Mineralogy, chemical composition and application of bentonite from Deh Mohammad, Shirgesht, and Chah Cam 1 and 2 (Khorasan-Yazd, Iran)

M.H. Karimpour¹, A.A. Rashed², H. Erteza²

¹- Department of Geology Ferdowsi University of Mashhad Iran.
E-mail: mhkarimpour@yahoo.com
²- Industrial and Mines Institute of Khorasan Government.

(Received: 16/9/2002 , received in revised form: 31/12/2002)

Abstract: Mineralogy and chemical composition of Deh Mohammad, Shirgesht, Chah Cam-1 and Chah Cam-2 bentonite deposits were studied in detail. Tests for foundry moulds uses carried out on raw and processed. Deh Mohammad with 300000 tons reserve is the biggest deposit. Deh Mohammad consists of 75 – 95% montmorillonite, 5 - 25% cristobalite, 0 - 3% calcite, and less than 1.5% halite. The colloidal index for raw bentonite (24 hour) is 20 – 30. Based on chemical composition, Deh Mohammad is Na-bentonite and is good for foundry moulds. Shirgesht has about 135000 ton bentonite. It contains of 74 – 92% montmorillonite, 8 - 28% cristobalite, 3 - 10% calcite, and 0 - 1.5% halite. The colloidal index for raw bentonite (24 hour) is 14 - 22. Based on chemical composition, Deh Mohammad is Na-bentonite and in most part is good for foundry moulds. The bentonite reserve at Chah Cam 1 and 2 mines are 73000 and 62500 ton 60 - 80% montmorillonite, 15 – 35 % quartz- cristobalite, 1 - 5% calcite, and 1 - 5% Halite. The colloidal index for raw bentonite (24 hour) is 0 - 20. Based on chemical composition, Deh Mohammad is Na-bentonite. The colloidal index of some samples are good for foundry use but high halite content is a problem, therefore this bentonite must be mixed with a bentonite having low or no halite such as Shirgesht.
Keywords: Bentonite, Montmorillonite, Foundry, Khorasan.
چکیده: بنتونیتهای معادن شیرگشت، دمحمد، چاکم-1 و چاکم-2 به طور سیستماتیک نمونه برداری شدند. ترکیب شیمیایی، کانی شناسی و مصارف آنها در صنعت ریخته‌گری مورد بررسی قرار گرفت. معدن بنتونیتهای دمحمد با ظرفیت ذخیره، یک گروهی ذخیره را دارد. ترکیب کانی شناسی شامل 75٪ تا 95٪ مولیبدن، 5٪ تا 25٪ کریستالونت، صفر تا 3٪ درصد کلسیت و کمتر از 1.5 درصد هالیت است. اندس زله نمونه خام (24 ساعت) 20 تا 30 است. بنتونیتهای نهایی از نوع سدیومدار و برای صنعت ریخته‌گری مناسب است. معدن بنتونیتهای شیرگشت دارای ظرفیت ذخیره است. ترکیب کانی شناسی شامل 74 تا 92 درصد مولیبدن، 8 تا 28 درصد کریستالونت، 3 تا 10 درصد کلسیت و اکثراً هالیت ندارند. و فقط در یک نمونه تا 1.5 درصد هالیت شناسای شد. اندس زله نمونه خام (40 ساعت) 14 تا 22 و بنتونیتهای نهایی از نوع سدیومدار و بعضی از بخش‌ها برای صنعت ریخته‌گری مناسب است. میزان ذخیره معادن بنتونیتهای چاکم-1 و چاکم-2 به ترتیب 72٪ و 65٪ می‌باشد. ترکیب کانی شناسی شامل 1٪ تا 90٪ مولیبدن، 0٪ تا 35٪ کریستالونت، 1٪ تا 5٪ کلسیت و 1 تا 5٪ هالیت است. اندس زله نمونه خام (24 ساعت) 0 تا 25٪ و بنتونیتهای نهایی از نوع سدیومدار هستند. با ایجاد میزان هالیت مناسب از استفاده مستقیم بنتونیتهای چاکم-1 و چاکم-2 در صنعت ریخته‌گری می‌شود.
واژه‌های کلیدی: بنتونیت، مونت موریلوئیت، ریخته‌گری و خراسان.

