The technology of constructing a cylindrical photoreceptor

J. Badraghi¹, A. Banaei¹, M.H. Majlesara²

¹- Research Institute of Applied Sciences, P.B. 19835-371, Tehran - Iran.
²- Teacher Training University, Tehran - Iran.

Abstract: In this research the Fourier transform of electric field in a three-layered model with thickness \(t_j \) and dielectric \(\varepsilon_j \) is computed, after solving three dimensional Laplace equation for Fourier transform of potential under suitable boundary conditions. Then, by studying the behavior of spread function, a three-layered photoreceptor is designed. After designing and constructing of all of the subsystems, the deposition of Al and formation of \(\text{Al}_2\text{O}_3 \) are carried out at \(2\times10^{-5} \) to \(5\times10^{-7} \) mbar pressure. Then coating of Se is carried out under \(2\times10^{-7} \) mbar pressure, 250 °C boat temperature and 95°C substrate temperature in 120 min. Electrical resistance of the prepared sample was measured to be higher than \(10^{12} \) Ω in dark and about zero in than light, this values are suitable for making electrostatic latent image. To test its function in practice, the sample was mounted in Xerox machine and images were copied successfully.

Keywords: Photoreceptor, Latent Electrostatic Image, Vacuum Coating, Amorphous Selenium.
فن آوری ساخت گیرنده نوری استوانهای

جعفر نجفی، اقدس بنی، محمدحسین مقبلی آرا

1- دانشگاه شهید بهشتی، پژوهشکده علوم پایه کاربردی، صنعتی پستی 1133/317/9835
2- تهران، دانشگاه تربیت معلم

بتکه الکترونیکی:
badraghi_jd@yahoo.com

دریافت مقاله 17/12/1381
دریافت نسخه نهایی 12/13/1381

چکیده: در این مقاله پس از حل معادله لایابا تبدیل فوریه یکسانی الکتریکی در شرایط
مرزی مناسب تبدیل فوریه میدان الکتریکی در یک مدل سه لایه‌ای با ضخامت را و نفوذپذیری
الکتریکی \(\varepsilon_r = 3 \) و \(\varepsilon = 1 \) را مورد مطالعه و بررسی قرار می‌دهیم. و نویع گیرنده توری
طرحی می‌شود. سپس لایه رسانای Al، رسانای Nouri Se با ضخامت \(\mu \) و لایه مبتنی
پلاستیکی \(\mu \) روانی زیرلایه استوانهای، از جنس آلیاژ آلومینیوم که بر آن نوعی
\(\text{Al}_2\text{O}_3 \) به پلیر روشک داده شده و با کاهش نفوذی می‌باشد. لایه رسانای Al
تشکل از لایه‌ای \(\text{Al}_2\text{O}_3 \) و لایه‌ای Se در فشار \(7 \times 10^{-9} \) میلی‌بار، و لایه‌ای Nouri
Se در فشار \(7 \times 10^{-7} \) میلی‌بار، در دامنه زیرلایه

\(95^\circ C \) در 120 دقیقه انجام شد. پس از اندوه گیری الکتروستاتیکی، با نصب گیرنده توری
جذب در دستگاه زیراکس، تصویربرداری با آن با موفقیت صورت گرفت.

واژه‌های کلیدی: گیرنده توری، تصویر الکتروستاتیکی نهان، لایه‌شناسی در خلاء، سلنیوم آمورف.
مقدمه

گیرنده‌های نوری، تصویر نوری جسم را به تصویر الکتروستاتیکی تبدیل می‌کند و از سه لایه رسانای نوری، رسانای ذخیره‌سازی و یک لایه سدی بین آن دو تشکیل می‌شود (1 و 2). برای تشکیل تصویر نمک کیفیت نور و فوتون‌های زمینه سفید قرار می‌دهند. وقتی نور به آن افتد می‌شود. در نقاط تاریکی الکتروسیمیت بیشتر جذب بخش نوری از نور ناپذیر، با پاکیا صورت می‌گیرد و با پاشومی بسیار ضعیف است. در حالت که در نقاط سفید بیشتر کلی رخ می‌دهد.

بنابراین برای تصویر نوری با رایانه و تبدیل تصویر نوری به تصویر الکتروستاتیکی، نخست رسانای نوری را با داده و سپس آن را در معرض تصویر نمک قرار می‌دهند. در اثر برهم کش تصویر نوری با لایه باردار شده رسانای نور گیرنده نوری، پتانسیل سطح رسانای نور به دلیل تخلیه در نقاط نور خورده کاهش می‌یابد و تصویر نهان الکتروستاتیکی تشكیل می‌شود. این تصویر نهان را می‌توان ظاهر یا به هر چیز دیگر منتقل کرد (3).

