Structural and Electrochemical Studies on Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ Orthorhombic System as a Cathode Material for Lithium Rechargeable Batteries

Alavi, M.
Department of Chemistry, University of Esfahan, Iran
E-mail: m.alavi@sci.ui.ac.ir

Kelder, E. M., Schoonman, J.
Laboratory for Inorganic chemistry, Delft University of Technology, The Netherlands

Key words: Lithium–ion battery, Iron–Manganese Phosphate

Abstract: The phase formation and solid solid solution system of Lithium Iron (II) Phosphate and Lithium Manganese (II) Phosphate using solid state reaction have been studied. The observed phases were identified by X-ray powder diffraction and Electrochemical measurements. The synthesised phases show X-ray diffraction spectra typical of orthorhombic symmetry, space group Pmnb and are closely related to that of the olivine system. A relation between the amount of δ in the system Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ and the diffraction lines 2θ (hk1) has been found. The electrochemical and chemical analyses of the charge - discharge reaction mechanism of the orthorhombic type Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$, 0$<x<$1, showed that this compounds can be used as cathode material for lithium rechargeable batteries.
بررسی ساختاری و الکتروشیمیایی
راستگوشه بِه عنوان ماده کاند در باتری‌های جامد شارژ‌پذیر

مهدی علی‌ی
گروه شیمی دانشگاه اصفهان

ای.ام. کلیدر و چی. اسجورنمن
گروه شیمی معدنی کاربردی علم مواد، دانشگاه فنی دلهت، هند

چکیده: تشكیل فازهای مختلف بلورهای محلول‌های جامد لیتیوم فسفات با آهن در
ظرفیتي، و لیتیوم فسفات با منگنز در ظرفیته، با استفاده از روش واکنش جامد به طرقه
کلیه‌های سازی در آزمایشگاه تهیه و مورد بررسی قرار گرفت. فازهایی به دست آمده به وسیله
روش پراش سنجی پودری پرتیکس XRD، بررسی و تعیین شدند. نقش پراش پرتیکس از X
فازهای تهیه شده نشان از ساختار راستگوشه با گروه فضایی Pmnb پدیدار می‌گردد، و تقریباً مشابه ساختار
اولویون هستند. ارتباط تزئینی بین مقدار 8 در ساختار بلور محلول
Li6(Fe1-xMnx)PO4
موفقیت خطوط پراش 20 (hkl) نظر تنظیم شد. بررسی شیمیایی و الکتروشیمیایی حاکی از آن
است که این ترکیبات می‌توانند به عنوان ماده کاند در باتری‌های جامد شارژ‌پذیر مورد استفاده
قرار گیرند.

