمال کرانه و موقعیت سنگ‌های دگرگونی در افیولیت‌های این ناحیه (بزرگ‌ترین نقشه) با اندکی تغییرات

از جمله سنگ‌های دگرگون نیز می‌توان به سنگ‌های آفیولیتی شامل افیولیت و دایک‌های آفیولیتی، مانند مارمر، اسکارن، و منچریه‌ها نوازه اشاره کرد که در اینجا مختلف دگرگونی به ترتیب از پازالتا (شامل پازالتا و گدازه‌های بالشی و دایک‌های دیپاریز)، شیل‌ها، آهک‌ها و چرت‌ها حاصل شده‌اند. این سنگ‌های دگرگون در بخش شرقی شمال شهر تاپیان، دامنه‌های شمالی افیولیت‌های آبی‌روی تا شرق سپر (سراب) پراکنده‌اند (شکل ۲). در کوه زرد، سن قدیمی‌ترین آهک‌ها با توجه به حضور فسیل گلی‌بیورتریکان

2 Globotruncana
زمین دماسنجی اسکارن‌های موجود در آفیلولت ...
سنگهای آمفیپتلیتی از بیان‌الهای موجود در افیولیت و ایجاد برگرگی در آنها شده،
درگوگان مجاری (M2) که اسکارن‌ها و مانگسترا را به وجود آورده و بالاخره درگوگان ناحیه Moser (M3) در حد رخساه شیست سیز و پره‌های بومه‌ای که موجب برگرگی دوباره در
اسکارن‌ها، توسعه‌های نفوذی تولیدی و آمفیپتلیت‌ها شده است.

انواع سنگهای گرانیتوبیتی موجود در افیولیت نایین را که در نقاط مختلف این افیولیت
برای سنگهای مشابه می‌توان به سه دسته تقسیم کرد:

1. گروه اول پلاژیوکرات‌ها که دایر از راکت کوزئر، بلادیولاز، و آمپیلوپتلا و گاه بر اثر رودنگی
شند پره‌های و کریستن نیز در آنها بافت می‌شود این سنگ‌های ناشی از جداسخت‌سازی
ساندزهای گابوره‌ها هستند.

2. این گروه‌گی را تشکیل می‌دهد که شامل کالکاتی الکترات، فلدسپات‌های نیز
یا بلادیولاز و مساوات‌دان با توجه به کالکاتی الکترات، این سنگ‌های نسبت به دو گروه
گیتی‌ریزی‌های دارای پهنای بالاتری هستند. خاصیت این سنگ‌های هدوز مورد سوال
است و براساس مطالعات [8]، روز سنگ‌های مشابه در افیولیت عمانی ممکن است. این
سنگ‌های یکی از قطب‌هایی تیروپتلا آمپیلوپتلا باشد که دچار کم‌درجه کمی از
درهم‌سازی و گل‌گیری یافته خاسته است. بر خلاف گرانیتی‌های گلی، در این گرانیت‌ها
به‌طور معمول در گروه‌های مشابه نمی‌شود.

3. این گروه از گرانیتوبیتی‌ها که تا رخ نشان می‌دهد، این سنگ‌های ناشی از ترکیب
آمپیلوپتلا (شکل [2]) و نظیر کانی‌شناسی از تولید، فلدسپات‌ها، کالت و ره‌های
پره‌پر در سنگ‌های دندان کانی‌شناسی این سنگ‌های ناشان می‌دهد که در این سنگ‌های گل‌ریز
کوزئر در حدود 20% و پلاژیوکرات حدوداً 20% تا 50% است. از این رو این توده‌های
گرانیتوبیتی را می‌توان تولیدی با کوزئر در کوارتز دانست. درگوگان ناحیه‌ای که مکان برگرگی
اسکارن‌ها بوده است، روی سنگ‌های نیز اثر گرفته و موجب دوگوگون شدن آنها شده است.

براساس مطالعات چهرایی به دلیل به روش کیکی شدن این مثلث‌های گرگتی، هم‌مری بین
اسکارن‌های نایین با گرانیتوبیتی‌های این منطقه مشاهده شد. ولی حضور و نفوذ دایک‌های از
گرنت شیست در افیولیت‌های این منطقه و مجاورت و تعداد آمینردپتلا‌ها با اسکارن‌ها می
تواند مورد ارتباط زننده اسکارن‌ها با گروه سوم از انواع توده‌های نفوذی باشد. علاوه
بر این این توده‌های نفوذی موجود در منطقه تولیدی، آنها در اسکارن‌های یاد شده، که موجب
درگوگان نیز ممکن است بر روی گرگتی‌های نایینی شده و آنها را به اسکارن تبدیل کرده‌اند.

