Chemical composition of minerals and genesis of mafic microgranular enclaves in intermediate - acidic plutonic rocks from Kuh-e-Zar area (southeast of Semnan)

Ghasem Ghorbani

Faculty of Earth Sciences, Damghan University of Basic Sciences, Damghan, Iran.
E-mail: ghasemghorbani@yahoo.com

(Received: 22/1/2007, received in revised form: 13/5/2007)

Abstract: The Kuh-e-Zar area is located about 75 Km in southeast of Semnan. Electron microprobe analyses of plagioclases of mafic microgranular enclaves and plutonic host rocks from Kuh-e-Zar area display that they have normal, oscillatory and reverse zoning, so that plagioclase cores of reverse zoning in enclaves have oligoclase and andesine compositions and their rims have andesine and labradorite compositions, respectively. Investigation of biotite compositions in host rocks show that in the host granodiorite rocks, there are two types of biotites. The first type has high TiO$_2$ (mean 4.8%), Al$_2$O$_3$ mean 12.84%), MgO (mean 15.38%) and low SiO$_2$ (36.89%), which are similar to mafic microgranular enclaves (mean TiO$_2$ 4.67%, Al$_2$O$_3$ 13.03%, MgO 15.19% and SiO$_2$ 37.23%). The second type is depleted in TiO$_2$ (mean 0.04%) and MgO (mean 0.02%) and enriched in Al$_2$O$_3$ (mean 18.09%) and SiO$_2$ (mean 64.5%). Contents of these elements in the biotites of host monzodiorite rocks are similar to enclaves. Chemical compositions of pyroxenes in enclaves are similar in compositions to those of host rocks. These features, in addition to the patterns and abundances of trace elements in enclaves, the presence of inclusions of fine grain biotite and hornblende in feldspars, synplutonic dykes, the nature of the plagioclase zoning and etc. display magma mixing and mingling origin for generation of these enclaves.

Keywords: mafic microgranular enclaves, chemistry of minerals, magma mixing, southeast of Semnan.
ترکیب شیمیایی کانی ها و پیدایش برونبومهای ریزدانه مافیکی در سنگهای پلیتونیکی حدیاست - اسیدی منطقه کوه زر در جنوب - شرقی سمنان

قاسم قربانی

دانشکده علوم زمین دانشگاه علوم پایه دامغان
ghasemghorbani@yahoo.com

پست الکترونیکی:

(دریافت مقاله ۱۲/۱۳۸۵/۱۲، دریافت نسخه نهایی ۱۲/۱۳۸۶/۲/۲۳)

چکیده: منطقه کوه زر در حدود ۲۵ کیلومتری جنوب شرقی سمنان واقع شده است. تجزیه نقطه‌ای پلاژیوکلزهای موجود در برونبومهای ریزدانه مافیکی و سنگهای پلیتونیکی میزان نشان می‌دهد که علائم برد منطقه‌بندی عادی و توسانی دارای منطقه‌بندی وارون نیز هستند. به طوری که هسته‌ی پلیوکلز در منوبه‌های با منطقه‌بندی وارون در برونبومهای دارای ترکیب اولیوکلاز آندزین است. و حاشیه‌ی آنها به ترتیب از آندزین و لاپیدوریت تشكل شده است. بررسی ترکیب شیمیایی کانی‌های برونبود در سنگهای پلیتونیک نشان می‌دهد که دو نوع بینی ترکیبی Al₂O₃، TiO₂، MgO، SiO₂، که با میانگین ۴۸ درصد (با میانگین ۱۵/۸۸ درصد)، ۱۲/۸۴ درصد (با میانگین ۱۵/۸۸ درصد)، ۶۲ درصد (با میانگین ۱۵/۸۸ درصد)، ۶۷ درصد (با میانگین ۱۵/۸۸ درصد)، ۴۸ درصد (با میانگین ۱۵/۸۸ درصد)، و ۰/۴ درصد (با میانگین ۱۵/۸۸ درصد) نشان می‌دهد. این میزان این عناصر در برونبومهای سنگهای پلیتونیکی مونزودوربوریتی مشابه به برونبومهای ریزدانه مافیکی، بررسی پروکسنس‌های موجود در برونبومها و سنگهای میزان نشانگان تشکیل ترکیب شیمیایی بین آنهاست. این پروکسنس‌ها به علاوه الگوها و فراوانی‌های عناصر کمیاب در برونبومها وجود نفوذی ریز بینی برونبود و هورنلندر در فلد‌سپارها، دایک‌های هم‌زمان با نفوذ، ماهیت منطقه‌بندی پلاژیوکلاز و غیره، نشان دهنده دخالت فراوند آموزش مارکامبی در پیدایش سنگهای مورد مطالعه است.

