Mineralogical and geochemical evaluation of fire clay of Kabutarkuh deposit, Gonabod

B. Etemadi, R. Miri

Department of Earth science, Shiraz University, Shiraz, Iran.
E-mail: Etemadi@geology.susc.ac.ir

(Received: 17/5/2003, received in revised form: 23/11/2003)

Abstract: Fire clay of the Kabutarkuh deposit, located about 50 km southeast of Gonabad (Khorasan Province), was analyzed for its mineralogical and chemical compositions. Kaolinite, pyrophilite, quartz, dickite, gypsum, illite and alunite are the dominant minerals, and a minor phase of hematite is also present. Geochemical data show that the whole rock sample is mainly composed of SiO₂, Al₂O₃ and K₂O. Chemical results and petrographical studies give an indication of andesite-latite parent rock, which has been altered under the influence of hydrothermal fluids. The chondrite-normalized rare earth element (REE) patterns show enrichment in the Light REEs. The LREE/HREE ratio of upper layer is higher than the lower ones, which indicates mobility of HREE toward the depth. Generally, REE, trace elements and major elements patterns show evidence of intense alteration and weathering processes related to kaolinization. The high measured values of EC and Low measured values of PH are due to solubility of alunite and gypsum minerals.

Keywords: Kabutarkuh, Mineralogy, Geochemistry, Fire clay.
بررسی کانی شناسی و زئوشیمیایی کانسارد خاک نسوز گیپورکوه گناباد

پیژن اعتمادی، روح ا.، میری

پیش علوم زمین دانشگاه شیراز
Etemadi@geology.susc.ac.ir

چکیده: کانسارد خاک نسوز گیپورکوه در ۵۰ کیلومتری جنوب شرق گناباد در استان خراسان قرار گرفته است. بررسی‌های کانی‌شناسی و شیممیایی نشان می‌دهد که کانسارد در کاتولیتی، پیرفیلیت، کوارتز، دیکیت، زیست، ایلت، و آلوده به عناوین کانی‌های اصلی و همان‌گونه به عنوان کانی فرعی در کانسارد حضور دارد. داده‌های زئوشیمیایی نشان می‌دهد که اکسیدهای SiO۲ و Si۳O۹ عمده ترین تشکیل‌دهنده‌های کانسارد. نتایج زئوشیمیایی و بررسی‌های سنگ شناختی نشان می‌دهد که سنگ مادرین کانسارد آندزیت-لاتیت است که تحت تأثیر شرایط
گرمایی دگرسان شده است. الگوهای عنصر خاکی نادر به‌هنجار شده با کندربیت، غنی‌شدن در در طبقات بالایی کانسارد خیلی LREE/HREE بیشتر از طبقات پایین آن می‌باشد که بیانگر تحرک بیشتر HREE به سمت ابعاد است. به طور کلی الگوهای REE عناصر کمبود و اکسید انحلال شواهدی از فاکتورهای دگرسانی و هوادارگی شدید مرتبط با کاتولیتی شدن را نشان می‌دهند. میزان PH در این کانسارد بین بالا و میزان PH سبیل پایین است که می‌تواند به دلیل وجود نمک‌های محلول و کانی‌ها با حل‌نیت‌های آلی به این‌طور که باید رژیم مؤثر نشین نشود.

واژه‌های کلیدی: کانسارد گیپورکوه، کانی‌شناسی، زئوشیمیایی، خاک نسوز.
مقدمه
کانی‌های رسی، از آلومینو سیلیکاگهای آبی در است که بیشتر از Al₂O₃ و SiO₂ ایجاد می‌شوند. بعضی از این کانی‌ها حاوی مقادیر متنوع آهن، قلیایی‌ها و قلیایی‌های خاکی هستند. کانی‌های رسولی در زمینه‌های مختلف کاربرد گسترده‌دارند، از جمله در صنایع گوناگون از قبیل کاشف سازی، سرامیک، بزرگ‌سازی، صنایع رنگ، دارویی، حشره‌کشی، جذب کننده، مواد فلزی، مواد غذایی، استیک سازی، نگهداری سیمان سفید، دندانسازی، ساخت کتانی، سیاپ آبی، ناسی، گلف سازی، قابل اکاری، فیلترینگ، فیلتر، و تولید انواع نوعی‌ها، گچ سازی، صنایع الکتریکی، صنایع شیمیایی، جدیدی‌های مایع و غیره از این مواد استفاده می‌شود [1]. کانسارهای رس می‌تواند رسوبی، جامد و یا گرمسی باشد که هر یک کام ویژگی‌های مختلفی دارد.