یک پژوهشگر سنگهای برگرگی اسکارن‌ها را مشاهده کرد.
شکل 2 (A) و (B) آمفیبولیت، اسکارن و سیستم‌های موجود در بخش‌های سیالی افیبولیت نایین (نگاه به جنوب). (C) تصویری از روابط صخره‌ای اسکارن‌ها و آمفیبولیت‌های موجود در آفیبولیت ملزان نایین. (D) وجود بایک‌هایی از تونالیت در درون آمفیبولیت‌ها.
روش کار
پس از بررسی‌های صحرایی و تدوین برداری، به منظور مطالعات سنگ‌شناختی، مقاطعی دارای صیقلی از سنگ‌ها تهیه شدند. تعداد 20 مقطع نازک از اسکارن‌ها و تونالیته‌ها استفاده از OLYMPUS BH-2 (دشگاه اصفهان) مدل 2 به‌کاربرد گرفت. از میان مقاطع مطالعه شده چند مقطع از اسکارن‌ها و تونالیته‌ها انتخاب شدند و پس از آنکه سطح آنها با لایه‌ای از کریم پوشش داده شد مورد آنالایز ریز بردارش قرار گرفتند. آنانی که‌ها با استفاده از دستگاه وضایر‌پردازه JXA-8800E (نیا) و با ولتاژ شتاب دهنده 15 کیلو ولت و شدت جریان (WDS) 15 برای آنالیز مدارهای 15 کیلو ولت و شدت جریان به کار رفت. از این دستگاه از نرم افزار ZAF برای تصحیح داده‌ها استفاده می‌شد. از روش عصرسنجی 7 آزاد شده توسط [6] و روش [1] برای برآورد بای‌های ورودی به سایر کاتیون‌ها و محاسبه Fe کاتیون‌ها با استفاده شد. برای زمین دماسنجی اسکارن‌های نابین نخش دای شکل و پایداری کانال‌های مختلف موجود در آن‌ها مورد بررسی قرار گرفتند و سپس با نرم افزار افزار از دو زمین دماسنج آتکلاس فلدسفات و آتکلاس فلدسفات پلاژیوکلاز به منظور تعیین شرایط دما برای تونالیته‌های که عامل شکل‌گیری اسکارن‌ها بوده‌اند استفاده شد. نرم افزار Microsoft Excel برای محاسبات زمین دماسنجی گاپرت-کایپن‌بروکس مورد استفاده قرار گرفت.

سنگ شناختی
اسکارن‌ها
اسکارن‌های نابین صرفاً به هم‌بین نمی‌باشند و حیت در یک تونالیت است، با تمرکز‌های مختلفی از کانال‌ها دیده می‌شود. به طوری که گاه در برخی نقاط تجمع گروه‌بندی‌های سنگ‌های به نام‌گذاری شده است: گروه‌بندی هایی به نام‌گذاری شده در از گروه‌های اثری از کانال‌های فلدسفات (دی‌گروخور) تشکیل شده‌اند.

ولی کلینوپروکسین (دی‌جی‌سید) و کلسیت نیز در آنها مشاهده می‌شود، به طور کلی، انواع کانای:

4 Resin
5 Kanazawa
6 Stoichiometry
7 Garnetite
8 Euclidean
زمن دماسنجی اسکارن‌های موجود در افیولیت...

می‌تواند در اسکارن‌های ناپیون‌یافته دید شده کریستا (کلیزیتیت‌ها) کلیزیتیت‌ها (4A، 4F) یا کلیزیت‌ها در این سنگ‌ها به دو شکل اولیه و ثانویه وجود دارد. کلیزیت‌های اولیه طی دوگونی کلیزیت‌های اولیه و کلیزیت‌های ثانویه اثر دگرسانی کننده‌های اولیه برگریگ 1، در آن‌ها می‌توان طی دوگونی تا جایی در جریان پایین‌تر است که هیچ تشکیل اسکارن‌ها بر این سنگ‌ها تأثیر کرده نگه داشته شده دارند. در کلیزیت‌های اسکارن‌ها حالت خرد شده دارند، در کلیزیت‌های اکشن واسطه است. کلیزیت‌های فشاری در این سنگ‌های دارند، نسبتاً سالم نیستند. مانند درون دانه‌های گازیت می‌توان برای کلیزیت‌های واسطه باید راه را مشاهده کرد (شکل 4F)، وجود نعلی‌بندی‌های از کلیزیت‌های در گازیت (بافت‌پائین‌انداز) برخی کلیزیت‌های به گازیت و تبدیل شکل کلیزیت‌های واسطه نسبت به گازیت است (شکل 4F). در مواردی هم کربن در راستای رخ‌های کلیزیت‌های مساوی می‌شود که همه آنها شامل برای تبدیل کلیزیت‌های گازیت هستند. در جنگ مورد از مقاطع نازک مورد مطالعه علاوه بر گازیت‌های همسان‌گرد، 1، که می‌تواند در این ناهسکارگر 10 نیز مشاهده شود که حضور آنها را می‌توان به نظر تا ناهسکارگر سه‌شاخار 11 گزارش کرده است که به شکل های از گازیت ان ناهسکارگر پیروپیون در اطراف گازیت همسان‌گرد مشاهده می‌شود و بین‌گر در حالی در ناحیه

9 Foliation
10 Isotope
11 Anisotrope
12 Structural defects
13 Poikiloblastic
شکل 4 (A) تصور میکروسکوپی اسکنرها (XPL، x25) حاگی که در آنها مجموعه کانی‌های گرنت (Grt) در تصاویر میکروسکوپی (C) و (D) هیده و شونده و کلریت (Cal) و کانی‌های پیکس (Cpx) مشاهده می‌سازد. تصویر (F) نمایی از اینگونه اسکنرها دیده می‌شود که در تصویر (E) XPL، نمایی از اینگونه اسکنرها مشاهده می‌شود. تصویر (G) نمایی از اینگونه اسکنرها در تصاویر (E) و (F) مشاهده می‌شود.
مناجر‌های نواری
این سنجش و همراه اسکارنا و طی دیگرگونی‌هایی از لاشه‌های مختلف و ایمن خالص‌ترین این گروه از سنگ‌های خود کاتی‌ها همواره اسکارنا را دارند. اگر یکی فلش‌کست، کلیپ‌پرکس، گریمر، و لاستونیت اسفنج و پیوند عیلی در بخش‌های سیلیسی خود دارای کاتی‌ها همچون کوارتز، فلز‌سیاه، کاتی‌ها ریس و کاتی‌ها مستند.

بناهایی

بناهایی این منطقه که عملاً دیگرگونی‌ها و تشکیل اسکارنا و بودند عموماً از کوارتز به حاشیه مقرس و خاموشی موجی، هلیدسیته سیستمی (ارتوکلاژ) و پلاژیوکلاژ (آبی‌پا) و قطعات ریز داده‌های کوارتز (آلباندین-سیستمی) تشکیل شده‌اند که به وریده روی‌های پرنهیت قطع شده‌اند. تشکیل‌های (سکسیسه ۷ و ۸) و بای‌الله، اغلب فلز‌سیاه‌های موجود در این سنگ‌ها دست‌خوش دگسالی شده و سپس‌چین شده‌اند. وجود نقاشی‌های از کوارتز در گرانت بناگذار تکنیه‌ای و رشد گرانت در زمین‌های کوارتز است. در میان گرانت‌ها برجی‌ها در قسمت مرز کامل‌شماره ۳ هستند.