واژه‌های کلیدی: برونبومهای ریزدانه مافیکی، شیمی کانی‌ها، آموزش مارکامبی، جنوب شرقی سمنان.
مقدمه
منطقه کوز در حدود ٧٥ کیلومتری جنوب شرقی سمنان و ١٢٠ کیلومتری جنوب شرقی دامغان واقع شده است. در شرق و جنوب شرقی روستای کوه زر، چند توده نفوذی ایبی زون با ترکیب گرانیتی - گرانودیوریتی و مورنودیوریتی - کوارتزمونزودیوریتی، درون سنگ‌های میزبان آتش‌نشانی انویس میانی با ترکیب سنگ شناختی بیشتر آندزیتی وجود دارد. این توده‌ها هاوی مقدار زیادی برونومه‌های ریزدانه‌های مافیکی هستند که هدف اصلی این مقاله مطالعه شیمی کانی‌های ها و پیداکار این برونومه‌هاست. برونومه‌های ریزدانه‌های مافیکی قطعاتی از سنگ‌های آذرین ریزدانه و عموماً تخم‌مرغی شکل و دارای مزرعه‌های نیز بوده که نشان دهنده قطعاتی از مگماهایی هستند [١، ٢]. برونومه‌های ریزدانه‌های مافیکی به عنوان مجموعه آمیزش آمیزش مافیکی هستند که از لحاظ شیمی و میکروساختار ثبات و مکانیزم جداسازی و تغییرات ماکرو و میکرو باعث می‌شود که به انتخاب مایع و دیگر فاکتورهای جغرافیایی و الگوی سنگ متناسب شوند. مطالعه برونومه‌ها با ارزیابی اساسی بررسی سنگ‌های های گراندون آگوسیتیک، ماهی‌سیاه و آگاهی‌های مهمی از پیداکاری و تشخیص جایگزینی ماگمایی ریزدانه‌های مافیکی در سنگ‌های گرانیتی با ساختار کالکوانیت‌کالک، شوشونیت و آگاهی شناختی هستند و بیشتر مولفین خاستگاه آنها را می‌توان آنها را به مدل مافیکی هم‌پوشانی بیشتر گروه و شکستگی و دماهای متفاوت نسبت می‌دهند. به نظر رونزدی [٣]، بر اساس این نظریه، بیشتر برونومه‌ها ریزدانه‌های ماگمایی، بیانگر عضویت انتها‌های ماگمایی کم و بیش همبند شده یک سیستم آمیخته مشکل از دو ماگمای Co - Mingling (با ترکیب‌های متفاوت) به نظر آنها، کاربرد اصلی در هم شدن (Mingling) به سیستم‌های فقط با تقابل مکانیکی باپسی محدود شد. این ماگمای نابل قابل سه فرایند گراندیوریتی، مکانیکی و شیمیایی را در بر خورده‌گاه ماگمایی همزیست ناشان می‌دهد. معمولاً اصل مکانیست (Mixing) به اخلاقی Believe در کمربند کامل دو جزء مانند ترکیب دو آیوگون قطعه می‌شود و اصل مکانیست در هم شدن (Mingling) در جایی به کار می‌روند که در اثر ترکیب دو جزء برخی از مشخصات اولیه آنها باقی مانند، مانند ترکیب ماگمای بارانی با ماگمای گرانیتی که تولید برونومه‌های مافیکی می‌کند [٥]. وی در نوشته‌ها این مشاهده را و تأثیر کم و بیش در سطحی گرمایی بر سنگ‌های منطقه، پس از بروز و سنگ‌شناختی تعداد زیادی از مقطع نازک، (iii) مقطع نازک سیلیکا از نمونه‌های تازه برای مطالعه شیمی کانی‌های
برونیوم و سنگ‌های میزبان انتخاب و سپس با یک دستگاه ریز کاوشگر الکترونی مدل CAMECA SX-50 در آزمایشگاه میکروسوند مرکز فرانسوی تحقیقات دمایی اروپا (IFREMER)، در شهر برست فرانسه مورد بررسی نقطه‌ای قرار گرفتند. ۵ نمونه سنگ کل نیز از برونیومهای ریز دانه‌های مافیکی از نظر اکسیده‌های اصلی و عناصر کمیاب آنها با XRF در آزمایشگاه امتد اکستراتی برسی شدند.