مقدمه

اپراتین از قدمت بنتونیت را می‌شناسند و به بعضی از خواص آن از جمله شستشوی لباس به عنوان ماده تمیز کننده استفاده می‌کردند. بازه بتنوتیت را نخستین بار در سال 1898 دانشمندی به نام تایت به کار برده است. این وازه از اصلال محلی شیل‌های بتنوتیت واقع در ایالات وایومینگ آمریکا گرفته شده است.

مهمترین بخش بتنوتیت را کالی‌ها گروه اسکسپتیت تشکیل می‌دهند. اسکسپتیت شامل دسته‌های دی‌کاتادراز و تری‌کاتادراز است. کالی‌های دسته‌های دی‌کاتادراز شامل مونت‌مولیلیت، بندیت و تاندریت و سری تری‌کاتادراز شامل هکتوریت و سباپوتین است.

فرمول کلی دی‌کاتادراز عبارت است از [1]:

\[R^{n+}_{(x+y)/n} \cdot mH_2O \cdot (Al_{(2-y)} R^{2+}_y) \cdot (Si_{4-y/2} Al_{y/2}) \cdot O_{10} (OH)_2 \]

در فرمول بالا \(R^{n+} \) یا کاتیون بین لاکی وی و \(mH_2O \) تعداد مولکول‌های آب بین لاکی است. در مواقعی تندر از Si به‌جای Al^3+ و در موقعیت اکتادراز Fe^3+ و Mg^2+ و Ce^3+ دیگر کاتیون‌های دو نظریه جانشینی تولید می‌شود.

کالی مونت‌مولیلیت از جمله مهم‌ترین کالی‌های بتنوتیت‌ها شمار می‌رود. فرمول کلی یکی مونت‌مولیلیت از جمله کالی‌های بتنوتیت‌ها در مواد A_0.3(Al_2Mg_0.7)[Si_4O_10](OH)_2 xH_2O کالی‌های K^+ و یا 0.5Ca^2+ و Na^+ در جانشینی مونت‌مولیلیت با K^+، Na^+ و Ca^2+ است. اکتادراز شده‌اند، بدنی معنی که سدیم و کلسیم به جای یک‌گیپ نشسته‌اند [2].

از خواص مهم کالی‌های مونت‌مولیلیت، جانشینی پوستی، خاصیت شکل‌پذیری، انعطاف‌پذیری و رنگ‌پذیری آنها را می‌توان نامبرد. میزان هر یک از این خواص به ترکیب شیمیایی و ساختار کالی بستگی دارد. در کالی مونت‌مولیلیت، سدیم‌دار، میزان شکل‌پذیری و انعطاف‌پذیری از این دو قسمت باشند.

این کالی‌ها در حال معمولی به‌طور اکتشفی در موارد که رطوبت می‌تواند درون‌مبود رود فلز‌های میکروی حجم آن افزایش یافته باشد. میزان جدی تری مونت‌مولیلیت سدیمی در جنین برای حجم آن است، به‌طوری که حال زمان، بالاستیک و جیب‌داری به خود می‌گیرد [3].

ездاره پلور، شکل و رنگ‌پذیری اثرات از جمله موارد مهمی است که موجب خواص و کاربردی متفاوت مونت‌مولیلیت‌ها می‌شوند. پلورهای مونت‌مولیلیت سطح مثبت و است. به‌طوری‌که سطح‌های تا 1000 نانومتر (1000 نانومتر) و ضخامت تا 20 نانومتر است (شکل 1). شکل‌نواران بلور مونت‌مولیلیت دارای سطح فوق العاده زیاد است و یک گرم آن در حدود 800 متر مربع
مساحت دارد. گسترده‌گی و بالا بودن مساحت سطح مونت‌مورلیونیت موجب افزایش تماس آب و در نتیجه میزان پس‌یار کم مونت‌مورلیونیت در آب می‌تواند موجب افزایش در میزان غلظت آب شود.