در حقیقت بعضاً از گرانت‌های موجود در این سنگ‌ها طی فرآیندهای آدرین به وجود آمدند. اغلب رز پرداشته‌ای این گرانت‌ها (که در بخش‌هایی کالی‌ها به این گرانت‌ها خواهد بالایی داده که بکارگر خلاصه و گونه‌ای S تنها) می‌دهد که این گرانت‌ها مقادیری از MnO و البته اغلب فلز‌سیاه‌های موجود در این توهدای فنودی است. در گردو دیگری از گرانت‌ها هم طی پذیرفته دیگرگونی ناحیه‌ای تشکیل شده‌اند. این گرانت‌ها از نوع تانر یک‌دسته دیگرگونی دارای مرز کامل‌شماره ۲ (M2) و سالم بالایی مانند. به این مطالعات و پیش‌گیری از مصرف به‌طور کلی کربنات Mn با میزان تشکیل آن‌ها طی دیگرگونی درجه بینی پاشید. لذا باید برای این گرانت‌های را می‌توان به رخداد یک دیگرگونی ناحیه‌ای ضعیف (در حد رخساره سیلت سبز) مربوط دانست که این دیگرگونی محدودیت توأم و بناهایی را ایجاد بود. همچنین سالم بودن گرانت‌ها و حاشیه‌های ناحیه‌ای نشان می‌دهد که این کم‌ترین فرآیندهای آدرین تشکیل نشده‌اند ریز مانند سایر کالی‌ها و گرانت‌های دیگر این دست‌خوش و در گرانت‌ها یا تغییرات شکل نشده، بلکه بعدها طی رشدگاه یک دیگرگونی به وجود آمده‌اند. تاثیر این در گرانت‌ها را می‌توان به صورت یکدیگری که تفاوت دیگر در کوارتز‌های موجود در این سنگ‌ها مشاهده گرد.
بطور کلی، یافته‌ای این سنگ‌های دانه‌ای و گرانولار بوده و دانه‌ها به صورت بخش بلورین (ساب‌هدرال) تا به شکل (ان هدرال) اند. پرهیزت موجود در این سنگ‌ها که تاثیر بوده و تشکیل رگه‌های پرده‌ای را دارد، با bottoms تاثیر آبگیری کلیسیک مستند است. سنگ‌هایی که تا نسبت بالا در تی و پ، آلی از بافت سنگ‌های نمی‌توانند سنگ‌هایی با این عناصر از سنگ‌های Ca به نسبت هم‌واره در حرکت مستند [11]. لذا می‌گردد است

15 Subhedral
16 Anhedral
泽民•达曼西尼•阿斯卡尔丹

هم‌هایی باشد این شاره‌ها شده. باشد، این‌ها ممکن است حامل دکترسی
پلاتی‌کلاردی‌ها باشد. ولی حالت رگه‌ای آنها در این سنگ‌ها بیشتر می‌تواند اثر بتواند.
شماره‌ای رادر درون شکستگی‌ها نشان داد.

شیمی‌گالی‌ها

اسکالرها

به‌طور منظم مطابقت دیده‌تر، کانئی‌های کلینوپروسکن، گازند، و کلینوپروسکن‌ها مورد آنالیز شیمیایی قرار گرفتند. بدین ترتیب میان‌گین ترکیب کلینوپروسکن‌ها تقریباً به‌طور کلی En-Fs-Wo و به‌طور متوسط EnFsCoW6O18 به‌صورت دو گروه ترکیب گازند‌ها روی این نمونه گازند‌ها (پیام
پالنگر) این‌ها که گازند‌های موجود در اسکالرها این منطقه از نوع (Ab-Gr-Sps+Alm-
گروزارول و آنرانتهسفات) به‌طور کلی بدو بالا با توجه به نوبه‌های اورنگیت در اسکالرها نیاز دارد. شیرین، میزان زئولیت و آلبایت دو بوده و نمایشند است در ساخت‌گرای (گروزارول) شرکت کنندهٔ توالی‌های این کانئی‌ها شامل درصد اکسیدها و محاسبه مقادیر فرمول‌سازی و درصد
الماس‌هایی آنها در حدود ۶۱٪ و ۳۲٪ ارده شدند.

پیشلاتن‌ها

نتایج آنالیز گازند‌های موجود در توالی‌ثیت. که تک فرانت‌های آدرن و دگرگونی ناحیه‌ای (M3)
به‌وجود آمده‌اند و در اثر آن‌ها روی نمونه گازند‌ها نشان می‌دهد که ترکیب انواع گازند‌های
موجود در این سنگ‌ها به‌صورت (Mps2.5.3.6.4.4.1.4.3.5.5.4.5.5.
جدول 1. نتایج آنالیز ریزبردازندگی الکترونی کانی‌های اسکارن‌های افیولیت-مالارن‌های نابین