مباحث نظری

برای بررسی نتایج حاصل از یک نمونه واقعی از گیرنده‌های نوری و فرایندهای مختلف زیروگرافی، یک مدل سه‌بعدی با ضخامت‌های (1 و 2 و 3) و نفوذپذیری دارای شکل گرفته شد. با انتخاب شرایط مرزی مناسب، معادله ولفرام تمام شده تبدیل صورت‌گیری بروز این مدل حاکم. تبدیل صورت‌گیری بروز این الگوی میدان الکتریکی که همان نتایج انتقال است به شکل زیر به‌دست آمد:

$$ E(k, z) = \frac{2 \varepsilon_2 \varepsilon_3 e^{-k(t_2 + h)} \left[1 + e^{-2k(t_1 - t_2 + h)} \right] \tanh(k t_1)}{\left(\varepsilon_1 + \varepsilon_2 \right) \left[\varepsilon_2 \tanh(k(t_2 + t_1)) + \varepsilon_1 \tanh(k(t_2 + t_1)) \right]} \left[1 + e^{-2k(t_2 + t_1)} \right] + \left(\varepsilon_3 - \varepsilon_2 \right) \left[\varepsilon_3 \tanh(k(t_2 + t_1)) + \varepsilon_1 \tanh(k(t_2 + t_1)) \right] \left[e^{-2k h} + e^{-2k t_1} \right] $$

که در آن $$ h $$ ارتفاع نقطه مورد نظر و $$ k $$ بسامد فضایی است. به ازای مقادیر $$ t_2 = 50 \mu \text{s}, t_5 = 50 \mu \text{s} $$ که براساس نتایج حاصل از بررسی نمونه واقعی $$ \varepsilon_1 = 1, \varepsilon_2 = 2, \varepsilon_3 = 6 $$، $$ t_1 = 100 \mu \text{s} $$ انتخاب شده، رقم‌یابی - زوال تابع انتقال بر حسب بسامد فضایی به صورت شکل 1 در سه
 نقطه $h = 0, 5, 10 \mu$m
بررسی شدند. شکل 1 نشان می‌دهد که نخست میدان با افزایش سامد
فضایی افزایش می‌یابد و سپس، همچنان که اندازه داشته‌اند، به صورت نمایی کاهش می‌یابد. علیکه
چنین رفتاری را می‌توان به صورت زیر توصیف کرد. در ناحیه سامد فضایی کوچک، به دلیل
جذب علامت نوری به وسیله لایه رسمنای نور (در اینجا سلنیوم آموري)، علاوه بر پرتوی موجود
در سطح نگهداری شده درون لایه نیز تریک می‌شود. که با افزایش میدان همراه است. وی با
افزایش بیشتر سامد فضایی، جریان‌های ناشی از الکترونهای تولید شده در اثر جذب علامت نوری
و حرکت آنها موجب کاهش نمایی
و خواهد شد.
نتایج این بررسیها تعیین گسترده مناسب تغییرات سامد فضایی است که به ازای آنها تابع نقل
صر نیست. با استفاده از معکوس تبدیل فوریه تابع الکترونهای تولید شده در اثر جذب علامت نوری

$$E(r, z) = \frac{1}{2\pi} \int_{0}^{\infty} k J_0(kr) \tilde{E}(k, z)dk$$

که در آن

$$J_0(kr)$$

تابع بسل مرتبه صفر است.

رفتار نمایی - یکنواختی تابع پخش بر حسب r مقدار مشابه r^2 و r^1 در گستره سامد فضایی
می‌باشد. در شکل 2 تصویر شده است که با رفتار نرمال همگن سطح رسمنای نور در برهمگیش
تصویر نوری با سطح باردار رسمنای نور مناسب است و منجر به تشکیل تصویر نهان
الکتروناتینیک می‌شود. چنان‌که شکل نشان می‌دهد، کاهش E نا قواسی از r نمایی است که
در آن

$$\tilde{E}(k, z)$$

tابع بسل مثلث دارد. برای مقدارهای k تابع بسل k تابع $E(k, z)$ می‌شود که این قوامی مورد نظر
ما نیستند. از طرف دیگر با بررسی موارد حذف، بعنی مواردی
که در آنها k با $k \rightarrow \infty$ به دلیل افزایش نیروی خمش
تعیین شد [1 و 4] در حد ابدال لایه رسمنای نازک سلنیوم به ضخامت μ 20 آلومینیوم به
عنوان لایه فلزی، و لایه نازک Al$_2$O$_3$ با ضخامت μ 10 به عنوان لایه مبایی انتخاب شدند.
شکل ۱: تغییرات میدان الکتریکی بر حسب بسامد فضایی و تعیین گستره بسامد فضايی مجاز.

شکل ۲: کاهش میدان الکتریکی نورسنا در گستره بسامد فضايی مجاز.

از طرف دیگر براساس بررسی‌های انجم شده روز نمونه واقعی، ملاحظات کاربردی و آزمون نمونه ساخته شده، شکل هندسی استوای‌های انتخاب [۲ و ۴] و سپس کارهای عملی ساخت نمونه صورت گرفت.