شکل ۱‌ نمایش ابعاد مونت مورلیونیت در سطح و در ضخامت [۶]

هر بلور مونت مورلیونیت در مجموع دارای بار منفی است، بنابراین می‌تواند کاتیون‌هایی با بار مثبت تظیف سدیم و اسید را جذب نماید (شکل ۲). لی‌های مونت مورلیونیت‌ها به میزان محدود دارای بار مثبت بوده ولذا قادرند کاتیون‌هایی با بار منفی و مولکول‌ها را نیز جذب کنند کاتیون‌های واقع در سطح مونت مورلیونیت به سهولت قابل جانشینی با کاتیون‌های دیگر هستند.

که به این مدل کاتیون جانشینی کاتیونی گفته می‌شود مونت مورلیونیت به دلیل بار منفی وقتی که در آب قرار می‌گیرد تحت تأثیر تب‌روی الکترواستاتیک حاصل از این بار منفی سطح مونت مورلیونیت و بار مثبت کاتیون‌های آب به حال تعلیق باقی مانده و حالات زله‌ای کاتیونی به خود می‌گیرد (شکل ۳). و غلظت آب با ایجاد حالت کاتیونی افزایش می‌یابد. جذب مولکول‌های حرشد نیز با حرکت دراذ (با هم‌زنده) سمت‌گیری ذرات رس به هم می‌خورند و غلظت محلول کاهش خواهد یافت. بر این با مقداری حالت سکون، غلظت به حال اولیه باز می‌گردد. مونت مورلیونیت‌ها نوع سدیم دار قابلیت تورم بیشتری از نوع کلیسیم‌دار دارند.
شکل ۲ نمایش بار کانی مونت موریلونیت [۶].

شکل ۳ نمایش حالت کلولیدی ذرات مونت موریلونیت [۶].

بی‌شونده‌ها با توجه به نوع کانی مونت موژلونیت، در صنایع مختلف استفاده می‌شوند که مهم‌ترین آن‌ها از نوع سری‌دگی به قرار زیر، در خفارهای نفت و گاز و مواد معدنی دیگر به عنوان گل خفیر، درتهیه قالب‌های لیثیک‌برداری به‌دلیل خاصیت بلافاصله و جنبیکی‌ان، برای تهیه گندوله‌های اهمیت در صنعت به منظور فرآیند کنترل کانال‌های انتقال آب، سموم عقب‌ناب‌های در کشاورزی و فراپیاده‌های زیست محیطی و در مسائل بهداشتی به عنوان ماده شوینده. نوع کلیسیم‌دار آن به‌دلیل قابلیت مناسب جانشینی کاتیون‌های در تصفیه مواد و رنگ‌بری به کار برده می‌شود.
موضع و خصوصیات
معادن بنوتینی چاه‌گرم 1 و 2 در 15 کیلومتری شرق عشق‌آباد طبس واقع شده‌اند.
بنوتینی چاه‌گرم در طول گذشته با استفاده شمل‌آبی جنوبی در ریولیت‌ها و آندزیت‌ها تشکیل شده‌است. ناحیه سه شرقی بنوتینی چاه‌گرم در زیر سنگ‌های آنششانی واقع شده‌اند. بنوتینی چاه‌گرم 1 دارای 1200 متر طول، 15 متر عرض و 3 متراً ضخامت است. میزان ذخیره آن 73000 تن است. میزان ذخیره چاه‌گرم 2 در حدود 425000 تن است. معدن بنوتینی چاه‌گرم به‌دست آمده در 55 کیلومتری نوروزی در سراسر جاده بزرگی به طبس و در روستای دمحم قرار دارد. تغییرات این در واقع ثابت کردن موجب تشکیل بنوتینی شده است. ذخیره قطوری بنوتینی دمحم 3000000 تن محسوب می‌شده است. معدن بنوتینی شیرگشت در فاصله 52.5 کیلومتری شمال شهرستان طبس و در نزدیکی دمحم قرار دارد. تغییرات در محیط دریاچه درون قاره‌ای در اولی دو درون سوم موجب تشکیل بنوتینی شده است. میزان ذخیره معدن شیرگشت 135000 تن تعیین شد.