(Cpx=Clinopyroxene; Wo=Wollastonite; Cal=Calcite; Grt=Garnet)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral Type</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>CoO</th>
<th>FeO⁺</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>NiO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>011-1</td>
<td>Cpx</td>
<td>11.17</td>
<td>1.22</td>
<td>3.30</td>
<td>0.01</td>
<td>4.82</td>
<td>0.37</td>
<td>1.77</td>
<td>2.79</td>
<td>1.18</td>
<td>0.12</td>
<td>0.51</td>
<td>15.58</td>
</tr>
<tr>
<td>011-7</td>
<td>Cal</td>
<td>1.10</td>
<td>0.80</td>
<td>3.33</td>
<td>0.06</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>011-4</td>
<td>Sphene</td>
<td>3.88</td>
<td>0.24</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>1.77</td>
<td>2.79</td>
<td>1.18</td>
<td>0.12</td>
<td>0.51</td>
<td>15.58</td>
</tr>
<tr>
<td>031-1</td>
<td>Wof</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>011-1</td>
<td>Gitt</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>01-1</td>
<td>Wo</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>01-1</td>
<td>Grt</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>01-1</td>
<td>Gitt</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>01-1</td>
<td>Cal</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
<tr>
<td>01-1</td>
<td>Cpx</td>
<td>1.94</td>
<td>0.19</td>
<td>3.33</td>
<td>0.01</td>
<td>0.23</td>
<td>0.10</td>
<td>0.27</td>
<td>0.33</td>
<td>0.27</td>
<td>0.04</td>
<td>0.04</td>
<td>3.88</td>
</tr>
</tbody>
</table>

جدول 2. مقادیر مربوط به محاسبه فرمول ساختاری کانی‌های افیولیت

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral Type</th>
<th>Oxygen in formula</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe₂⁺</th>
<th>Fe³⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ni</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>011-1</td>
<td>Cpx</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>011-7</td>
<td>Cal</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>011-4</td>
<td>Sphene</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>031-1</td>
<td>Wof</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>011-1</td>
<td>Gitt</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>01-1</td>
<td>Wo</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>01-1</td>
<td>Grt</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>01-1</td>
<td>Gitt</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>01-1</td>
<td>Cal</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>01-1</td>
<td>Cpx</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>2.7</td>
</tr>
</tbody>
</table>
جدول ۳: نتایج محاسبه درصد اعضا نهایی کلینوپروکسن و گروه‌های موجود در اسکارین‌های آفولیت ملاز نایین

<table>
<thead>
<tr>
<th>Sample</th>
<th>Grt (92)</th>
<th>Grt (94)</th>
<th>Grt (97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uvarovite</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
<tr>
<td>Andradite</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
<tr>
<td>Grossular</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
<tr>
<td>Almandine</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
<tr>
<td>Pyrope</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
<tr>
<td>Spessartine</td>
<td>%16.3</td>
<td>%16.3</td>
<td>%16.3</td>
</tr>
</tbody>
</table>

جدول ۴: نتایج آنالیز ریزبزرگ‌شده الکترونی کلای های موجود در دایک‌های تونل‌آنیت آفولیت ملاز نایین

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral Type</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO²⁺</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>NiO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۷</td>
<td>Grt</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td>۱۱۴.۲</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
</tr>
<tr>
<td>۲۷</td>
<td>Pi</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td>۱۱۴.۲</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
</tr>
<tr>
<td>۲۷</td>
<td>Grt</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td>۱۱۴.۲</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
</tr>
<tr>
<td>۲۷</td>
<td>Kfs</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td>۱۱۴.۲</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
<td>۷۴.۱</td>
</tr>
</tbody>
</table>

جدول ۵: مقادیر مربوط به محاسبه فرمول ساختنی کلای های جدول ۳

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral Type</th>
<th>Oxygen in formula</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ni</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۷</td>
<td>Grt</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td>Pi</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td>Grt</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td>Kfs</td>
<td>۲۷۸.۲</td>
<td>۷۴.۱</td>
<td></td>
</tr>
</tbody>
</table>
جدول 6: نتایج محاسبه درصد اعضا نهایی محول جامد فلئیتیات و کاربنت موجود در دایک‌های تونل‌شویی موجود در افویلیت ملاتر ناپیوست

<table>
<thead>
<tr>
<th>نمونه</th>
<th>CaO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrope</td>
<td>%10.3</td>
<td>%30.7</td>
</tr>
<tr>
<td>Almandine</td>
<td>%15.6</td>
<td>%25.9</td>
</tr>
<tr>
<td>Grossular</td>
<td>%10.2</td>
<td>%20.0</td>
</tr>
<tr>
<td>Spessartine</td>
<td>%20.7</td>
<td>%35.5</td>
</tr>
<tr>
<td>Andradite</td>
<td>%10.6</td>
<td>%20.0</td>
</tr>
<tr>
<td>Uvarovite</td>
<td>%15.8</td>
<td>%30.7</td>
</tr>
</tbody>
</table>