واژه‌های کلیدی: باتری‌های لیتیوم بی‌وزن، فسفات - منگنز-آهن، راستگوشه.
پایه‌ای لیتیم اولین بار در سال ۱۹۷۰ به صورت بازبی‌های شارژ‌ناپذیر در صنایع نظامی مرد استفادة قرار گرفتند. در آن زمان با پیشرفت میکروالکترونیک، بروسا بازبی‌های لیتیم شروع شده بود. در سال ۱۹۸۰ اکسیدهای فلزی نظیر و به عنوان ماده کاندید پیشنهاد شدند.[۱] اکسیدهای فلزی منحصر به‌است، به LiCoO۲ خاطر اتصال بازبی‌های الکترنی با سیدنی بلور دارای ویژگی‌های فیزیک‌شیمیایی هستند. چنین موادی بین در برخنافته بیشتر برای تهیه آزمایش‌گاهی الکترودها مورد استفاده قرار گرفته‌اند. همچنین بر تعبین رابطه بین ترکیب، ریز ساختار و خواص فیزیکی با کار گرفته می‌شوند. الکترود‌های بازبی‌های لیتیم این نوع باتری‌ها بر انتقال انتقال لیتیم بین آند و کانادی استوار است. همچنین در الکترولیت‌های جامد، رساده به وسیله چریده الکترونی، یا حفره‌ها می‌تواند در شبکه بلور انگیم‌ها بازبی‌های لیتیم به سیستم الکترود‌هایی، جنس آند و کاناد دارای گستردگی و انواع مختلف هستند.[۲] قابل ذکر است که بازبی‌های لیتیم بیولی قابل شارژ از جمله بازبی‌های جدیدی هستند که در زمینه ارزش‌های نوی، نوید بخش‌نام[۳] در سال ۱۹۹۰ شرکت سونی بازبی‌های لیتیم با ولتیژ ۴ ولت به بازار عرضه کرد که ولتاژ آنها بالاترین ولتاژ‌بندی بود که تا آن زمان به صورت انبوه تولید شده بود. در این زمان بازبی‌های لیتیم به بازبی‌های اولیه و غیر قابل شارژ و بازبی‌هایی ثانویه قابل شارژ تفسیر می‌شوند.[۴] یکی از مهم‌ترین ماده‌کاندید لیتیم MnO۲ سبز و دیگری مواد مورد توجه است. ولی مطالعه‌های انرژی کاهش گنجایش چشمگیری به هنگام یک جرخه شارژ از خود نشان می‌دهد. از طرفی ویژگی‌های ساختاری و الکترود‌های الکترود‌هایی این مواد با نوع سنتز و تهیه آزمایش‌گاهی در ارتباط است.[۵] در حال حاضر با استفاده از ترکیب‌های لیتیم دار به عنوان کاندید، مواد جدید سنتز و بررسی می‌شوند. تعدادی از ترکیب‌های آکسیدی و باکسیدی لیتیم به عنوان مواد جدید توانسته‌اند بازبی‌های جدید مورد استفاده قرار گیرند. بازبی‌های لیتیم بیولی در تلفن‌های همراه، رایانه و تلویزیون‌ها استفاده خواهان دارند[۶] در این پژوهش،
 ضمن بررسی روش تهیه آزمایشگاهی بلورهای مخلوطی به‌مقدارهای

متنوع استفاده به عنوان ماده کنده در باطری‌های جامد، از نظر ساختار شیمیایی و

الکتروشیمیایی، مورد بررسی قرار گرفت.

روش کار

ترکیب‌های II

با ارقام ۲ برای ۰،۱۰،۱۵،۲۰۰،۵۰،۰۵،۰،۰۵ و مقدارهای

مولی تعادلی از بوردهای آلومینیم هیدروژن اوروفوسفات، لیتیم کربنات، آهن

اکسالات و منکرز II

اکسالات با استفاده از واکنش حالت جامد تهیه شدند. به منظور

جلوگیری از اکسایش Fe3+ به Mn3+ با Fe2+ و نیز اکسایش

فضای گاز N2 نخست تا دمای ۲۳۰°C به مدت یک ساعت گرمایده شد تا گازهای

تولید شده از محیط خارج شوند، سپس به مدت ۲۴ ساعت تا

دلگردی گرمایش پس از سرد شدن تا دمای اتاق و رسانیدن آنها، با استفاده از

دستگاه برای سنج پرتون X (زیمتس و لامپ پرتون) X با طول موج 1/5/6 = 5/4

دانگستر (CuKα) XRD در گستره 20 بین ۱۰ تا ۵۰ درجه انجام شد. بررسی

الکتروشیمیایی از بوردهای سنتر شده با مقدارهای ۷ بازی ۸ برای ۰،۱۰،۱۵،۲۰۰،۵۰،۰۵ در واحد

فرمول بلور مخلوط لیتیم منکرز آهن فسفات انجم گرفت، هر کدام از نمونه‌ها همرس با

۲۵ درصد وزنی کربن و ۵ درصد وزنی PTFE (Polytetrafluorethylene) در مخلوط کردن روی

یک سطح فولادي زیر فشار قرار داده شد. نمونه‌های تهیه شده به

صورت ورقة نازک دایره‌ای شکل با قطری در حدود یک سانتی‌متر برخ داده شدند،

شتر و پشت آن به عنوان کنده در یک باتری و استفاده از فاز لیتیم به عنوان آند و

انجام گرفت.