روش مطالعه
نمونه‌برداری منظم و سیستماتیک از چاه و تراشه‌های که در زون‌های بنوتینی در حفر شده بودند انجام شد. جرم هر نمونه در حدود 120 کیلوگرم و از 4 معدن جمعاً 22 نمونه برداشت شد. نمونه‌ها ابتدا خشک و سپس با استفاده از آسیبی بلافاصله پودر شدند. تعادل XRF (برای اکسیدهای اصلی تجزیه شدند) کالیاها یا دستری پریو ایکس (XRD) به‌روش روش‌های مختلف استفاده شده است. درصد مواد بیولوژیک با استفاده از محلول میتیلن بلو تعیین شد. درصد کلسیم، زئوس و آهن با استفاده از روش‌های مختلف شیمی مورد ارزیابی قرار گرفت. آزمایش‌های مربوط به کاربرد بنوتینی‌ها در صنایع ریخته‌گری شامل آدیس زله در 8 و 12 ساعت، اندیس تورم و تعیین درصد مواد بیولوژیک به‌نام انجام شد.

به منظور اندازه‌گیری اندیس زله، جرم معینی از بنوتینی زله در حجم مشخصی از آب مقطع به صورت سوسپنسری در می‌آورند. مواد داخل لوله آزمایش نیاپت بعد از 8 ساعت و 24 ساعت برگردید. این آزمایش با افزایش میزان بنوتینی تکرار شد. واصل تیلم می‌باشد سوسپنسری به لوله آزمایش بزرگ‌سایید. با مشخص شدن وزن بنوتینی اندیس زله تعیین می‌شود.

اندیس زله مناسب برای ریخته‌گری 18 (8 ساعت) و 20 (24 ساعت) است.

ترکیب کانی شناسی، زئوسیمی و بررسی کاربرد در ریخته‌گری
ترکیب شیمیایی و کانی شناسی برگزیده بنتونیت منطقه ده محمد در جدول ۱ گزارش شده است. میزان مونترنیورتیت آن به منظور تجزیه و تحلیل با میزان ۲۰ درصد در میان گونه‌گاری کمتر از ۳ درصد و فقط دنیوه به حساب ۲ درصد قرار گرفته است. در این شرایط، شیمیایی بنتونیت به مجموع کمتر از ۱/۵ درصد است (جدول ۱). از خصوصیات مهم این بنتونیت بالا یافته و در محدوده موفقیت‌گذاری و غیب یافته آن از سدیم، را می‌توان نام برد. برای تغییر میزان درصد موارد متعددی مورد بروز به مونترنیورتیت می‌شود. لذا بر اساس میزان کل بنتونیت نمی‌توان این بتن‌کریم از نوع کلسیم‌دار تحلیل داده. عناوین مثل CaO تأثیر ندارند.

ترکیب کلی در کانی‌های شیمیایی و کانی‌های شناسی بنتونیت درک و در کاربرد ماهی‌مایه و از کل کپر، شرود و CaO و Na۲O و MgO بین ۱/۵ تا ۱/۵ درصد و MgO بین ۱/۵ تا ۱/۵ درصد. به گونه‌ای که در جدول ۱ گزارش شده است. میزان مونترنیورتیت بین ۴۰ تا ۴۵ درصد متغیر است. کاراژن به میزان ۱۸ تا ۱۸ درصد بنتونیت در کمتر از ۳/۵ درصد شرود و Na۲O در کمتر از ۳/۵ درصد شرود. بر اساس میزان مورد موارد متعددی مورد بروز به مونترنیورتیت می‌شود. لذا بر اساس میزان کل بنتونیت نمی‌توان این بتن‌کریم از نوع کلسیم‌دار تحلیل داده. عناوین مثل CaO تأثیر ندارند.