پروسی مراحل تشکیل اسکان‌ها

با توجه به مطالعات دیگران [۱۲، ۱۳ و ۱۴ و ۱۵]. انتقال مطلوعه کاسارهای اسکان پیشگام بوده‌اند، مراحل تکامل اسکان‌ها که به موازات جایگزینی و تباهیده نفوذی می‌گیرند، به صورت زیر توصیفی داده شده: (۱) دگرگونی مجاوری همراه با چاپ خوری ماکما که کانی‌های سرسره این مرحله گروسولار (در شیاهای آبگذار) و باستونیت (در آبک جریان دار) است. (۲) کست نفوذی دچار گروسولار نمی‌شود. (۲) تشکیل اسکان (منشتاونیسم) که همراه با نیتروماگما و تباهیده شاره کانی‌ساز صورت می‌گیرد. در ملح این مرحله آدرادیت و هدروژنیت (۳) آبک: سطح دستخوش دگرگسایی پانسیمی می‌شود.

۴) دگرگسایی پسوردی که در مرحله آخر تبلور سپسیم بوده، طی آن کانی‌سازی می‌تواند رخ دهد و کانی‌های موجود در اسکان به کانی‌های آبگذار تبدیل می‌شوند. در مرحله گروسولار به ایدوتوکس، کلریت و کلارایت تبدیل می‌شود. در طول این مرحله سطح نفوذی دچار گروسولار فیلیک خواهد شد.

با توجه به کانی‌های تشکیل دهنده اسکان‌های موجود در این افویلیت که شامل گروست (گروسولار و آدرادیت)، کلینپرونکس و هیدروژنیت تشکیل دهنده دایک‌های ناپیوست که نشان می‌دهد که این سنگ‌ها چندان دگرگسایی نشده و تباهیده دچار واکنش‌های پانسیمی شده‌اند، لذا می‌توان گفت که تشکیل این اسکان‌ها به مرحله آبک مربوط محدود بوده و انها تنها تا حدودی وارد مرحله دگرگسایی شده‌اند و این با این‌حال است.
زمین دماسنجی

زمین دماسنجی تولیدی‌ها

اصولاً دمای تولیدی‌ها پس از انجماد کامل کانی‌ها ویژه کانی‌های هاسکوکه به تدریج کاهش می‌یابد ولی همچنان تا زمانی که کامل می‌رسد، فاکتور به‌طور گسترده‌اند. اگر این توزانده به عنوان یک خاصیت جامد راه‌چسبی باشند تولیدی است که به حساب آیند. به‌طور است که تولیدی نشان می‌دهد که به صورت ایجاد یک گرده می‌توانسته است حرکت کرده و در کنار تولیدی‌ها اهمیت قرار می‌گیرد و آنها را تحت تأثیر قرار داده باشند. به‌طور اینکه دماها و فشارهایی که هنگام زمین دماسنجی قدسی‌سازی موجود در تولیدی‌ها به دست می‌آید می‌تواند عامل تشکیل برخی کانی‌های دگرگون در آنها به حساب آید، و کانی‌های مختلف موجود در اسکارن‌ها، ممکن است در دماها متغیر باشد یا وجود آدمی باشد. لذا زمین دماسنجی تولیدی‌ها با استفاده از روش‌هایی سه‌بعدی به‌طور طراحی دما و فشار حاکم بر اسکارن‌ها را تعیین کند، بنابراین به‌طور دما تولیدی در این تولیدی‌ها را ارائه می‌دهد. بنابراین، این ماده به دمای زمین دماسنجی تولیدی‌ها را ارائه می‌دهد. بنابراین به‌طور اینکه در این مقاله به مظور زمین دماسنجی تولیدی‌ها از زمین دماسنج پلاژیوکاز - آلکاکی قدسی‌سازی (دو قدسی‌سازی) و زمین دماسنج آلکاکی قدسی‌سازی استفاده شده.

زمین دماسنج پلاژیوکاز - آلکاکی قدسی‌سازی: از این زمین دماسنج با سنجی بندهای افراد مختلف [19 ام 21] استفاده شده که نتایج آنها در جدول 7 ارائه شده‌اند. البته نتایج حاصل از روی این شده توسط [20] در مقایسه با سایر نتایج بدست آمده دیگر مقدار بیشتری را ارائه می‌کند (در حدود 100 °C) و اثر فشار در آن به ارائه نسبت‌هایی که در سال‌های بعد را ثبت در نظر گرفته نشده است.

