The technology of constructing a cylindrical photoreceptor

J. Badraghi\(^1\), A. Banaei\(^1\), M.H. Majlesara\(^2\)

\(^1\)- Research Institute of Applied Sciences, P.B. 19835-371, Tehran - Iran.
E_MAIL: badraghi.jd@yahoo.com

\(^2\)- Teacher Training University, Tehran - Iran.

Abstract: In this research the Fourier transform of electric field in a three-layered model with thickness \(t_j\) and dielectric \(\varepsilon_j\) is computed, after solving three dimensional Laplace equation for Fourier transform of potential under suitable boundary conditions. Then, by studying the behavior of spread function, a three-layered photoreceptor is designed. After designing and constructing of all of the subsystems, the deposition of Al and formation of \(\text{Al}_2\text{O}_3\) are carried out at \(2\times10^{-5}\) to \(5\times10^{-7}\) mbar pressure. Then coating of Se is carried out under \(2\times10^{-7}\) mbar pressure, 250 °C boat temperature and 95°C substrate temperature in 120 min. Electrical resistance of the prepared sample was measured to be higher than \(10^{12}\) Ω in dark and about zero in than light, this values are suitable for making electrostatic latent image. To test its function in practice, the sample was mounted in Xerox machine and images were copied successfully.

Keywords: Photoreceptor, Latent Electrostatic Image, Vacuum Coating, Amorphous Selenium.
فن آوری ساخت گیرنده نوری استوانهای
جلیل بدراوی: اقدس بناتی، محمدحسین مجلس آرا

1- تهران، اولین دانشگاه شهید بهشتی، پژوهشکده علوم پایه کاربردی، سنگین پستی ۳۱۷ / ۳۸۳۸

b dread @ yahoo.com

پیام الکترونیکی:

2- تهران، دانشگاه تربیت معلم.

(دریافت مقاله ۱۷/۹۸/۱۳۸۹، دریافت نسخه نهایی ۱۳۹۰/۲۳۰)

چکیده: در این مقاله پس از حل معادله لایلاس تبدیل فوریه پیانسیل الکتریکی در شرایط مرزی مناسب، تبدیل فوریه میدان الکتریکی در یک مدل سه لایه‌ای با ضخامت R و نفوذپذیری الکتریکی ε 0 در فاز ۳ و ۱ = ۰/۷، مورد مطالعه و بررسی قرار گرفت. و نوعی گیرنده نوری طراحی می‌شود. سپس لایه رسناه Al، رسناه پلیمری Al2O3 و لایه رسناه Se با ضخامت μ ۰.۲۰، ۰.۲۰ و ۰.۲۰ بر روی پلاکت استوانه‌ای از جنس آلیاژ آلومینوم که بر آن نوعی پلیمر روشک داده شده بود، انبساط شد. لایه رسناه Al و تشکیل لایه Al2O3 در فشار ۰.۷ میلی‌بار، و لاچنشتاین Se در فشار ۰.۷۰ میلی‌بار در دمای زیر‌خنکی ۹۵ گردید. به ۹۵ درجه گرمایشی شد. پس از اندام گیری الکترووستاتیکی، با نصب گیرنده نوری جدید در دستگاه زیراکس تصویربرداری با آن به موفقیت صورت گرفت.

واژه‌های کلیدی: گیرنده نوری، تصویر الکترووستاتیکی، نهان، لاچنشتاین در خلاء، سلنیوم اموزف.
مقدمه
گیرنده‌های نوری، تصویر نوری جسم را به تصویر الکتروستاتیکی تبدیل می‌کند و از سه لایه رسانای نوری، سینا و یک لایه سبز بین آن دو تشکیل می‌شود (1 و 2). برای تشکیل تصویر نوری، الگوی مورد نظر را در محیط تاریکی با زمینه سفید قرار می‌دهند. وقتی نور به آن تابیده می‌شود، در نقاط تاریک الگو، بخار جذب و برخی از نور تابشی، بر تابشی صورت نمی‌گیرد و با پنجره ضیافت است. در حالت که در نقاط سفید بیزنتین کل رخ می‌دهد.

بنابراین بروزهای نور بارزتردیده حامل تصویر نوری الگو مورد نظرند. برای تبدیل تصویر نوری به تصویر الکتروستاتیکی، نخست رسانای نوری را باردار و بسیار آن را در معرض تصویر نوری جسم قرار می‌دهند. در اثر برهم کنش تصویر نوری با یکین باردار شده سیستم نور گیرنده نور، بیانسیل سطح رسانای نور به دلیل تخلیه در نقاط نور خورده کاهش می‌یابد و تصویر نهان الکتروستاتیکی تکرار می‌شود. این تصویر نهان را می‌توان ظاهر و یا به فر جای دیگر منتقل کرد (3).