ویژگی‌های صخراهای سنگ‌سنگ‌شناختی، و بافتی برونیومهای ریز دانه‌های مافیکی

bronimohayi موجد در توده‌های نفوذی منطقه مورد مطالعه، شامل قطعاتی از حاشیه‌های به سرعت سرد شده اولیه توده‌های نفوذی، اختما و برونیومهای ریز دانه‌های مافیکی، و قطعاتی از سنگ‌های آتش‌نشانی و تنظیم‌کننده قیمت‌های بوده‌اند. برونیومهای ریزدانه‌های مافیکی، اصلی‌ترین برونیومهای موجود در توده‌های نفوذی محدوده مورد مطالعه هستند و در اندام‌های جدی میلی‌تر از بخش‌های مختلف سنگ‌های میزبان یافت می‌شوند، ولی فراوانی آنها در توده‌های حذف‌بافت بیشتر از اسیدی است. ریزدانگ جدید رنگ بسیار و اصلاح بعضی آنها باعث تغییر و تشخیص آسان آنها از سنگ میزبان در صحرا می‌شود (شکل 1-الف). شکل بیضی برونیومهای احتمالاً به دگرشکل و فرسایشی مرطوب می‌شود به هنگام حرکت برونیومها در ماگما میزبان گرانیت‌های هنگام جایگزینی صورت گرفته است [۶]. ریزدانه‌های بودن آنها نیز شرایط تبلور ویژه‌ای را نشان می‌دهد که با سرعت شن سرعت ماگما مافیکی تزیت شده در ماگما‌های فلزیک سردتری، مرطوب می‌شود [۲]. شاهد دیگر داد بر سرعت سرعت شن برونیومها، وجود بالور بر اسکلتی پلاژیوکلز و بیوتیت در برخی از برونیومهای مورد مطالعه هستند. لیتوژنی این برونیومها براساس مطالعات سنگ‌سنگ‌شناسی و شیمی‌ای، بیشتر نشان‌دهنده ترکیب مولکولی و مولکولی‌ترین بوده و از کانی‌های پلاژیوکلز، ارتواکلز، کوارتز، بیوتیت، هورنبلد، اوزینت، اسناف، آبانت، زبرگن و اکسید آهن تشکیل شده‌اند و دارای بافت شاخی پورفیریک هستند [۷].

ویژگی‌های دیگر برونیومها مورد مطالعه نشان می‌دهند که این برونیومها در هنگام برخورد با ماگما میزبان آیکون بوده‌اند، و پس از برخورد و سرد شدن گرده و با مزه‌های هالی و نیز در برخی نمونه‌ها به صورت بلورهای پلاژیوکلز، آمفیبول، و بیوتیت دارای حاشیه‌ای واقعی و یا تجمع کانی‌های مافیکی آمفیبول، در مرز بین خود و سنگ میزبان شکل گرفته‌اند. بافت‌های توصیف شده در این برونیومها، از جمله زون‌هایی از نفوذ‌های کانی‌های مافیکی در فلزمان‌ها و فلزمان‌هایی که کیلیتیک شکل ۱-ب در نتیجه در هم سرد ترکیبی و گرماکی ماگما‌های آنهاست. خاستگاه ماگما بر روی برونیومهای ریزدانه‌های مافیکی سنگ‌سنگ‌های گرناوی‌پی‌ید منطقه مورد...
مطالعه از بافت‌های آذرین شاخص آنها همچون منطقه‌بندی پلاژیوکلازها (شکل 1-ج) و بافت پورفیریک مشخص می‌شود (شکل 1-د). وجود زیرگنهری کشیده، آپاتیت‌های سوزنی فراوان (شکل 1-ه) و به معنای سرد شدن سریع آنهاست. همچنین وجود فازهای مافیک خود شکل در نمونه‌های مورد مطالعه که عموماً با کانی‌های فلزیک دربرگرفته شده‌اند و حضور حاشیه‌های به سرعت سرد شده در مقابل سنگ‌های نیزمنج به نتیجه مشابهی می‌شود [8].

شکل 1-الف: یک نمونه آزبرومبهای ریزدانه مافیکی با حاشیه گرده شده و بیضوی در درون سنگ‌های میزبان گرانودیوریتی، ب- نفوذ کانی‌های مافیکی بیوپت در بلورهای درشت پلاژیوکلاز در بروموهای ریزدانه مافیکی، ج- وجود منطقه‌بندی در بلورهای پلاژیوکلاز در بروموهای ریزدانه مافیکی، د- بافت پورفیریک با حمایت ریزدانه در بروموهای ریزدانه مافیکی، ه و - سوزنهای فراوان آپاتیت در درون بلورهای پلاژیوکلاز که جند نمونه با پیکان نشان‌دهنده شدیداندازه آپاتیت (Apa = آپاتیت)
بررسی شیمی کانئ‌ها
بررسی شیمی کالی‌های بروتوبیوت بر روی میزان و میزان مایعات و سنگهای میزبان
آنها نشان می‌دهد که در سنگ‌های میزبان گراندی‌رپتی، دو نوع بروتوبیوت وجود دارد. یک نوع
دارای میانگین TiO2 (برابر با 14/86 درصد) و Al2O3 (برابر با 4/86 درصد) MgO با میانگین 1/67 درصد،
واگر یک نوع دیگر دارای میانگین TiO2 (برابر با 1/67 درصد، با میانگین 1/67 درصد و MgO با
میانگین 1/67 درصد) و نوع دوم فقیر از MgO، میانگین 1/67 درصد و SiO2 با میانگین
MgO با میانگین 1/67 درصد، است. مقدار این عنصر در بروتوبیوت سنگهای موزوزدیوپتی (D2)
در میانگین 1/67 درصد و SiO2 با میانگین 1/67 درصد و MgO با میانگین 1/67 درصد و TiO2 با
MgO با میانگین 1/67 درصد و Al2O3 با میانگین 1/67 درصد است. سنگهای موزوزدیوپتی مقدار
Mg بالاتری در مرکز بلوره نسبت به بروتوبیوت سنگ میزبان دارند. در بلورهای بروتوبیوت بر روی میزان
مایعات و سنگهای میزبان گراندی‌رپتی است (جدول 1). به طورکلی مقدار معیار در بروتوبیوت
سنگهای موزوزدیوپتی به Fe/Fe+Mg از بروتوبیوت و سنگهای منوال‌رپتی و بروتوبیوت
میانگین 3/75 درصد Mg و در سنگهای منوال‌رپتی بین 3/43 تا 3/26. در سنگهای گراندی‌رپتی دارای دو