موقعیت جغرافیایی و زمین شناسی
کانسار خاک نسوز کشور کوه در موقعیت جغرافیایی ۲۷°۰۵’، ۵۸° ۵۸’ شرقی و ۲۷°۰۶’، ۳۴ شمال در فاصله ۵۰ کیلومتر جنوب شرق قرار دارد. راه‌های دسترسی به کانسارهای مذکور در شکل ۱ نشان داده شدهاند. قدمت و دربی‌سانی سازندگی منطقه مربوط به سیلوان است و سازندگی قدمت چون می‌باشد نهاد. فعالیت‌های آتش‌بیان در منطقه به سیار محدود است و به زوراسیک مربوط می‌شود. در بخش‌های شمالی کانسار، توده‌های دانشی کانسار، توده فندقی، گرانیتی مربوط به انومن دیده می‌شود که سنگ‌های اطراف را گرفته کرده است [2].
شکل ۱ راه‌های دسترسی به منطقه مورد مطالعه.
در شکل‌های ۲ و ۳ نقشه زمین‌شناسی منطقه مورد مطالعه آورده شده است. جنگله مشاهده، کانسار خاک‌نوس کیوبکوم، در بین توده‌های آتش‌نشانی قرار گرفته است. مطالعات سنگ‌شناسی و زمین‌شناسی صورت گرفته در این مجموعه، نشان می‌دهد که این توده‌های آتش‌نشانی از نوع آندزیت-لابیت هستند.

شکل ۲ سنگ‌چینه شناسی کانسار کیوبکوم.
روش مطالعه

یکی از روش‌های رایج و قابل اعتماد در شناسایی کانی‌های رسی استفاده از پرتو X است. برای تعیین فازهای کانی‌های کانسیر کیوترو که، نمونه انتحاب و به روش XRD با دستگاه براثر سنج پرتو X از نوع فیلیپس مدل PW3710 بررسی شدند. نتایج حاصل در جدول ۱ ارائه شده‌اند.

خاصیت درآشیلی سطوح پرتوی یا سطوح درونی در محلول، ظرفیت نیاز کاتیونی (CEC) نامیده می‌شود. این ظرفیت با شمارش مجموع بیولوگی که در سطوح درونی و پرتوی بیولوگی نامیده می‌شود، اندازه‌گیری می‌شود. در این کار پژوهشی سانسیگنی الکتروکی مربوط به نمونه‌های کانسیر کیوترو که تعیین شدند. نتایج به‌دست آمده در جدول ۲ ارائه‌اند.

برای تعیین ترکیب شیمیایی این کانسیر از روش‌های فلورسانی پرتو X (XRF) و فعال‌سازی نتوترونی (NAA) استفاده شد. برای تعیین درصد اکسید عناصر اصلی و نیز عناصر کم‌یاب، صورت گرفت. نتایج به‌دست آمده در جدول ۳ ارائه‌شده‌اند. برای تعیین عناصر نادر خاکی (REE) از روش فعال‌سازی نتوترونی استفاده شد. نتایج به‌دست آمده را در جدول ۴ می‌توان دید.

نموده‌ای انتحابی می‌باشد که حاوی بیش از ۹۸ درصد کاتیون دیکیت است (جدول ۱) از این رو در تعیین میانگین درصد اکسید عناصر اصلی این کانسیر بکار نرفته است.

<table>
<thead>
<tr>
<th>جدول ۱ ترکیب کاتیون شناسی کانسیر خاک نتوترونی کیوترو که (به صورت درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مجموع</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>درصد</td>
</tr>
<tr>
<td>درصد</td>
</tr>
</tbody>
</table>
جدول ۲ ترکیب شیمیایی کانسار خاک نسوز کوتورکوه، PPM

