Structural and Electrochemical Studies on Li$_x$ (Fe$_{1-x}$ Mn$_x$) PO$_4$ Orthorhombic System as a Cathode Material for Lithium Rechargeable Batteries

Alavi, M.
Department of Chemistry, University of Esfahan, Iran
E-mail: m.alavi@sci.ui.ac.ir

Kelder, E. M., Schoonman, J.
Laboratory for Inorganic chemistry, Delft University of Technology, The Netherlands

Key words: Lithium–ion battery, Iron–Manganese Phosphate

Abstract: The phase formation and solid solid solution system of Lithium Iron (II) Phosphate and Lithium Manganese (II) Phosphate using solid state reaction have been studied. The observed phases were identified by X-ray powder diffraction and Electrochemical measurements. The synthesised phases show X-ray diffraction spectra typical of orthorhombic symmetry, space group Pmnb and are closely related to that of the olivine system. A relation between the amount of δ in the system Li$_x$ (Fe$_{1-x}$ Mn$_x$) PO$_4$ and the diffraction lines 2θ (hk1) has been found. The electrochemical and chemical analyses of the charge - discharge reaction mechanism of the orthorhombic type Li$_x$ (Fe$_{1-x}$ Mn$_x$) PO$_4$, 0< x<1, showed that this compounds can be used as cathode material for lithium rechargeable batteries.
بررسی ساختاری و الکتروشیمیایی
رایستگوئی به عنوان ماده کاند در پاترهای جامد شارژ‌ذپت

مهدی علی‌ی
گروه شیمی دانشگاه اصفهان
ایام. کلدر و جی. اسجیمن
گروه شیمی معدنی کاربردی علم مواد، دانشگاه فنی دهلی، هند

(دریافت مقاله ۶/۳/۱۳۹۱ دریافت نسخه نهایی ۶/۷/۱۳۹۱ (۱۳۸۱/۱۲۱)

چکیده: تشکیل فازهای مختلف بلورهای محلول‌های جامد لیتیش فسفات با آهن در
ظرفیته، و لیتیم فسفات با منگنز در ظرفیته، با استفاده از روش واکنش حالت جامد به طریقه
کلوله سازی در آزمایشگاه تهیه و مورد بررسی قرار گرفت. فازهایی به دست آمده به وسیله
روش پراش سنتی پودری پرتو X بررسی و تعبیه شدند. نقطه پراش پرتو از X
بررسی شد. تعداد ساختار فازهای تهیه شده توسط روش اصلی بررسی شد. از این
نکات است که این ترکیبات به عنوان ماده کاند در پاترهای جامد شارژ‌ذپتی مورد استفاده
قرار گیرند.

واژه‌های کلیدی: پاترهای لیتیشی، فسفات-منگنز-آهن، رایستگوئی.
پتروس ساختاری و اکتروشیمیایی

مقدمه

بازهایی لیتیم اولین بار در سال 1970 به صورت بازهایی شارژناپذیر در صنایع نظامی مورد استفاده قرار گرفتند. در آن زمان با بیشتر میکروالکترونیک، بررسی بازهایی لیتیم شروع شده بود. در سال 1980 اکسیدهای فلزی نیتریک و به عنوان ماده کاندید پیشنهاد شدند[1]. اکسیدهای فلزی عصرهای وسط، به LiCoO۲ خاطر انتقال ساختار الکترونی با میدان بلور دارای ویژگی خاص فیزیکوشیمیایی هستند. این مواد به صورت اکسید سیلیکس و چهارتایی می‌توانند برای تهیه آزمایشگاهی الکترودجا مورد استفاده قرار گیرند. همچنین در تغییر رابطه بین ترکیب، ریز ساختار و خواص فیزیکی به کار گرفته می‌شوند. الکتروشیمیایی ان نوع باتری‌ها بر انتقال بیانه لیتیم بین آن و کاناد استوار است. همچنین در الکترولیت‌های جامد، رسانش به وسیله جریان الکترونی، یا حفره‌ای می‌گردد در شبکه بلور انجام می‌گیرد. بازهایی لیتیم با توجه به میزان الکتروشیمیایی، جنس آن، و کاناد دارای گسترده‌گی و انواع مختلف هستند. [2] قابل ذکر است که بازهایی لیتیم بتوان قابلیتی از جمله بازه‌های جدیدی هستند که در زمینه الکتروشیمیایی نو، نویسیده نشده‌اند[3]. در سال 1990 شرکت سوئیس بازهایی لیتیم با ولتاژ 4 ولت به بازار عرضه کرد. که ولتاژ آنها بالاترین ولتاژی بود که تا آن زمان به صورت انتهای تولید شده بود. در این زمان بازهایی لیتیم به بازهای اولیه و غیر قابل شارژ و بازهایی ناشوی قابل شارژ تتقسیم می‌شود[4]. یکی از مهم‌ترین ماده کاندید بازهایی لیتیم به حاشیه با استفاده از یک بودن که چالدی گروه وارگ‌های مناسب زیست می‌تواند مورد توجه است. ولی مسائلی این ماده که کاهش گنجاوخذابی به هنگام یک چرخه شارژ از خود نشان می‌دهد. از طرفی ویژگی‌های شارژی، ساختاری و الکتروشیمیایی این مواد با نوع سنتز و تهیه آزمایشگاهی در ارتباط است[5].