(جدول 1، 2)
بروز نیز می‌توانند در تشکیل مناطق بنگر و اثر گذار باشد [9]. ولی با توجه به شواهد موجود، احتمال تشکیل آنها در نتیجه اختلاف ماگما‌ی محتمل تر است.

شکل ۲ نام‌گذاری بیوتیتهای برونتومها و سنگ‌های میزبان نفوذی مورد مطالعه بر اساس گروه دوم بیوتیتهای گرانودیوریت‌ها به ضلع پایین بودن مقدار Fe/Fe+Mg-AlIV
نمودار قرار گرفته‌اند.

شکل ۳ ترکیب فلدسپارهای موجود در برونتومهای مورد مطالعه.
جدول ۱ نتایج تجزیه با رز کاوشگر الکترونی بیوتنی های بروتومهای ریزدانه مافیکی در سنگ‌های میزبان گراندیوریتی (Ench) و مونژیوریتی (Enba) منطقه مورد مطالعه.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>En-ba-54</th>
<th>En-ba-55</th>
<th>En-ba-56</th>
<th>En-ch-36</th>
<th>En-ch-38</th>
<th>En-ch-40</th>
<th>En-ch-52</th>
<th>En-ch-54</th>
<th>En-ch-56</th>
<th>En-ch-60</th>
<th>En-ch-61</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیمی/شهرک</td>
<td>مركز</td>
<td>حاشیه</td>
<td>مركز</td>
<td>حاشیه</td>
<td>مركز</td>
<td>حاشیه</td>
<td>مركز</td>
<td>حاشیه</td>
<td>مركز</td>
<td>حاشیه</td>
<td>مركز</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0,18</td>
<td>0,17</td>
<td>0,16</td>
<td>0,17</td>
<td>0,16</td>
<td>0,17</td>
<td>0,16</td>
<td>0,17</td>
<td>0,16</td>
<td>0,17</td>
<td>0,16</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>9,09</td>
<td>9,29</td>
<td>9,19</td>
<td>9,19</td>
<td>9,06</td>
<td>9,06</td>
<td>9,06</td>
<td>9,06</td>
<td>9,06</td>
<td>9,06</td>
<td>9,06</td>
</tr>
<tr>
<td>FeO</td>
<td>14,47</td>
<td>13,32</td>
<td>13,48</td>
<td>13,48</td>
<td>13,47</td>
<td>13,47</td>
<td>13,47</td>
<td>13,47</td>
<td>13,47</td>
<td>13,47</td>
<td>13,47</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>34,01</td>
<td>34,34</td>
<td>34,66</td>
<td>34,66</td>
<td>34,34</td>
<td>34,34</td>
<td>34,34</td>
<td>34,34</td>
<td>34,34</td>
<td>34,34</td>
<td>34,34</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0,31</td>
</tr>
<tr>
<td>MgO</td>
<td>15,23</td>
</tr>
<tr>
<td>CaO</td>
<td>0,11</td>
</tr>
<tr>
<td>MnO</td>
<td>0,31</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>14,94</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>1,11</td>
</tr>
<tr>
<td>Sum</td>
<td>96,15</td>
</tr>
<tr>
<td>Fe$_2$O$_3$/FeO+MgO</td>
<td>0,75</td>
</tr>
<tr>
<td>MgO/Fe$_2$O+FeO</td>
<td>0,35</td>
</tr>
<tr>
<td>Si</td>
<td>0,39</td>
</tr>
<tr>
<td>Al$^{4+}$</td>
<td>2,21</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0,32</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>1,07</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0,39</td>
</tr>
<tr>
<td>Mg</td>
<td>0,32</td>
</tr>
<tr>
<td>Ca</td>
<td>0,11</td>
</tr>
<tr>
<td>Na</td>
<td>0,52</td>
</tr>
<tr>
<td>K</td>
<td>1,49</td>
</tr>
<tr>
<td>Sum cat.</td>
<td>14,11</td>
</tr>
<tr>
<td>Sum oxy.</td>
<td>32</td>
</tr>
</tbody>
</table>
جدول 2 نتایج نظیری که کاوشگر الکترونی بیونیتهای سنگ میزان گراتی‌دورینی (ba) و مونزودورینی (ch) باعث شده‌اند.