شرح کارهای انجم شده

بر اساس بررسی فرایندهای زیروگرافی گیرنده نوری سلنیوم با ساختار آمورف مورد نیاز است. این ساختار در دمایی پایین‌تر از نقطه ذوب سلنیوم تشکیل می‌شود. در حالت که برای تشکیل لاشه نازک سلنیوم باید بخار آن را روی زیر لایه مناسب نشاند [۲ و ۴]. به همین دلیل تیخار
سلنیوم بايد در محیط خلا بالا صورت گیرد [7 و 8] برای ساخت لایه‌های نازک سلنیوم امورف، اکسید، سلنیوم و آلومینیوم با مشخصات لازم به دست آمده، دستگاه‌های گذاری در خلا با توان 5 کیووات به آب اندازه‌گیری مورد استفاده قرار گرفت. نخست زیردستگاه‌های مورد نیاز از جمله نگهدارنده و دوران‌دهنده زیرلایه (شکل 3)، کنترل کندن سرعت دوران، بونه، مخصوص تبخیر سلنیوم (شکل 4)، دستگاه کنترل دمای بونه و زیرلایه (شکل 5)، کنترل کندن زاویه تبخیر پرخ سلنیوم و ... (شکل 6) طراحی و ساخته گردید. با نصب زیرسیستم‌ها در درون دستگاه لایه گذار، عمل کردن آنها بر دستگاه، و شرایط استفاده بهينه از آنها مورد بررسی و آزمایش قرار گرفتند. پس از تهیه و آماده‌سازی زیرلایه استوانه‌ای از جنس آلیاژ آلومینیوم، آن را در دستگاه لایه‌گذار در خلا نصب کردیم و اثاث عمل لایه‌گذاری آلومینیوم و ایجاد لایه اکسید آلومینیوم با ضخامت تعیین شده در گستره فشار 0.1-0.1 میلی‌بار (سپس با استفاده از سلنیوم با درجه خلوص 99.999% از شرکت آلدریج و در شرایط دما 95 درجه سانتی‌گراد) حرارت 120 دقیقه عمل انجام‌شان سلنیوم بر لایه اکسید آلومینیوم به صورت آمورف و بدون بلوری شدن، و با ضخامت تعیین شده تشكیل شد. همین ادعا به‌طور قطعی فیزیکی همبستگی با عمل لایه گذاری در خلا به وسیله آب اندازه‌گیری نصب شده در دستگاه لایه‌گذاری صورت گرفت، و در مجموع به کاهش ترمیم‌گر لایه‌های استوانه‌ای ساختمان‌گر.
شکل ۲ نگهدارنده و دوران دهنده زیرلایه.

شکل ۴ بوتنه مخصوص لایه‌گذاری الومینیوم و سلنیوم.

اندازه‌گیری‌های الکتریکی
برای اندازه‌گیری مقاومت الکتریکی، نمونه‌های ساخته شده به‌مدت دو هفته در تاریکی نگهداری شد و سپس به روش دوباره و در تاریکی مقاومت آن با بیش از ۱۰ اندازه‌گیری شد. این مقاومت برای زیر‌گرافی بسیار مهم است زیرا برای انجام مراحل ظهور و انتقال تصویر الکترووستاتیکی قابیت رسانده‌گی بین مورد نیاز است [۳ و ۷].

برای اندازه‌گیری پاسخ نوری، نمونه‌ها در معرض نور و به‌صورت معین قرار داده و اندازه‌گیری بالا را تکرار کردم که این این بر مقاومتی نزدیک به صفر به دست آمده. نتایج این ازمایش نشان داد که گریزتی نوری در معرض نور، رسانا شده و فرااندازه‌های تولید و انتقال با در آن به خوبی صورت گرفته است. این رفتار در این زیر گرافی از اهمیت بالایی برخوردار است زیرا در این شرایط است که تخلیه بار سطحی و تشکیل تصویر نهان الکترووستاتیکی صورت می‌گیرد [۴ و ۷].
شکل ۵ دستگاه کنترل کننده ایباستر.

شکل ۶ سیستم کنترل دمای بوته و زیر‌ایه.
عملکرد نمونه در دستگاه تصویربرداری
پس از اندازه‌گیری‌های الکتروستاتیکی، نمونه با همکاری شرکت رنگ و زیراکس در یک
دستگاه زیراکس نصب و عمل تصویربرداری با آن صورت گرفت. نتایج حاصل از این آزمایش
نشان داد که تمام فرآیندهای زیروگرافی شامل باردار شدن سطح، تولید و انتقال بار، تخلیه بار
سطحی مناسب با تصویر نورد و متعاقب آن تشکیل تصویر نهان الکتروستاتیک، ظهور و
تشکیل تصویر نورد و انتقال و تثبت آن بر صفحه کاغذ با موقعیت انجام شده است. نمونه
سابقه شده قابلیت استفاده در دستگاه‌های زیراکس، فوتکی و چاپرها کامپیوتری و ... را
داراست.

مراجع
Inc. (1985).
(1999).