<table>
<thead>
<tr>
<th></th>
<th>DT1-1</th>
<th>DT1-8</th>
<th>DT2-1</th>
<th>DT2-2</th>
<th>DT2-3</th>
<th>DT2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۶۳/۶۷</td>
<td>۶۴/۸۳</td>
<td>۵۹/۱۸</td>
<td>۶۸/۴۴</td>
<td>۶۶/۰۴</td>
<td>۵۵/۷۴</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۰/۳</td>
<td>۱/۷۷</td>
<td>۱۲/۶۵</td>
<td>۱۳/۷۶</td>
<td>۱۳/۷۲</td>
<td>۱۷/۴۳</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۰/۲۷</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۸</td>
<td>۰/۳۳</td>
</tr>
<tr>
<td>FeO</td>
<td>۱/۶۷</td>
<td>۱/۳۹</td>
<td>۱/۱۲</td>
<td>۱/۵۱</td>
<td>۱/۵۵</td>
<td>۲/۱۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۳/۱۰</td>
<td>۲/۵۷</td>
<td>۲/۸۵</td>
<td>۲/۷۷</td>
<td>۳/۰۲</td>
<td>۵/۰۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۰/۴۸</td>
<td>۰/۶۸</td>
<td>۵/۵۷</td>
<td>۰/۵۵</td>
<td>۱/۲۴</td>
<td>۰/۷۳</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۳/۵۲</td>
<td>۲/۶۷</td>
<td>۱/۹۶</td>
<td>۲/۹۱</td>
<td>۳/۳۷</td>
<td>۳/۱۷</td>
</tr>
</tbody>
</table>
جدول ۲ ترکیب شیمیایی، کاتیون‌شناسی، انویس زله و ثورم بنوتنی‌های منطقه شیرگشت [۷]
جدول ۳ ترکیب شیمیایی کانی شناسی، اندیس زلزله و تورم بتنونیت منطقه جاده‌کم-۱ [7]

<table>
<thead>
<tr>
<th>درصد</th>
<th>ST3-1</th>
<th>ST4-1</th>
<th>ST6-1</th>
<th>ST7-1</th>
<th>ST7-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.97</td>
<td>59.25</td>
<td>61.26</td>
<td>60.70</td>
<td>54.02</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.88</td>
<td>20.19</td>
<td>15.22</td>
<td>14.09</td>
<td>16.27</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.46</td>
<td>0.51</td>
<td>0.33</td>
<td>0.28</td>
<td>0.47</td>
</tr>
<tr>
<td>TFeO</td>
<td>2.77</td>
<td>2.86</td>
<td>2.23</td>
<td>1.82</td>
<td>2.35</td>
</tr>
<tr>
<td>MgO</td>
<td>3.63</td>
<td>3.85</td>
<td>3.24</td>
<td>2.67</td>
<td>3.15</td>
</tr>
<tr>
<td>CaO</td>
<td>2.57</td>
<td>0.52</td>
<td>4.15</td>
<td>3.48</td>
<td>6.12</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.05</td>
<td>3.78</td>
<td>3.16</td>
<td>3.06</td>
<td>3.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.18</td>
<td>0.07</td>
<td>0.41</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>مونت موریلونیت</td>
<td>75</td>
<td>92</td>
<td>80</td>
<td>74</td>
<td>70</td>
</tr>
<tr>
<td>کوارتز</td>
<td>15</td>
<td>8</td>
<td>16</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>کلوسیت</td>
<td>3.7</td>
<td>-</td>
<td>6.5</td>
<td>5.4</td>
<td>10</td>
</tr>
<tr>
<td>الایت</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>مونت موریلونیت CaO</td>
<td>0.57</td>
<td>0.52</td>
<td>0.51</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>مونت موریلونیت Na₂O</td>
<td>3.05</td>
<td>3.78</td>
<td>3.16</td>
<td>2.5</td>
<td>3.17</td>
</tr>
<tr>
<td>انگیس زلزله (۴۴ ساعت نمونه خام)</td>
<td>14</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>انگیس تورم ۵ گرمی</td>
<td>14</td>
<td>20</td>
<td>13.6</td>
<td>16</td>
<td>14.8</td>
</tr>
<tr>
<td>انگیس زلزله (۴۴ ساعت نمونه فرآوری شده)</td>
<td>18</td>
<td>25</td>
<td>25</td>
<td>22</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>درصد</th>
<th>CIT1-3</th>
<th>CIT1-5</th>
<th>CIT2-1</th>
<th>CIT2-8</th>
<th>CIT2-9</th>
<th>CIT2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>64.42</td>
<td>65.45</td>
<td>59.72</td>
<td>67.39</td>
<td>71.44</td>
<td>68.34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.9</td>
<td>12.57</td>
<td>14.98</td>
<td>12.27</td>
<td>12.3</td>
<td>13.06</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.23</td>
<td>0.18</td>
<td>0.3</td>
<td>0.21</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>TFeO</td>
<td>2.05</td>
<td>1.85</td>
<td>2.07</td>
<td>2.16</td>
<td>1.95</td>
<td>2.34</td>
</tr>
<tr>
<td>MgO</td>
<td>2.4</td>
<td>2.17</td>
<td>2.88</td>
<td>2.01</td>
<td>1.89</td>
<td>2</td>
</tr>
<tr>
<td>CaO</td>
<td>2.78</td>
<td>1.27</td>
<td>3.89</td>
<td>2.03</td>
<td>1.44</td>
<td>2.11</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.86</td>
<td>4.48</td>
<td>3.23</td>
<td>3.02</td>
<td>2.81</td>
<td>3.45</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.04</td>
<td>0.17</td>
<td>0.35</td>
<td>0.28</td>
<td>0.26</td>
<td>0.42</td>
</tr>
<tr>
<td>L.O.I</td>
<td>11.23</td>
<td>11.83</td>
<td>12.54</td>
<td>10.58</td>
<td>7.66</td>
<td>8</td>
</tr>
<tr>
<td>مونت موریلونیت</td>
<td>74</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>کروستوبالیت-کوارتز</td>
<td>24</td>
<td>22</td>
<td>7-17</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>کلوسیت</td>
<td>2.6</td>
<td>1</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>الایت</td>
<td>3</td>
<td>6</td>
<td>1.6</td>
<td>-</td>
<td>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>
با توجه به اندیس زله، بنتونیت فراوری شده منطقه چاهکم-1 برای ریخته‌گیری مياة‌داد مناسب باشد. اما با بودن میزان هالیت (موجب بروز مشکل در مقاومت بالای ریخته‌گیری مياة‌داد شود) استفاده از این بنتونیت در ریخته‌گیری را مشکل می‌کند. مخلوط آن با بنتونیت سدیم‌دار بدون هالیت می‌تواند مناسب باشد.