<table>
<thead>
<tr>
<th>Sample No. حاشیه‌مکر</th>
<th>ba-196 مرکز</th>
<th>ba-198 حاشیه</th>
<th>ba-27 مرکز</th>
<th>ba-28 حاشیه</th>
<th>ba-29 مرکز</th>
<th>ba-30 حاشیه</th>
<th>ch-102 مرکز</th>
<th>ch-103 حاشیه</th>
<th>ch-104 حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>0.12</td>
<td>0.17</td>
<td>0.19</td>
<td>0.20</td>
<td>0.16</td>
<td>0.16</td>
<td>0.22</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.8</td>
<td>8.28</td>
<td>6.24</td>
<td>15.94</td>
<td>15.70</td>
<td>15.87</td>
<td>15.78</td>
<td>8.77</td>
<td>8.40</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.61</td>
<td>34.87</td>
<td>36.17</td>
<td>36.34</td>
<td>36.34</td>
<td>36.34</td>
<td>36.34</td>
<td>36.34</td>
<td>36.34</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>MgO</td>
<td>15.8</td>
<td>14.35</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
</tr>
<tr>
<td>CaO</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sum</td>
<td>94.00</td>
<td>91.14</td>
<td>94.00</td>
<td>94.00</td>
<td>94.00</td>
<td>94.00</td>
<td>94.00</td>
<td>94.00</td>
<td>94.00</td>
</tr>
<tr>
<td>FeO,FeO+MgO</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
</tr>
<tr>
<td>MgO,MgO+FeO</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Si</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
<td>5.28</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
</tr>
<tr>
<td>Al⁶⁺</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
</tr>
<tr>
<td>Ti</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Na</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>K</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>Sum cat.</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
<td>14.84</td>
</tr>
<tr>
<td>Sum oxy.</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج تجزیه با ریز‌کاوشگر الکترونی پیروکسن‌های سنگ میزانی گراویورینی (Enba) و برونشتاین‌ویلید مافیکی (ch) موجود در آنها.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>En-ba-69</th>
<th>En-ba-70</th>
<th>En-ba-186</th>
<th>ba-10</th>
<th>ba-14</th>
<th>ch-97</th>
<th>ch-101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>۰/۴۶</td>
<td>۰/۴۶</td>
<td>۰/۳۱</td>
<td>۰/۳۱</td>
<td>۰/۳۲</td>
<td>۰/۳۴</td>
<td>۰/۳۳</td>
</tr>
<tr>
<td>K2O</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۰/۶۸</td>
<td>۰/۶۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>SiO2</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
</tr>
<tr>
<td>P2O5</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
<td>۰/۵۶۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
<td>۰/۸۸</td>
</tr>
<tr>
<td>TiO2</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>Sum</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
<td>۰/۹۷</td>
</tr>
</tbody>
</table>

T spaces

<table>
<thead>
<tr>
<th>Al</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
<th>۱/۸۸</th>
</tr>
</thead>
</table>

M1 spaces

<table>
<thead>
<tr>
<th>Al</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
<th>۰/۷۷</th>
</tr>
</thead>
</table>

M2 spaces

<table>
<thead>
<tr>
<th>K</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
<th>۰/۰۱</th>
</tr>
</thead>
</table>

Sum cat. | ۲ | ۲ | ۲ | ۲ | ۲ | ۲ | ۲ |

Sum oxy. | ۴ | ۴ | ۴ | ۴ | ۴ | ۴ | ۴ |

Downloaded from ijc.mnr.ir at 20:40 +0430 on Monday April 13th 2020
ترکیب شیمیایی پیروکسن سنگهای میزانیان گراندورپرتی و مونوزدبورپرتی مشابه با نوع پیروکسن‌های موجود در برونبومهای ریز دانه مافیکی است. ولی در یک پلوار از برونبومهای ریز دانه مافیکی سنگهای میزانیان گراندورپرتی، دو نوع پیروکسن مشاهده می‌شود. یک نوع دارای CaO پایین (با میانگین ۲۱ درصد) و SiO₂ بالا (با میانگین ۵۱ درصد) و نوع دیگر در یک CaO پایین (۲۷ درصد) و SiO₂ بالا (۶۱ درصد) دارد. این دو نوع پیروکسن برونبومهای تکسیم بنده موریمونتو [۱۰] از نوع اوبایت (شکل ۴) و سنگ‌های میزانیان از نوع اوبایت و دیوپسید هستند.