در حال حاضر با استفاده از ترکیب‌های لیتیم در به عنوان ماده، مواد جدید سنتز و بررسی می‌شوند. تعدادی از ترکیب‌های آکسیدی و نا آکسیدی لیتیم به عنوان مواد جدید توانسته‌اند در بازهای اجای مورد استفاده قرار گیرند. بازه‌های لیتیمی بتوان در تغییر جهیم‌های همراه را واجد، و دیگر وسایل الکترونیکی استفاده از راوانان دارند[6]. در این پژوهش،
 ضمن بررسی روش تهیه آزمایشگاهی بلورهای مخلوط

لی مولی مقدارهای II اکسالت و مکنزز

جلوگیری از اکسایش

فضای گاز نیاز به تولید شده از محیط خارج شوند،

کریگی گرمداشده شد. پس از سرد شدن تا دمای ان backdrop، با استفاده از

۸۸ C در کوره

دستگاه برش پنجره X (زئومسا و لام پنجره) با طول موج

۱/۵۴۶ میکرو متر

CuKα (انگشتی) دی جی گرام ن آکسیژن

کمک به تهیه بلورهای سنتز شده با مقدارهای XRD در گستره ۲۰ بین ۱۰ تا ۵۰ درجه انجام شد. بررسی

کروماتو گرافی از پودرهای سنتز شده با مقدارهای XRD در گستره ۶ در واحد

فلورو اکسید نیتیم مکنزز آهن فسفات انجام گرفت، هر کدام از نمونه ها همراه با

۲۵ درصد وزنی کربن و ۵ درصد وزنی PTFE مخلوط کردن روی یک سطح فولادی زیر فشار قرار داده شد. نمونه های تهیه شده به

صورت ورقة نازک دایرهای شکل با قطری در حدود یک سانتیمتر برش داده شدند.

شارژ و داشتر آن به عنوان کاندید برای تهیه کردن مواد با استفاده از چراغ نیتیم به عنوان آند و

الکتروولیت

انجام گرفت.

بحث و برداشت

شکل ۱ پنجره X از فراوردهای با مقدارهای متفاوت به لوری لیتیم، آهن، مکنزز، فسفات از نوع شبکه اولوئین نشان می دهد.

با توجه به واحد فرمولی Mn لی مولی (Fe0.8Mn0.2)PO4 ملاحظه می شود که جایگزین Fe و Mn شکل می گیرد.
نیترهایی برای پرای پدیده X از نمونه‌های بلوری مخلوط $\delta = 0$ تا $\delta = 0.56$ تکامل شده‌اند. در بازه $0.56 > \delta > 0$، تفاوت $LiFePO_4$ و $LiMnPO_4$ از نظر محدوده است. در $\delta = 0$، تفاوت بین $LiFePO_4$ و $LiMnPO_4$ نیز مشابه است. در $\delta = 0.56$، تفاوت بین $LiFePO_4$ و $LiMnPO_4$ نیز مشابه است.
با استفاده از شکل 3 مقادیر Fe و Mn در بلور مخلوط جانشین و بدون حد اگر مقدار
لیثیم ثابت باشد با محاسبه 20 به دست می‌آید.

شکل 2 مقادرهای 20 برای خط‌های پراش X از صفحه (112) در بلور مخلوط به عنوان تابعی از مقادیر \(\delta\) \(\text{Li}(\text{Fe}_{0.8}\text{Mn}_0.2)\text{PO}_4\):

\[\delta = 0, 0.2, 0.4, 0.6, 0.8, 1\]

شکل 3 زوایای پراش 20 برای خط (112) به عنوان تابعی از مقادیر \(\delta\) در \(\text{Li}(\text{Fe}_{0.8}\text{Mn}_0.2)\text{PO}_4\):

