تهیه و ساختار بلوری \(N'-(2-\text{هیدروکسی}-3-\text{متیل بنزیلیدین})-4-\text{متیل بنزن}\)

سولفورهیدرادز

شهرزاد محسنی، بیژن بازیار، معصومه طباطبایی، میرعارجی اسدی و بدرود نیا

چکیده: \(N'-(2-\text{هیدروکسی}-3-\text{متیل بنزیلیدین})-4-\text{متیل بنزن}\) سولفورهیدرادز (1) و (2) از طریق پایداری سولفورهیدرادز (1) و (2) - هیدروکسی - 3 - متیل بنزیلیدن (نتیج مولک 1: 1) در اتانول با گرماده- بردن در 185\(^\circ\) است. ساختار ترکیبی به روش بلورشناختی پرتو \(X \) و مدفوع نهایی با استفاده از روش تداخلی زنجیری 1 مولکول در راستای [010] شده است.

واژه‌های کلیدی: سولفورهیدرادز، شبیه باز، پاراگوئن سولفورهیدرادز، ساختار بلوری.

مقدمه

سولفورهیدرادزها دسته‌ای مهمی از ترکیبات در پزشکی و شیمی با جنید کاربرد بیولوژیکی را تشكیل می‌دهند. در میان ترکیب‌های داروشناسی شناخته شده داروهای سولفورهیدرادزیون بالین با نام‌های دانایی، پیشگیری و کمک به بهبود از این افراد استفاده شده است. سولفورهیدرادز 1 و 2 از پاراگوئن سولفورهیدرادز در شیمی کودردن-بستنیس (عواملهای انتقالی) و در بار از بیولوژیکی سولفورهیدرادز با نام‌های دانایی، پیشگیری و کمک به بهبود استفاده می‌شوند.

کلیه موارد استفاده از داروهای 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} و 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} با نمایشگاه طبیعی (IR) در گیرنده 470 ای(trimmedshimmadzu) کمک شده است.

شیفت در مفهوم گزارش شده است [8-10] در راستای

\[\text{بیشتر ترکیب} \]

کلیه موارد استفاده از داروهای 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} و 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} با نمایشگاه طبیعی (IR) در گیرنده 470 ای(trimmedshimmadzu) کمک شده است.

شیفت در مفهوم گزارش شده است [8-10] در راستای

\[\text{بیشتر ترکیب} \]

کلیه موارد استفاده از داروهای 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} و 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} با نمایشگاه طبیعی (IR) در گیرنده 470 ای(trimmedshimmadzu) کمک شده است.

شیفت در مفهوم گزارش شده است [8-10] در راستای

\[\text{بیشتر ترکیب} \]

کلیه موارد استفاده از داروهای 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} و 2-\text{هیدروکسی}-3-\text{متیل بنزیلیدن} با نمایشگاه طبیعی (IR) در گیرنده 470 ای(trimmedshimmadzu) کمک شده است.
چنانهک در شکل مشاهده می‌شود که مولکول متانول در کنار ترکیب قرار دارد که در اصل با توجه به فرمول ترکیب، به ارای هم مولکول ترکیب 1 فقط، مولکول متانول وجود دارد (یک مولکول متانول به همراه جهار مولکول ترکیب متانول شده S1—O1 = 1.427(3) Å برای S—O = 1.400(3) Å و S—N = 1.669(3) Å) با مقدار گزارش شده در ترکیبات همکننده همکاپار در [20] و [21].

پیوند هیدروژنی میان مولکول سیائو از مولکول مجاور (N-H…O) وجود دارد (d(N1—H1…O4a) = 298.7(4) Å) که باعث تشکیل زنجیره نامحدود و گسترش ساختار در یک بعد [010] شده است (شكل3).

ساختار مولکولی پوششی تعادلی پیوندهای هیدروژنی درون مولکولی و بین مولکول‌های درون مولکولی C-H...O = 3.227(5) Å,
(d(C3—H31—O3) = 3.227(5) Å,
(d(C11—H113—O1) = 3.254(5) Å,
C-H...π

باپدر شده است (شکل4) حلقه‌های اصلی ترکیب شامل حلقه A با انتهای C4 و حلقه B با انتهای C9 است که حلقه‌کنشین C20/C21/C22/C23/C24/C26 مولکولی C-H...π شامل یک اتم هیدروژن از حلقه (d(C7—H71—Cg2) = 2.95 Å) است که مرکز حلقه B و Cg2 هستند (شکل4) حلقه ادغامی A/B حلقه ادغامی ارای A/B حلقه ادغامی ارای اخوان مشترک مولکول کناری Cg2 = 2.95 Å) زاویه دو وجهی بین دو حلقه 108° است اطلاعات کامپل بیان دو حلقه در مرکز اطلاعات بلونگاری کمپرسی 1058898 با کد (CCDC)

www.ccdc.cam.ac.uk/conts/retrieving.html

ثبت شده است.

طرح تهیه N’- (2-هدروکسی-2-متکسی بنزیلیدین)-4-متیل بنزنسلفوریک‌ازد

متبی‌ بنزن سولفوریداز

پارا توپل سولفوریداز هیدروکسید نابار دستور کار تهیه شد [18].