لازم به یادآوری است که به علت تعداد زیاد تجزیه کانی‌ها و در نتیجه جلوگیری از حجم شدن مقاله، از آوردن همه آنها اجتناب شده، ولی در متن از میانگین نتایج استفاده شده است و در جدول‌ها، تغییرات آنها در برخی پلوارها در مرکز، میانه و حاشیه که در متن به آنها اشاره شده اورده شده‌اند.

چگونگی پیدایش برونبومهای ریز دانه مافیکی در مورد چگونگی تشکیل و خاستگاه برونبومهای ریز دانه مافیکی تا کنون نظرات زیادی ارائه شده‌اند. از جمله این نظرات می‌توان به مدل رستیت ۱ (یا مدل زنیولیت‌ها) دوباره حمل شده.

\[Q = Ca + Mg + Fe^{3+}, \quad J = 2Na \]

شکل ۴. نامگذاری پیروکسن‌های برونبومهای مورد مطالعه بر اساس تقسیم‌بندی موریمونتو [۱۰].

1 Restite
جدول 4: نتایج تجزیه با رز کاوشگر الکترونی پالزیکلازهای برونوومهای ریزدانه مافیکی موجود در سنگ های میزان گراندوریتی (Ench) و مونزودوریتی (Enba)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>En-ch-1 مراکز</th>
<th>En-ch-2</th>
<th>En-ch-3</th>
<th>En-ch-4 مراکز</th>
<th>En-ba-57</th>
<th>En-ba-58</th>
<th>En-ba-59</th>
<th>En-ba-60</th>
<th>حاشیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>7.88</td>
<td>6.17</td>
<td>5.52</td>
<td>5.92</td>
<td>8.14</td>
<td>7.99</td>
<td>8.07</td>
<td>7.43</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.25</td>
<td>0.17</td>
<td>0.33</td>
<td>0.12</td>
<td>0.18</td>
<td>0.17</td>
<td>0.53</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.44</td>
<td>0.34</td>
<td>0.29</td>
<td>0.31</td>
<td>0.18</td>
<td>0.19</td>
<td>0.01</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>5.95</td>
<td>5.47</td>
<td>5.71</td>
<td>5.01</td>
<td>5.12</td>
<td>5.87</td>
<td>5.12</td>
<td>5.77</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.31</td>
<td>0.45</td>
<td>1.07</td>
<td>0.41</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Cr2O5</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>100.50</td>
<td>100.50</td>
<td>100.50</td>
<td>100.50</td>
<td>96.99</td>
<td>95.76</td>
<td>95.76</td>
<td>96.99</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>1.311</td>
<td>1.432</td>
<td>1.341</td>
<td>1.354</td>
<td>1.354</td>
<td>1.354</td>
<td>1.354</td>
<td>1.354</td>
<td></td>
</tr>
<tr>
<td>Fe2</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.355</td>
<td>0.368</td>
<td>0.53</td>
<td>0.384</td>
<td>0.384</td>
<td>0.384</td>
<td>0.384</td>
<td>0.384</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.56</td>
<td>0.544</td>
<td>0.88</td>
<td>0.434</td>
<td>0.434</td>
<td>0.434</td>
<td>0.434</td>
<td>0.434</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>5.008</td>
<td>5.008</td>
<td>5.008</td>
<td>5.008</td>
<td>4.948</td>
<td>4.948</td>
<td>4.948</td>
<td>4.948</td>
<td></td>
</tr>
<tr>
<td>Ab</td>
<td>0.51</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
<td></td>
</tr>
<tr>
<td>An</td>
<td>0.571</td>
<td>0.387</td>
<td>0.571</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>Or</td>
<td>0.57</td>
<td>0.387</td>
<td>0.571</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td>0.387</td>
<td></td>
</tr>
</tbody>
</table>