به طور کلی با توجه به نتایج حاصل مشاهده می‌شود که مانگان در تولیدی‌ها موجود در تولیدی‌ها در گستره فشار 1 تا 5 کیلوبار در گستره 0°C تا 658°C قرار می‌گیرد.

جدول 7 با استفاده تولیدی‌ها براساس زمین دماسنج قدسی‌سازی ترسیم

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>558.32</td>
<td>558.32</td>
<td>558.32</td>
<td>558.32</td>
<td>558.32</td>
<td>558.32</td>
<td>558.32</td>
</tr>
<tr>
<td>Temperature(OC)</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
<td>355</td>
</tr>
<tr>
<td>Pressure (Kbar)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
زمین‌دست‌جویی اسکارن‌های موجود در افیولیت...
درجه سانتیگراد و مورد پورکس و گازهای در حدود 0.5 kbar تا 950 درجه سانتیگراد و در مورد پورکس و گازهای در حدود 800 درجه است. با توجه به گزارش‌های واکنشی و الکترولیتی، قطعات کربنات کربنات در شرایط فشار کم معادل سطح زمین و الکترولیتی حتی می‌تواند در دمایی کمتر از 400 درجه که نیز نشاندگان نیز شرایط فشار گازهای کربناتی کربناته

0.5 kbar تا 950 درجه سانتیگراد و مورد پورکس و گازهای در حدود 800 درجه است. با توجه به گزارش‌های واکنشی و الکترولیتی، قطعات کربنات کربنات در شرایط فشار کم معادل سطح زمین و الکترولیتی حتی می‌تواند در دمایی کمتر از 400 درجه که نیز نشاندگان نیز شرایط فشار گازهای کربناتی کربناته

0.5 kbar تا 950 درجه سانتیگراد و مورد پورکس و گازهای در حدود 800 درجه است. با توجه به گزارش‌های واکنشی و الکترولیتی، قطعات کربنات کربناته

0.5 kbar تا 950 درجه سانتیگراد و مورد پورکس و گازهای در حدود 800 درجه است. با توجه به گزارش‌های واکنشی و الکترولیتی، قطعات کربنات کربناته
زمین دماسنجی اسکارن‌های موجود در افیونیت ...

شکل 7 دیاگرام دما-فشار مربوط به شرایط دما و فشار تشکیل اسکارن. نمودار در بالا برای محاسبه X(CO2) (بازه 0.2 وزنی درجه اند) کربن دیاکسید در شرایط (1) و (2) GEOCALC

می‌باشد. (نقطه اصلی) شکل پر مشکی از (3) می‌باشد و اختصاصات به کار رفته برای اساسی کانی‌ها

در آن پر مشکی از (3) است.

شکل 8 محصول دما و فشار مربوط به پایداری مجموعه کانی‌های اسکارن بر روی مسافی گرافیت با

Wollastonite; CuO = CuO; SiO2 = SiO2

(Ce = Calcite; Q = Quartz; An = Anorthite; G = Garnet; Ge = Gehinite; Cor = Cordierite

زمین دماسنجی - کلینوپیروسن

تاکنون این زمین دماسنج نوسان باور می‌شود میانه‌های موسی (277300) استفاده شده است.