بحث و برداشت

شکل ۱ X برای پرتون X از فراورده‌های با مقدارهای مختلفی

بلوری لیتیم، آهن، منکرز، فسفات از نوع شبکه اولویت فاسک مده. با توجه به واحد

فرمولی Li1_x(Fe1-yMn)yPO4

ملاحظه می‌شود که جایگیری Fe و Mn

تغییر در ساختار شبکه به هر نسبت دلخواه از مقدارهای

Fe و Mn انجام می‌گردد.
باتباین ما با یک نوع بلور و مخلوط جانشینی کاتیونی مواجه هستیم. از اکرها
برای پراش X، نتیجه می‌شود که گرچه شدت قله‌ها و گویی کلی آنها با مقدارهای
متداول خیال است، لیکن مقدارهای 20 روز محور افقی بر حسب مقدارهای 5
متداول است. بدانیم مظهر از خط طیفی (۱۲۱) مقدارهای ۲۰ بین ۴١ و ۴۸ درجه
مربط به نمونه‌های سنتز شهر گروه XRD گرفته شده (شکل ۱). شیاران تفاوت ۲۰
برای مخلوط از این خصوص برای ۰ = ۸ و ۱ = ۸ یعنی برای LiFePO۴
و LiMnPO۴ مقدار ۷۷ درجه سنجیده شد و خط پراش مربط به شکل بازتای میلر
برای (۱۱۲) برای LiFePO۴ برای ۴۱،۱۷ و برای LiMnPO۴ ۴۴ به دست
آمده. با استفاده از مقدارهای به دست آمده ۲۰ و ۷ منحنی شکل ۳ رسم شد. این منحنی
می‌تواند به عنوان منحنی شاهد مورد استفاده قرار گیرد. لذا با اندازه‌گیری مقدارهای ۲۰
می‌توان به در نتیجه منحنی ۷۰ به دست آورد. با کاهش مقدارهای ۲۰ افزایش می‌یابد، به
باتبی قاعده Vegard [۲] مقدار ۸ در رابطه با باسته مورفولوژی مربوط به آن فاز است. لذا

شکل ۱: پراش پرتو X از نمونه‌های بلور مخلوط Li(Fe۱–۳Mn۳)PO۴ شامل فازهای
LiFePO۴ و LiMnPO۴ با اکرانهای ۰.۵۶ و ۰.۵۶ Lithophite ترپیلین
با استفاده از شکل ۳ مقادیر Fe و Mn در بلور مخلوط جانشین و بدون حد اگر مقدار لیتیوم ثابت باشد با محاسبه ۲۰ به دست می‌آید.

شکل ۲: مقدارهای ۲۰ برای خطوط پرش پروتو از صفحه (112) در بلور مخلوط X به عنوان تابع از مقادیر \(\delta \) Li(Fe\(_{1-x}\)Mn\(_x\))PO\(_4\)

\[\text{Li(Fe}_{1-x}\text{Mn}_x\text{)}\text{PO}_4 \]

شکل ۳: زوايا پرش ۲۰ برای خط (112) به عنوان تابع از مقادیر \(\delta \) در Li(Fe\(_{1-x}\)Mn\(_x\))PO\(_4\)

شکل ۴: نقش ساختار باخته یکه شبکه \(\text{Li}_{y} \text{(Fe}_{1-x}\text{Mn}_x\text{)}\text{PO}_4 \) در را نشان می‌دهد.]۸[در این شکل بیکاری چهار وجه متشکل از فسفر در مکز و اکسیژن‌ها در رئوس ملاحظه می‌شوند. پونهای Mn و Fe در مرکزهای هشت وجهی با عدد آرایی شش قرار دارند. در این ساختار اصولاً دو نوع پونه اکسیژنی مورد توجه است. پیک پونه بیل ساز و دیگر بیانی اکسیژن، بیوند بیل ساز بین Li و Mn Fe.
با اکسیژن دیس اکسید هم‌آرای ۶ به فاصله‌ای در حدود ۲/۲ آنگستروم است و فاصله پیوند نایل ساز بین فسفر و اکسیژن با عده‌های ۴ در حدود ۱/۵ آنگستروم است.