بررسی نمونه‌های مورد مطالعه بر روی نمودارهای تغییرات شیمایی نشان می‌دهد که بین ترکیب برونوومهای سنگ‌های میزان با ویژه سنگ‌های حدودی، تغییرات تدریجی وجود دارد. ولی نمونه‌های استدی دربرگیری نمودارها، قلمرو مجزایی را به خود اختصاص می‌دهند (شکل 6). ماهیت برونوومهای ریز دانه مافیکی نیز، براساس نسبت سیلیس به آلکالی، همانند سنگ‌های حدودی در مرز آلکالن - کالکالکان واقع می‌شوند. بنابراین، با توجه به روند تغییرات عناصر، برای تشکیل آنها، احتمالاً می‌توان خاصیت مشابهی در نظر گرفت و چنین فرض کرد که
شعری از اشیاء ناشده دخالت فراوان اختلال ماغما در خاستگاه سنگها در مورد مطالعه است. این شعری گستردگی و منطقه‌بندی وارون در پلاژ‌های اولاندو و وجود پلاژ‌های آبی دارد. حضور دایک‌های هرمیان با نفوذ، آپاتیت‌های سوزنی، بافت‌های پوستی کلیسیک، و آنتی‌پلاژی‌های برگزاری کلیسیک و بارش تشکری خون‌های مانند در برونوپماهای غربی تفاوتی یک فاصله‌ای به نشست - دگرگونی از بین مورد و وجود جنین رنگ‌های شناس می‌دهد که تکنلتریفیک یک فاصله‌ای LILE (مانند HFSE و عنصر به‌دردیده بالا) نظیر Na و K و عنصر به‌فوته می‌باشد. Ti و عنصر به‌فوته می‌باشد. شکل‌های تکمیلی آرای برونوپماه و توده‌های سنگ‌های می‌توانند در نتیجه آن باشد که برونوپما به عنوان حاشیه‌های انجماد سریع و یا سنگ‌های کومولاپی باشند. ولی بررسی‌ها و شواهد صحرایی نشان می‌دهند که برونوپما به ویژه در سنگ‌های حوض هزی است که تابوب تحقیقات، تقابل تیراندازهای فاصله‌ای در برونوپماهای غربی نمی‌تواند ضرفا حازل تیراندازهای بیشتری توده‌ها باشد. همچنین اگر خاستگاه‌ها برونوپماه، سنگ‌های کومولاپی و احتمالاً حاصل از جدای شدن فاز متنوع اولیه می‌باشند با تغییر در برونوپماه، بالا باشد، در Co و Sr و Cr بودن، نباید فراوان عناصر مانند در برونوپماه کمتر از سنگ‌های حوض رد پیشتر تا برابر با سنگ‌های اسیدی است، که نشان دهنده که رزدانه نبودن بیشتر برونوپما در مقایسه با گریه‌های میزبان به خاستگاه کومولاپی آنها سازگار نیست.
وجود دو نوع بیوتیت، از چرخه‌ای عناصر شواداند و احتمالاً بیانگر نفوذ پی در پی ماده‌ای ماده‌ای مافیکی - حدوداً به درون مخزن ماده‌ای توده‌های نفوذی است. در منطقه مورد مطالعه بین برومنهام و توده‌های آتیپیک حداکثر تداوم، تشییع کانال‌های وجود دارد. با توجه به تشابه کانال‌های بین برومنهمات و توده‌های آتیپیک می‌توانم، برخی از پژوهشگران خاستگاه مشترکی برای آنها در نظر می‌گیرند، و برای این منظور اصلاحات آتیپیک را بکار می‌برند [1]. به نظر می‌رسد انواع گرانیتوییده‌ای آتیپیک در نتیجه تبلور تغییرات ماده‌ای حداکثر یا باریک حاصل شده باشد. بنابراین آتیپیک‌های گرا‌نیتوییده‌ای می‌باشند نسبتاً مشابهند و دارای بافت پورفیریک در زمینه ریز دانه هستند.

[1] گرا‌نیتوییده‌ای در منطقه مورد مطالعه، دایک‌های با ترکیب مختلف اندزینیتی، پالازیتی، مونزونیتی و کوارتز مونزوریتی و توده‌های نفوذی را قطع می‌کند که برخی از آنها جز دایک‌های هم‌زمان نفوذ (Synplutonic dykes) با توده‌های منطقه و در برخی از مدارها، ماده‌ای می‌باشد که از نظر یافته و کانال شناسی سبک رژیم‌زدایی با برودن‌ها دارند. بافت این دایک‌ها، همانند برونپولک، یافت زنگی، زیرین به طور بلوری درشت و شکل دار و ریز بر سطح هستند، حتی در برخی مقاطع نازک دایک‌های هم‌زمان با نفوذ برونپولک، در نتیجه بروکسپولک، دانه‌ای مافیکی کامل می‌باشد با برونپولکهای زرد دانه مافیکی موجود در درون توده‌ها مشاهده می‌شود. وجود دایک‌های هم‌زمان با نفوذ، یکی از شواهد مهم‌ترین ماده‌ای مافیکی فلسفی است [1]. همچنین می‌توان در نظر گرفت که برونپولکهای ریز دانه مافیکی موجود توده‌ای نفوذی مورد مطالعه، حاصل از نفوذ و گسخه‌های شدید این دایک‌ها باشد. می‌تواند گسخه‌های دایک‌های مافیکی و مدل اختلالات ماده‌ای در دایک‌های زیادی پی‌گیریده و نتاک آنها تا مربوط به زمان ورود ماده‌ای مافیکی به درون سیستم گرا‌نیتوییده‌ای است که در نتیجه آن موجب اختلالات فیزیکی در ماده‌های مافیکی و فلسفی می‌شود [12].