ترکیب شیمیایی و کانی‌شناسی بنتونیتهای منطقه چاهکم-2 در جدول 4 گزارش شده است. میزان مونت‌موریلونیت بین ۶۰ تا ۸۰ درصد متغیر است. کوارتز و کریستوبالیت به میزان ۲۱ تا ۲۵ درصد و کلسیت نیز در این نمونه‌ها به میزان ۱ تا ۵ درصد یافت می‌شود. هالیت و نParking>

<table>
<thead>
<tr>
<th>ماده مولکولی</th>
<th>مرحله ۱۴</th>
<th>مرحله ۱۱</th>
<th>مرحله ۱۳</th>
<th>مرحله ۱۷</th>
<th>مرحله ۱۸</th>
<th>مرحله ۲۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۹۸.۶۴</td>
<td>۱۳.۶۷</td>
<td>۴۳.۶۶</td>
<td>۳۳.۶۶</td>
<td>۵۸.۶۸</td>
<td>۵۴.۶۵</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۸۲.۱۳</td>
<td>۲۴.۱۳</td>
<td>۴۶.۱۲</td>
<td>۳۲.۱۴</td>
<td>۱۴</td>
<td>۱۲.۱۴</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۱۵.۰۰</td>
<td>۱۳.۰۰</td>
<td>۱۴.۰۰</td>
<td>۱۵.۰۰</td>
<td>۱۸.۰۰</td>
<td>۱۵.۰۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۸۶.۱۱</td>
<td>۸۹.۱۲</td>
<td>۸۲.۱۲</td>
<td>۲۳.۲۲</td>
<td>۸۸.۱۲</td>
<td>۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۷.۲۵</td>
<td>۰.۷۲</td>
<td>۶۸.۱۲</td>
<td>۹۶.۱۲</td>
<td>۱۴.۲۵</td>
<td>۱۵.۲۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۴۳.۱۲</td>
<td>۹۸.۲۴</td>
<td>۷۲.۱۲</td>
<td>۳۳.۱۲</td>
<td>۳۲.۲۵</td>
<td>۲۳.۲۵</td>
</tr>
<tr>
<td>Na۲O</td>
<td>۱۸.۳۲</td>
<td>۸۸.۲۴</td>
<td>۱۱.۲۴</td>
<td>۵.۳۲</td>
<td>۸۶.۲۴</td>
<td>۳۸.۲۴</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>070</td>
<td>080</td>
<td>050</td>
<td>210</td>
<td>120</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.O.I</td>
<td>15.12</td>
<td>57.11</td>
<td>55.12</td>
<td>11.7</td>
<td>87.7</td>
<td>36.10</td>
</tr>
<tr>
<td>مونت موریلوئیت</td>
<td>80</td>
<td>70–75</td>
<td>62–67</td>
<td>70–75</td>
<td>70–75</td>
<td>77–80</td>
</tr>
<tr>
<td>کلسیت</td>
<td>50</td>
<td>–</td>
<td>4</td>
<td>70</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>هالیت</td>
<td>5.1</td>
<td>5.0</td>
<td>–</td>
<td>4.3</td>
<td>7.1</td>
<td>3</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مونت موریلوئیت</td>
<td>15.1</td>
<td>98.0</td>
<td>46.0</td>
<td>94.0</td>
<td>70</td>
<td>55.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مونت موریلوئیت</td>
<td>54.2</td>
<td>62</td>
<td>112</td>
<td>2</td>
<td>2</td>
<td>0.92</td>
</tr>
<tr>
<td>اندیس زله (4 ساعت نمونه خام)</td>
<td>18</td>
<td>25</td>
<td>25</td>
<td>5.16</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>اندیس تورم 5 گرمی</td>
<td>4.16</td>