مباحث نظری
برای بررسی نتایج حاصل از یک نمونه واقعی از گیرنده‌های نوری و فرایندهای مختلف زیرگزاره، یک مدل سه‌بعدی با ضخامت‌های (1 و 2 و 3) μ و نفوذپذیری در نظر گرفته شد. با انتخاب شرایط مربی مناسب، معادله‌های اندازه‌گیری الکتریکی پانسیل الکتریکی برای این مدل حل شد. تبدیل فوریه میدان الکتریکی که همان تابع انتقال است به شکل زیر بیان می‌شود.

\[E(k,z) = \frac{\left(e_1 e_2 \sum_{l=1}^{k} e_l \tan(kl) \right)}{\left(e_1 e_2 \right) \left[e_2 \tan(kl_1) + e_1 \tan(kl_2 + l_1) \right]} \]

\[\left[1 + e^{-2k(l_2 + l_1)} \right] + \left[e_3 - e_2 \right] \left[e_2 \tan(kl_1) + e_1 \tan(kl_2 - l_1) \right] \left[e^{-2kl} + e^{-2kl_1} \right] \]

که در آن، \(e_1 = e_2 = e_3 \) که براساس نتایج حاصل از بررسی نمونه واقعی \(e_1 = 2, e_2 = 3, e_3 = 6 \) و \(l_1 = 100 \) μμ\(e_3 = 1 \) که به‌وسیله انتقال برحس به سامان فضایی به صورت شکل 1 در سه انتخاب شده، رفتار نمایی تابع انتقال برحس به سامان فضایی به صورت شکل 1 در سه
نقاط $0, 5, 10 \, \mu$ بررسی شدند. شکل 1 نشان میدهد که نخست میدان با افزایش فضایی تغییر می‌کند. این نتایج نشان‌دهنده این است که با افزایش فضایی میدان همراه است.

نقطه، $h = 0, 5, 10 \, \mu$ نشان می‌دهد که نخست میدان با افزایش فضایی تغییر می‌کند. این نتایج نشان‌دهنده این است که با افزایش فضایی میدان همراه است.

نتایج این بررسی‌ها نشان دهنده سطحی تغییرات بسیار عمیق است که به این ترتیب انتقال صفر نیست. با استفاده از معکوس تبدیل فوریه تایع انتقال و تیز مختصات استوانه‌ای (r, θ, z).

تابع پیشنهاد شده دارای ω بدست آمده:

$$ E(r, z) = \frac{1}{2\pi} \int_0^\infty k J_0(kr) \tilde{E}(k, z) dk $$

که در آن $J_0(kr)$ مقدار مرتبه صفر است.

رفتار فضایی- نشانه‌های تایع پیش در حس ω مقدار مشابه ω و $\tilde{E}(k, z)$ در سطحی بسیار عمیق است که به رفتار نشانه سطحی تایع انتقال نور در برهم‌گشته.

یک تصویر نوری با سطح باردار رسانای نور مناسب است و تایع به تبدیل تصویر نهایی الکترون‌اتریکی می‌شود. چنان‌که شکل نشان می‌دهد، کاهش انتقال ω در آن ω مقدار مغلوب دارد. برای مقادیر بزرگ ω تایع بررسی می‌شود که این فاصله مورد نظر می‌باشد. از طرف دیگر با بررسی مواردی که در آنها ω با ω به طرف صفر تایع پیش تعبیه شد و در حد اینجا، لایه رسانای نازک سلیسیوم به ضخامت $\mu = 20 \, \mu$m، ω به عنوان لایه میانی انتخاب شد.
شکل ۱ تغییرات میدان الکتریکی بر حسب سطح فضایی و تغییر گسترده بسامد فضایی مجزا.

از طرف دیگر براساس بررسی‌های انجام شده روی نمونه‌های مهندسی ملاحظات کاربردی و آزمون‌های نمونه‌سازی شده، شکل هندسی استوانه‌ای انتخاب [۳ و ۴] و سپس کارهای عملی ساخت نمونه صورت گرفته.