در شکل ۵ نتیجه بررسی‌ها، الکتروشیمیایی روی نمونه‌های سنگه‌های آزمایشگاهی نشان داده شده‌اند. به‌کارگیری لیتیوم آهن فسفات و یا لیتیم منگنز فسفات و فاصله

شکل ۴ تصویر دو بعدی از ساختار باتری به که Liₓ(Fe₁₋ₓMnₓ)PO₄ در جهت محورهای x, y محو. در صفحه کاغذ در نظر گرفته شده است. چهار و جهت‌های y در این شکل پونهای پک فریتی f.1. در طرفین با عدد هم‌آرا لیتیوم منگنز, Mn, Fe با عدد هم‌آرا لیتیوم منگنز هستند.

مخلوط به عنوان ماده کاند در باتری‌های پونه لیتیم نشان می‌دهد که این مواد می‌تواند به عنوان باتری‌های کم توان مورد استفاده قرار گیرند. روند منحنی در شکل ۵ برای مقادیر مختلف y تفاوت دارد. در ضمن منحنی ولتاژ بستگی به مقادیر x واحد فرمول شیمیایی دارد. جاسازی و هندسی لیتیم به هنگام شارژ و دشواری را می‌توان با الگوهای پراش پرتو X از نمونه‌ها بررسی کرد. معمولا جداسازی لیتیم از کاند به شارژ
و وارد سازی لیتیوم به دشارژ مربوط می‌شود. تبدیل Li به Li+ در سیستم همه‌ای با تبدیل های Fe3+/Fe2+، Mn3+/Mn2+ انجام می‌گیرد.

این پدیده تغییر ظرفیت بونی منجر به جریان الکتریکی در باتری برای شارژ و شدارش می‌شود. لذا روند جریان الکتریکی بین کاتد و آندر از یک سو به مانگ سبک‌های Mn کاتد و جابجایی Li در جایگاه‌های کاتیونی بستگی دارد و از طرف دیگر مقادیر

علی، اسجولی، کلدر
نکته منحنی های شارژ و داشارژ لیتیوم در چگالی جریان 2mA/g باری سیکل

نکته 5 در داشارژ شارژ و داشارژ ناپذیرانه می‌باشد و به طوری که با انتخاب مقادیر معینی Fe و Mn از ساختار شبکه پروتز مجزا و لتز مورد نظر باتری تنظیم می‌شود.

در
واحد ساختاری Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ اکسیزن با چهار اتم مجاور است، با توجه به این
واحد ساختاری و استفاده از قاعده الکترووستاتیکی پاولینگ، همآرایی ها و موقعیت‌های
فضایی بین‌هایی برای این گروه تقارنی به صورت زیر تنظیم شد. اختلاف بار جزئی به
دست آمده از رابطه بالا می‌تواند مربوط به مقادیرهای جریان الکترونی باتری باشد.
بررسی‌های نظري هنوز ادامه دارد. لذا بار هر اکسیزن به عنوان آبیون براساس قاعده
الکترووستاتیکی پاولینگ به صورت رابطه زیر است:

$$x = \frac{1}{6} \left[\frac{2}{6} + \frac{3}{6} \right] / 2 + \frac{5}{4} = 2$$

رابطه بالا با فرض آنکه در فرمول Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ مقدار x باشد تنظیم شده است. رابطه پاولینگ عدد هم‌آرایی و ظرفیت کاتیون‌های شرکت کننده در ساختار
را نشان می‌دهد. و می‌تواند از دیدگاه نظری در پیدا کردن الکترونی‌ها و جامد می‌تواند
استفاده قرار گیرد. اگر مقادیر x کمتر از 1 باشد رابطه به صورت زیر در نظر گرفته
می‌شود:

$$x = \frac{1}{4} \left[\frac{2 - (1-x)}{6} + \frac{3 - (1-x)}{6} \right] / 2 + \frac{5}{4}$$

اختلاف بار جزئی به دست آمده از رابطه بالا می‌تواند مربوط به مقادیرهای جریان
الکترونی باتری باشد. بررسی‌های نظري هنوز ادامه دارد.

مراجع