<td>15</td>
<td>15</td>
<td>6.13</td>
<td>12</td>
<td>6.13</td>
</tr>
<tr>
<td>اندیس زله (4 ساعت نمونه فراوری)</td>
<td>22</td>
<td>30</td>
<td>33</td>
<td>18</td>
<td>22</td>
<td>33</td>
</tr>
</tbody>
</table>
جدول ۴ ترکیب شیمیایی کلیه شناختی عینک زله و تورم بنتونیت منطقه چاه‌کم۲.

<table>
<thead>
<tr>
<th>ماده</th>
<th>C2T2-4</th>
<th>C2T4-1</th>
<th>C2T4-4</th>
<th>C2T4-5</th>
<th>C2T6-1</th>
<th>C2T8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.64</td>
<td>68</td>
<td>9.69</td>
<td>9.65</td>
<td>45.63</td>
<td>4.73</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.15</td>
<td>0.13</td>
<td>8.13</td>
<td>8.12</td>
<td>15</td>
<td>57.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.0</td>
<td>1.50</td>
<td>1.50</td>
<td>1.80</td>
<td>2.20</td>
<td>1.40</td>
</tr>
<tr>
<td>TFeO</td>
<td>5.2</td>
<td>9.1</td>
<td>1.2</td>
<td>9.51</td>
<td>4.52</td>
<td>8.61</td>
</tr>
<tr>
<td>MgO</td>
<td>2.0</td>
<td>8.21</td>
<td>1.42</td>
<td>9.1</td>
<td>7.32</td>
<td>22.2</td>
</tr>
<tr>
<td>CaO</td>
<td>51.2</td>
<td>12.2</td>
<td>87.0</td>
<td>32.3</td>
<td>6.1</td>
<td>61.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.54</td>
<td>6.72</td>
<td>84.2</td>
<td>19.2</td>
<td>3.32</td>
<td>47.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.0</td>
<td>12.0</td>
<td>0.80</td>
<td>2.40</td>
<td>0.27</td>
<td>0.90</td>
</tr>
<tr>
<td>L.O.I</td>
<td>75.8</td>
<td>14.10</td>
<td>0.88</td>
<td>76.10</td>
<td>93.11</td>
<td>6.6</td>
</tr>
<tr>
<td>مونت موربولینت</td>
<td>72–76</td>
<td>70–74</td>
<td>70–75</td>
<td>68–72</td>
<td>77–80</td>
<td>71–75</td>
</tr>
<tr>
<td>هالید</td>
<td>8.1</td>
<td>–</td>
<td>5</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>زئیس</td>
<td>جزئی</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>مونت موربولینت CaO</td>
<td>45.0</td>
<td>5.0</td>
<td>87.0</td>
<td>52.0</td>
<td>41.0</td>
<td>61.0</td>
</tr>
<tr>
<td>مونت موربولینت Na₂O</td>
<td>26.3</td>
<td>67.2</td>
<td>51.2</td>
<td>52.0</td>
<td>152.0</td>
<td>12.0</td>
</tr>
<tr>
<td>درصد زله از ساعت نمونه (میزان)</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>اندرس تورم 5 کریمی</td>
<td>8.13</td>
<td>6.12</td>
<td>4.14</td>
<td>4.13</td>
<td>8.11</td>
<td>12.0</td>
</tr>
<tr>
<td>اندرس زله از ساعت نمونه (فرآوری)</td>
<td>20</td>
<td>27</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>5.16</td>
</tr>
</tbody>
</table>