شرح کارهای انجام شده

بر اساس بررسی فرآیندهای زیروگرافی گیرنده نوری سلنیوم با ساختار آمورف مورد نیاز است. این ساختار در دماهای پایین تر از نقطه ذوب سلنیوم تکثیر می‌شود. در حالت که برای تشکیل لاشه نازک سلنیوم باید بخار آن را روی زیر لایه مناسب نشانده [۷ و ۸] به همین دلیل تیپر
سلنیوم بايد در محیط خلا پلا سوزرد [7 و 8] برای ساخت لایه های نازک سلنیوم
امورف، اکسید اومگنیوم و آلومینیوم با مشخصات لازم به دست آمده، دستگاه لایه گذاری در
خلأ ب نو ان کو \\kW \ و مجچ به ابر مناسب اندازه گیری مورد استفاده قرار گرفت. نخست
زیر دستگاه های مورد نیاز از جمله نگهدارنده و دوران دهنده زیرلایه (شکل 3)، کنترل کننده
سرعت دوران، بوته مخصوص تبخیر سلنیوم (شکل ۲)، دستگاه کنترل دما بوته و زیرلایه
(شکل ۵)، کنترل کننده زاویه تبخیر بخار سلنیوم و ... (شکل ۶) طراحی و ساخته شدند. با
نصب زیر سپیستها در درون دستگاه لایه گذار، عملکرد آنها بر دستگاه، و شرایط استفاده بهینه
از آنها مورد بررسی و آزمایش قرار گرفتند. پس از تهیه و آماده سازی زیرلایه استوانه ای از جنس
الباز آلومینیوم، آن را در دستگاه لایه گذار در خلاء نصب کردیم و آنها عمل لایه گذاری
آلومینیوم و ایجاد لایه اکسید آلومینیوم با ضخامت تعیین شده در گستره فشار
۲×۱۰۷-۵ میلی‌بار انجام گرفت. سپس با استفاده از سلنیوم با درجه خلوص
۹۹.۹۹% از شرکت آلترنیکس و در شرایط دمای ۹۵ درجه سانتی‌گراد، فشار
۲×۱۰۷-۰ میلی‌بار و در مدت ۱۲۰ دقیقه عمل لایه‌نشانی سلنیوم بر لایه اکسید آلومینیوم به
صورت آوریل و بدون بلوری‌شدن، و با ضخامت تعیین شده تشكیل شد. همین آندازه گیری های
فیزیکی همزمان با عمل لایه گذاری در خلاء به وسیله ابر مناسب اندازه گیر نصب شده در دستگاه
لایه‌گذاری صورت گرفت، و در مجموع چهار نمونه گرینده توری استوانه‌ای ساخته شدند.
شکل ۲ تغییرات دوران دهنده زیرایه.

شکل ۳ بوتوم پیش‌گیری‌های الومینیوم و سلنیوم.

اندازه‌گیری‌های الکتریکی
برای اندازه‌گیری مقاومت الکتریکی، نمونه‌هایی ساخته شده به‌مدت دو هفته در تاریکی نگهداری شد و سپس به روش دوربین و در تاریکی مقاومت ان با بیش از $10^{-Ω}$ اندازه‌گیری شد. این مقاومت برای زیروگرافی بسیار مهم است زیرا برای انجام مراحل ظهور و انتقال تصویر الکترونیکی قابلیت رساندگی الکتریکی مورد نیاز است [۳ و ۷].

برای اندازه‌گیری پاسخ نوری، نمونه‌ها در معرض نور و با شدت معین قرار داده و اندازه‌گیری با اکثر کردن که این با مقاومتی نزدیک به صفر به دست آمد. نتایج این ازمایش نشان داد که گریزناور نوری در معرض نور، رسانا شده و در نهایت باز شده و انتقال بار در آن به خواص صورت گرفته است. این رفتار در زیروگرافی از اهمیتی به‌سرابر برخوردار است زیرا در این شرایط است که تخلیه بار سطحی و تشکیل تصویر نهایی الکترونیکی صورت می‌گیرد [۴ و ۷].
شکل ۵ دستگاه کنترل کننده ایمنی.

شکل ۶ سیستم کنترل دماي بوده و زیر لایه.
عملکرد نمونه در دستگاه تصویربرداری
پس از اندوزانگیری‌های الکتروستاتیکی، نمونه با همکاری شرکت رنگ و زیراکس در یک
دستگاه زیراکس نصب و عمل تصویربرداری با آن صورت گرفت. نتایج حاصل از این آزمایش
نشان داد که تمام فرآیندهای زیرگرافی شامل پردار شدن سطح، تولید و انتقال بار، تخلیه بار
سطحی مناسب با تصویر نوری و متعاقب آن تشکیل تصویر به ظرفیت الکتروستاتیکی، ظاهر و
تشکیل تصویر نوری و انتقال و تثبیت آن بر صفحه کاغذ با موقعیت انجام شده است. نمونه
ساخته شده قابلیت استفاده در دستگاه‌های زیراکس، فوتوکپی و چاپرگاهی کامپیوتری و ... را
داراست.

مراجع