می‌شوند. پوندهای Mn و Fe در مرکزهای هشت و چهار عدد آراپی شش قرار دارند. در این ساختار اصولاً دو نوع پوند اکسیژنی مورد توجه است. پوند Li به شیب پلاس و دیگر پوند اکسیژنی به شیب پلاس Fe و Mn.
با اکسیژن اورژانسی عدد هم‌آرایی ۶ با فاصلهای در حداکثر ۲/۲ آنگستروم است و فاصله
پیوند نابل ساز بین فسفر و اکسیژن با عدد هم‌آرایی ۴ در حداکثر ۱/۵ آنگستروم است.
در شکل ۵ نتیجه برسی‌های الکتروشیمیایی روي نمونه‌های سنگین شده آزمایش‌گاهی
نشان داده شده‌اند. به کارگیری لیتیم آهن ۲۰ فسفات و با لیتیم منگنز ۱۱ فسفات و قازه‌ای

شکل ۴ تصویر دو بعدی از ساختار بازهایی به Lix(Fe1-Mn)PO4 در جهت محورهای x-y.
محور z عمود بر صفحه کاغذ در نظر گرفته شده است. پیچرهای PO4 در این شکل
پیوندهای یک نوری Fe۱ در نوری Mn، Fe
با عدد هم‌آرایی شش هستند.

مخلوط به عنوان ماده کاند در باتری‌های پیونی لیتیم نشان می‌دهد که این مواد
می‌تواند به عنوان باتری‌های کم توان مورد استفاده قرار گیرند. روند محاسبه‌ی در شکل ۵
برای مقادیر متفاوت ۵ مختلف است. در ضمن محاسبه ولتاژ بستگی به مقادیر x و y
فرمول شیمیایی دارد. جادگزاری و جادگزاری لیتیم به هنگام شارژ و دشوار را می‌توان با
الگوهای پراش پرتو X از نمونه‌ها بررسی کرد. معمولاً جادگزاری لیتیم از کاند به شارژ
و وارد سازی لیتیوم به دلایل مربوط می‌شود، تبدیل Li به Li+ در سیستم همراه با Fe$^{3+}$/Fe$^{2+}$، Mn$^{3+}$/Mn$^{2+}$ انجام می‌گیرد.

این پدیده تغییر ظرفیت باتری به جریان الکترولی در باتری برای شارژ و دشوار می‌شود. لذا روند جریان الکترولی بین کاتد و آناد از یک سو به ساختار شبکه‌ای Mn کاتد و جایگزینی Li در جایگاههای کاتیونی بستگی دارد و از طرف دیگر مقادیر

شکل ۵ منحنی های شارژ و داشارژ لیتیوم در چگالی جریان ۲۱۰۰ mA/g

\[\text{Li}_{1+x}(\text{Fe}_{1-x}\text{Mn})\text{PO}_4 \]

در ساختار شبکه بلور مخلوط میزان ولتاژ مورد نظر باتری تنظیم می‌شود.
واحد ساختاری Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ 1 اکسیزن با چهار اتم مجاور است، با توجه به این
واحد ساختاری و استفاده از قاعده الکتروواستاتیکی پاوپینگ، هم آراپی و موقعیت‌های
فضایی بین‌ها برای این گروه تقارنی به صورت زیر تنظیم شد. اختلاف بار جزئی به
دست آمده از رابطه بالا می‌تواند مربوط به مقادیرهای جریان الکترونی باتری باشد.
بررسی‌های نظری هنوز ادامه دارد. لذا بار هر اکسیزن به عنوان آنیون بر اساس س قاعده
الکتروواستاتیکی پاوپینگ به صورت رابطه زیر است:

$$\text{بار اکسیزن} = \frac{1}{6} \left[\left(\frac{2}{6} + \frac{3}{6} \right) / 2 \right] + \frac{5}{4} = 2$$

رابطه بالا با فرض آنکه در فرمول Li$_x$(Fe$_{1-x}$Mn$_x$)PO$_4$ مقدار x = 1 باشد تنظیم شد. با استفاده از رابطه بالا می‌تواند میزان میوه در ساختار
را نشان می‌دهد. و می‌تواند از دیدگاه نظری در پدیده الکتروویسبیالی جامد بینی مورد
استفاده قرار گیرد. اگر مقادیر x کمتر از 1 باشد رابطه به صورت زیر در نظر گرفته
می‌شود:

$$\text{بار اکسیزن} = \frac{1}{4} - \frac{1}{4} \left[\left(\frac{2 - (1-x)}{6} + \frac{3 - (1-x)}{6} \right) / 2 \right] + \frac{5}{4}$$

اختلاف بار جزئی به دست آمده از رابطه بالا می‌تواند مربوط به مقادیرهای جریان
الکترونی باتری باشد. بررسی‌های نظری هنوز ادامه دارد.

مراجع