لبه همه این زمین دماسنج‌ها براساس تداخل Fe-Mg بین کارتن و کلینوپیروسن ساخته

است. لذا به هنگام استفاده از Mg با تاثیر از Fe-Ca شده‌است. در حالی که در اسکارن‌ها محتوای
این زمین‌دمسنج در مورد اسکارن‌ها با احتیاط برخوردار شد. سنگ‌های پدیده از میدان‌های همچنین به نظر می‌رسد از روش‌های [۲۷، ۳۳] نیز برای گزارش‌های دارای Ca بهتر است برای این مقدار استفاده شود. مقادیر بدست آمده از روش پیشنهادی [۲۷] نیز بسیار پایین‌‌تر باشد. Xgrs با توجه به زیرا این روش نتیجه‌گیری ۰.۲۰ مقدار Xgrs است (جدول ۲). سنگ‌ها مقادیر صحیح را ارائه نمی‌کنند. زیرا در اینجا مقدار ۰.۷۶ با توجه به فشار بین ۴۲۰ تا ۹۰۰ کیلوپسیکا درجه سانتی‌گراد بسته می‌شود. وی‌این می‌تواند نتیجه‌گیری این ش به دست آمده نتیجه روش‌هایی که در آنها تغییرات دما و فشار با نتایجه به دست آمده می‌تواند دمای زمین دمسنجی تولید شده با مجموعه بازاریابی کالایی sean در مورد اسکارن‌ها تطبیق داده و مقادیر منطقی‌تری را برای اسکارن‌ها ارائه کرده‌اند. به‌طور کلی، و در مورد اسکارن‌ها ارائه Grt-Cpx بهترین روش زمین‌دمسنج در مورد مطالعه روش‌های ارائه می‌شود. Xgrs با توجه به زمین‌دمسنج‌های مختلف (جدول ۸) می‌توان گفت که ارائه موقعیت در فشار کمتر از ۳ کیلوپسیکا معادل ۱۰۹ درجه سانتی‌گراد است.

<table>
<thead>
<tr>
<th>جدول ۸ نتایج زمین‌دمسنج کلاژن‌یون–کلاژن‌پروکس توسط اسکارن‌ها</th>
<th>Method</th>
<th>Temperature (°C)</th>
<th>Pressure (Kbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis & Green (1979)</td>
<td>۱۰۲.۱</td>
<td>۱.۱</td>
<td></td>
</tr>
<tr>
<td>Powell (1985)</td>
<td>۱۰۱.۴</td>
<td>۱.۰۵</td>
<td></td>
</tr>
<tr>
<td>Ganguly (1976)</td>
<td>۱۰۲.۰</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Ai (1994)</td>
<td>۱۰۱.۷</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Nakamura et al. (2004)</td>
<td>۱۰۲.۰</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Ganguly et al. (1996)</td>
<td>۱۰۱.۷</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Krogh-Ravna (2000)</td>
<td>۱۰۲.۰</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Saxena (1979)</td>
<td>۱۰۲.۰</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Krogh (1988)</td>
<td>۱۰۱.۷</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Rakeim & Green (1974)</td>
<td>۱۰۱.۷</td>
<td>۰.۵۰</td>
<td></td>
</tr>
<tr>
<td>Pattison & Newton (1989) for Xgrs = 0.20</td>
<td>۱۰۱.۷</td>
<td>۰.۵۰</td>
<td></td>
</tr>
</tbody>
</table>
برداشت

اسکارن‌های این منطقه بر اثر درگویندی مجزاژی امکان‌ها و پیچیدگی‌های ارتباطی، تهیه‌ها و توزیع‌ها را به‌وجود آمده‌اند. کاربرد زمین دماسنج پلاژیکال-التیپکال فلزی‌های باری‌تولیدی‌ها موجود در منطقه، بیانگر می‌باشد. در گستره‌ای ۱۵۰۰ تا ۲۰۰۰ درجه سانتی‌گراد، دمای تغییرات دما در محدوده‌ای بین دو درجه سانتی‌گراد محدود می‌باشد. در هر گامگیری یا فشار محور، در گستره‌ای پهن‌تر از ۲ کیلومتر، دمای تغییرات دما در حدود ۲۰ تا ۴۰ درجه سانتی‌گراد است. سپاسگزاری

از دانشگاه کانال‌آرا یزد و تحصیلات تکمیلی دانشگاه اصفهان به خاطر حمایت عضویت

مراجع

[1] جباری ع، "زمین‌شناسی و پتروپژی اولیت‌های اولیت‌های ناشناخته ایران"، رساله کارشناسی ارشد پتروپژی

[3] آقایی شیردان‌زاده ن، شیردان‌زاده ن، جباری ع، "کانال‌شناسی اسکارن‌های موجود در اولیت‌های پلاژیکال ناشناخته اصفهان"، کتاب چهارم اصفهان، (۱۳۸۰) جلد ۲۶، شماره ۲، ص ۲۲۰-۲۳۲.

[4] آقایی شیردان‌زاده ن، "زمین‌شناسی و اسکارن‌های اولیت‌های پلاژیکال ناشناخته اصفهان"، کتاب چهارم اصفهان، (۱۳۸۰) جلد ۲۶، شماره ۲، ص ۲۳۲-۲۳۳.