<table>
<thead>
<tr>
<th>Sample</th>
<th>K3</th>
<th>K11</th>
<th>K12</th>
<th>K10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45.2</td>
<td>69.93</td>
<td>61.70</td>
<td>62.63</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.144</td>
<td>0.934</td>
<td>0.591</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>39.54</td>
<td>19.25</td>
<td>18.74</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.74</td>
<td>0.82</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.08</td>
<td>0.111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.09</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.81</td>
<td>0.154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>4.24</td>
<td>4.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.158</td>
<td>0.113</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>L.O.I.</td>
<td>14.34</td>
<td>3.85</td>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.29</td>
<td>99.29</td>
<td>99.28</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>3.56</td>
<td>5.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>15</td>
<td>11.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>2.78</td>
<td>8.66</td>
<td>13.0</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳ نمونه‌های کانسار خاک نسوز کوتورکوه، PH و CEC EC

<table>
<thead>
<tr>
<th>Sample number</th>
<th>PH</th>
<th>CEC meq/100g</th>
<th>EC μS/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>51</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>K2</td>
<td>15</td>
<td>77</td>
<td>8</td>
</tr>
<tr>
<td>K3</td>
<td>98</td>
<td>98</td>
<td>16</td>
</tr>
<tr>
<td>K4</td>
<td>10</td>
<td>77</td>
<td>16</td>
</tr>
</tbody>
</table>
بحث و بررسی
الف) کانیشناسی
بر مبنای انباشتگی کانیایی، زونهای مختلف دگرسانی را معرفی کرد. در شکل ۴ نشان داده شده است. در این شکل هر کانی مرتبط با کانسارهای رس در گستره مشخص و وجود دارد. محور X در این شکل گستره دمای پایداری هر کانی را نشان می‌دهد. با توجه به ترکیب کانی‌شناسی در جدول ۱، دگرسانی از نوع اسیدی بوده، و دمای تشکیل بین ۲۱۰ تا ۲۸۰ درجه سانتیگراد یعنی در گستره زون پیروفلیت قرار دارد [۳]

<table>
<thead>
<tr>
<th>Mineral</th>
<th>ZONE</th>
<th>100°C</th>
<th>200°C</th>
<th>300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opal</td>
<td>HALLOYSITE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>KAOLINIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halloysite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaoilinite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naclite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illite/smectite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illite/Serpentine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boehmite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diopside</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corundum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andalusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tournelite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danerellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanlyte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
شکل ۴ ابزارگی کانی‌ای کانسی کیوئرکو در زون پروفیلیت از دگرگونی نوع اسیدی [۳]

مربط به نمونه‌ای کانسی کیوئرکو در گسسته ۱۸۵ ۱۰۰۰۰ g تا ۱۰۸۷ meq/۱۰۰ g CEC محاسبه شده که نتایج حاصل در جدول ۲ نشان داده شده است. نمونه K3 نسبتاً دیکت خالص است. نمونه این ۲/۱۱ meq/۱۰۰ g CEC است عنوان می‌باشد. بنا برای این و توان را برای کانی دیکت ۲ تا ۳ پیشنهاد کرد. طرفیت تبادل کانی‌یولی کانه‌ی رسی در مرجع [۲] اثره شده است که عبارتند از:

<table>
<thead>
<tr>
<th>کانی</th>
<th>والکی‌ولت</th>
<th>موئن</th>
<th>مولیولیت</th>
<th>کرکت</th>
<th>ابلیت</th>
<th>دیزیت</th>
<th>کانی‌ولت</th>
<th>CEC meq/۱۰۰ g</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
<td>۹۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۵۰</td>
<td>۱۵۰</td>
</tr>
</tbody>
</table>

با توجه به جدول ۲ نمونه‌ای این کانسی در گسترة نسبتاً پاییزی قرار دارد که علت آن نیواد کانی‌یای تأثیر افزایش PH با افزایش CEC (جز مقدار کمی ابلیت) نظیر مونت مولیولیت، والکی‌ولت و غیره است [۴].

شکل ۵ نمودار PH در نمونه‌ای کانسی نشان می‌دهد. کانی‌ای قابل حل، نظیر PH Alونیت و زبس، در کانسی به وفور پایت می‌شوند؛ لذا در برخی از کاربردهای صنعتی موارد معدنی این کانسی باید شست و شوی شبیه‌ای شوند (شکل ۵).
تحريك عناصر، تغییرات شیمیایی سنگ را پس از تشکیل توصیف می‌کند که معمولاً ناشی از واکنش‌ها شده‌است. تحریک عناصر اصلی بوسیله‌های عامل اصلی کنترل می‌شود، پایداری و ترکیب کانال‌ها در سنگ‌های دگرسان نشده، پایداری و ترکیب کانال‌ها در محصول دگرسانی و ترکیب، دما و حجم فاز‌سال [5]. برای تعیین خاستگاه و چگونگی دگرسانی کانسار، عناصر کمبیو و نادر مورد بررسی قرار می‌گیرند [6].