Sotel پروتئین حل شد. 160 g Ag 40 mL در (4 mmol) و (4 mmol) نتیجه اصلی سولفوریداز به ان اضافه شد. واکنش با مقدار HCl (3) قطره) و بای تهیه 8 ساعت در دمای 70°C بازتاب شد. رسوب واکنش را جدا کرد و با اتصال شستشو داده شد و در متابول کریستالی شد.

تعیین ساختار بلوری بر روی پرتو X

بحث و برداشت

بررسی داده‌های الکترونی

در طیف IR ترکیب نوار جذبی 1400 cm⁻¹ مربوط به (N=O) نوار جذبی 1030 cm⁻¹ مربوط به سولفورین، نوار جذبی 1015 cm⁻¹ مربوط به ارتعاش‌های کنده متناظر S=O سولفورین، نوار جذبی 163 cm⁻¹ مربوط به C-N و نوار جذبی 1350 cm⁻¹ مربوط به C=C است.

بررسی داده‌های بلوریکار

بررسی داده‌های بلوری نشان می‌دهد که ترکیب در آن به سوخت بلورهای صفحه‌ای سفید و در سیستم تکانه با گروه فضایی C2/c مشترک می‌شود که در سلول ماتریکس C/c و شکل 8 واحد تشکیل شده است. داده‌های بلوری نک بلور ترکیب در جدول1 و برخی از طول پهناها و زاویه‌های پبوندها در جدول 2 دیده شدند.

ساختار مولکولی ترکیب در شکل2 نشان داده شد است.
جدول 1 داده‌های بلورنگاری ترکیب 1

<table>
<thead>
<tr>
<th>فرمول</th>
<th>وزن فرمولی (گرم بر مول)</th>
<th>اندازه بلور (میلی متر مکعب)</th>
<th>سپست بلوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{15}H_{16}N_{2}O_{4}S . 0.25CH_{3}OH</td>
<td>338.37</td>
<td>46×36×0.08</td>
<td>تک میل</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a (A)</th>
<th>اندازه زاویه ($°$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.33 (3)</td>
<td>19.68 (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b (A)</th>
<th>حجم سلول واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.06 (16)</td>
<td>3441.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c (A)</th>
<th>تعداد مولکول در سلول واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.34 (3)</td>
<td>8</td>
</tr>
</tbody>
</table>

Ω (g/cm3) = 1.349 |

داده‌های پارامتری:

h, k, l: مقادیر

-19≤h≤19, -12≤k≤12, -25≤l≤25

-19≤h≤19, -12≤k≤12, -25≤l≤25

<table>
<thead>
<tr>
<th>R_1</th>
<th>WR_2</th>
<th>R_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.054</td>
<td>0.142</td>
<td>0.149</td>
</tr>
</tbody>
</table>

- تعداد پارامترها

- تعداد پارامترها تیپ

* $w = 1 \left(\sigma^2(F_o^2) + (0.0744 P)^2 \right)$; $P = [\max(F_o^2, 0) + 2 \cdot F_c^2]/3$
شکل ۳ پیوندهای هیدروژن نوع N-H…O در ترکیب ۱ که باعث تشکیل زنجیره در راستای [010] شده است.

جدول ۲ تعدادی از طول پیوند (Å) و زاویه پیوند (°) در ترکیب ۱.

<table>
<thead>
<tr>
<th>طول پیوند (Å)</th>
<th>زاویه پیوند (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1-N2</td>
<td>1.381(4)</td>
</tr>
<tr>
<td>N1-H1</td>
<td>1.082(5)</td>
</tr>
<tr>
<td>N2-C3</td>
<td>1.343(5)</td>
</tr>
<tr>
<td>S1-O2</td>
<td>1.418(3)</td>
</tr>
<tr>
<td>S1-O1</td>
<td>1.437(3)</td>
</tr>
<tr>
<td>S1-N1</td>
<td>1.559(3)</td>
</tr>
<tr>
<td>S1-C20</td>
<td>1.758(3)</td>
</tr>
<tr>
<td>O2-S1-O1</td>
<td>120.85(16)</td>
</tr>
<tr>
<td>O2-S1-N1</td>
<td>106.87(16)</td>
</tr>
<tr>
<td>O1-S1-N1</td>
<td>104.10(16)</td>
</tr>
<tr>
<td>O2-S1-C20</td>
<td>107.83(16)</td>
</tr>
<tr>
<td>O1-S1-C20</td>
<td>110.30(16)</td>
</tr>
<tr>
<td>N1-S1-C20</td>
<td>105.94(16)</td>
</tr>
<tr>
<td>C9-O3-H2</td>
<td>111(3)</td>
</tr>
</tbody>
</table>
[20] Beloso I., Castro J., García-Vázquez J. A., Pérez-Lourido P., Romero J., Sousa A., "Different Coordinative (N,N) and (N,O) Bidentate Behaviour...

قدراتی
این پژوهش بوسیله دانشگاه آزاد اسلامی واحد میبد وابسته به طرح پژوهشی با عنوان `انتز و شناسایی نگاندهای سولفونامید و بررسی خواص ضد میکروبی آنها` حمایت شده است.

مراجع