بحث و برداشت

در چهار معدن بنتونیت مورد مطالعه، بیشترین میزان مونت موربولینت در بنتونیت دمحمود به میزان ۷۵ تا ۹۵ درصد و شیرگشت ۴۲ تا ۸۰ درصد و یک مورد تا ۷۲٪ وجود دارد (شکل ۴). کمترین میزان مونت موربولینت دربتنیتی یا ماده چهار گیاه ۱ و ۲ و میزان ۶۰ تا ۷۷ درصد اندوزه‌گیری شد. رابطه مستقیم بین اندرس زله و میزان درصد مونت موربولینت در بنتونیت‌های هر منطقه دیده شد (شکل ۴). علاوه بر درصد مونت موربولینت، میزان سدیم مونت موربولینت نقش مهم و مشابه با اندرس زله بود. با یک‌اندرس بنتونیت‌های سدیم‌دار در مقایسه با بنتونیت‌های کلسیم‌دار از اندرس زله و تورم بیشتر برخوردارند.
شکل ۴ نمایش دادن تغییرات اندازه زله (بتنویس خم ۲۴ ساعت) و درصد مونتمورلیونیت.

عوامل مهم دیگری نیز اندازه زله را کنترل می‌کند که با مطالعه بیشتر بااید مشخص شوند. چند نمونه از بتنویس‌های مناطق دم‌محمد و چاک‌کم-۲ دارای اندازه زله ۲۵ هستند در صورتی که میزان فراوانی مونتمورلیونیت آنها نسبتاً منتفاوت است (شکل ۴)، ضمناً تغییرات در میزان O Na₂O آنها مشاهده نمی‌شود. اندازه زله بتنویس‌های مناطق چاک‌کم-۲ با ۷۰ تا ۷۸ درصد مونتمورلیونیت معادل بتنویس‌های دد محمد با ۸۳ تا ۸۴ درصد مونتمورلیونیت است (شکل ۴). بنابراین بخشی از بتنویس‌های چاک‌کم-۲ اندازه زله بهتر از دم‌محمد دارد.

میزان هالیت بتنویس قابل مصرف در صنایع ریخته‌گری باید کمتر از ۲ درصد باشد. در شکل ۵ میزان هالیت نمونه‌های مختلف بتنویس‌های مورد مطالعه ترسیم شدها. بتنویس‌های مناطق چاک‌کم-۱ و ۲ در مجموع دارای بیشترین میزان هالیت، و بتنویس‌های شیرگشت کمترین مقدار را دارا هستند. به مظور کاهش میزان هالیت در بتنویس‌های مناطق چاک‌کم-۱ و ۲ می‌توان آنها را با بتنویس‌های شیرگشت مخلوط نمود.

[7] کرمیپور محمدحسن، تجزیه کاتیون‌شناختی Zn، ZnO و ZnPO₄ از آزمایش‌های کاربرد ریخته‌گری ۷۲ نمونه بیوتونیت از معدن دم‌محمد، شیرگشت، جادکم ۱ و جادکم ۲، گزارش طرح تحقیقاتی و مطالعاتی، اداره کل معدن و فلزات خراسان (۱۳۷۸) ص ۱۰۲.