مطالعه فراوانی عناصر گردشی در نشان می‌دهد که گروهی عناصر خاکی نادر برونپولکهای گرا‌نیتوییده‌ای حدوداً در منطقه بین برومنهام و توده‌های میزانی تقریباً مشابهاند، ولی برونپولکهای گرند هنگام منفی Eu/Eu* (نسبت EU/276 از 0.5 تا 0.7) با در نسبت Eu/Eu* (نسبت EU/276 از 0.5 تا 0.7) نشان می‌دهند. بنابراین منفی Eu/Eu* (نسبت EU/276 از 0.5 تا 0.7) در برونپولکهای ریز دانه مافیکی احتمالاً می‌تواند با خاطر باریک، جدایی پلاژیوکلاز حاصل شده باشد. غنی شادی از عناصر خاکی نادر و به ویژه عناصر خاکی نادر سنتی، می‌تواند با...
در اینجا یک مقاله از اثراتیهای زمین‌شناسی در پیدایش برونیوم‌های ...
شکل 6 استفاده از نمودارهای تغییرات جفت عناصر ناسازگار در مقابل یکدیگر برای تاکید بر تفاوت زننده نمودارهای مورد مطالعه. روند تغییرات بر روی نمودار دایکها و سنگهای حدودهای تقريبی مشابه است.
احتمالاً نشاندهنده هم خاستگاه بودن آنهاست.
ترکیب شیمیایی کانی‌ها و پیدایش بروندومهای...

ماگماهای مافیکی که به پوسته تحتانی نفوذ و ماگماهای فلسیکی که در اثر فراورش گرمایی خالص از آن در ذرت دوپ بخشی به وجود آمدند، نسبت داده‌اند. بنابراین روندهای خاکی موجود در نمونه‌های مورد مطالعه نیز حاصل اختلال ماگماهای مستند.

اندازه کوچک بروندومه و پراکنشگی آنها به ویژه در بخش‌های مختلف توده‌های حدودی مورد مطالعه، می‌تواند حاکی از مشاهده بودن ترکیب ماگمای تشکیل دهنده آنها و در نتیجه پراکندگی و همگن شدن سریع آنها باشد. فرآیند بروندومه در بخش‌های حدودی نیز می‌تواند خاکی از همزاد بودن خاستگاه آنها و شرایط عدم تعادل سیستم باشد.

بنابراین، با توجه به مشاهدات صخاري و بررسی شیمی کانی‌ها و سنگ‌های سنگ‌سنگی شناختی آنها به نظر می‌رسد که نقش اختلاف ماگماهای و نفوذ پالس‌های متعدد ماگماهای مافیکی - حدودی به درون مخزن ماگماهای سنگ‌سنگی حدودی - اسیدی، به عنوان مهم‌ترین عامل تشکیل و افرینگ بروندومهای ریز دانه‌ای مافیکی منطقه مورد مطالعه باشد.

برداشت

خاستگاه ماگماهای بروندومه‌ای ریزدانه مافیکی مورد مطالعه به وسیله بلوهای زیرکن کشیده، فرم شکل‌دار فازهای مافیکی، منطقه‌بندی نوسانی و حالت کشیده و رشد نامنظم پلاژیکلاژها، بافتی فورمیک و وجود سوزن‌ها فراوان آبی‌پیت به ویژه در درون پلاژیکلاژها مشخص می‌شود. بررسی شیمی کانی‌ها، ویژگی‌های سنگ‌سنگ‌شناختی و شیمیایی بروندومهای ریز دانه‌ای مافیکی و سنگ‌های میزبان، از جمله وجود منطقه‌بندی وارون در پلاژیکلاژها، وجود دو نوع پیتیت، وجود پلاژیکلاژهای جعبه‌ای، نفوذ ریزبزرگ‌های بیوتیت و هورلبند در فلدسبارها، حضور دایک - های همین‌مان نفوذ، وضعیت شوایی برای خاستگاه اختلاف ماگماهای و نفوذ‌ماگماهای باریک - حدودی به درون مخزن ماگماهای توده‌های نفوذی و تشکیل بروندومهای ریزدانه مافیکی منطقه مورد مطالعه است.

تشکر و قدردانی

از تذکرات و پیشنهادهای سازندگان محترم مجله در ارائه بهتر مقاله سپاسگزاری می‌شود.

مراجع

[2] [ولی زاده م. و. صادقیان م. اکرمی م.، انکلاژها و پترولوژی گرانیت؛ انتشارات دانشگاه تهران (1380)، صص 23-82.

[7] جنوب دامغان (بیست و چهارمین جرده‌هایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی کشور (۱۳۸۴) ص ۱-۵.