برای تشخیص سنگ‌های مادر کانسارهای کاتولیک، نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و نمونه‌سازی و تحلیل به روش EkoSse را Al₂O₃-TiO₂ و N
پس از آزادشدن از سمنگ مادر، در تشکیل کانی ابلیت و آلونیت مصرف شده و از محیط K خارج نشده است. ترکیب کانی شناسی این کانسار و وجود کانی ابلیت و آلونیت در بعضی نمونه‌ها (در جدول 1) این تفسیر را تأیید می‌کند الگوی تحرك عنصر کمپار در K1,K2 کانسار مدکور (شکل 8-ب) نشان می‌دهد که عنصر As نسبت به سنگ میزبان غنی‌شده نشان می‌دهند. غنی‌شده‌گی عنصر As رابطه K به غنی‌شده‌گی V این کانی ها دلیل اصلی این غنی‌شده‌گی است. غنی‌شده‌گی عنصر سنگینی همچون Th،V،Nb و Zr مربوط به وجود احتمالی کانی‌های سنگین نظر زبرکن است که در مقابل هوازدگی پایدارند. علاوه براین V و Nb در خلال هوازدگی تحرك کمتری دارند [8].

[۸] Al₂O₃-TiO₂

شکل ۸ موقت نمودار کیمیا کوبترکوه در نمودار دوتایی 

نیز غنی‌شده‌گی نشان می‌دهد. As در خلال دگرگسایی در نمودار کیمیا غنی از اکسید آهن متکر است و به غنی‌شده‌گی گی هوازدگی حاکم بوده است [9] با
توحید به نهایت شدگی عناصری مانند Mn، Co، Cu، Zn و همچنین Mg به طور که تنها در شرایط دمای بالا متحرک می‌شوند و نیز وجود کانی پیروفسیت و دیگریت که در دماهای بالا شکل می‌شود، به نظر می‌رسد شرایط درگیران کننده، شرایط دمای بالا است که احتمالاً منشاء آذرین (گرانتینهای شمال کانسار) داشته و یا از بخش‌های عمیق ریشه آن گرفته است.

شکل 7: رابطه‌سنجی انتقال‌های میزان کانسار کیوژکو (بر مبنای نمونه) Winchester, 1977

الف-عناصر اصلی

ب-عناصر کم‌میزان

شکل 8: (الف) اصلی و (ب) عناصر کم‌میزان در کانسار خاک گیوه توزیع کیوژکو گنگ‌ناهجی، نماد شده با سنگ‌های اندزینه‌ای منطقه.
بین عناصر کمیاب، عناصر نادر خاکی REE مهمترين عناصر کمیاب بوده و کاربردهای فراوانی در سنجش‌شناختی آذرین، بهشتی و دَرگُهونی دارند. برای بررسی چگونگی عناصر نادر خاکی در کانسار گیتیکوف، نتایج بدست آمده از تجزیه NAA (فناوری نورتوتوتومی) نسبت به گندبری به کنترل به‌هنجار شدن، نگهدارنده آمده در شکل (۸) اورده شده است. نمونه ۳ مربوط به افق‌های سطحی و نمونه K2 مربوط به پایین‌ترین طبقه کانسار است. نسبت K2 به نمونه K3 در نمونه K1. K3.K3.K1، K2، K1 (جدول ۴) نسبت در نمونه K2 برای ۱۱۶.۷۶ است. بنابراین REE ها در بخش‌های عمیق کانسار تمرکز یافته‌اند. در مورد این غنی شدگی دو احتمال وجود دارد. نخست اینکه REE ها به وسیله آب‌های جوی شسته شده و به بخش‌های عمیق‌تر منتقل شده‌اند [۵]. و دیگر اینکه شاره‌های HREE ها را با بیش از LREE گرمایی کانال‌های کانسار کیتگیکوف، مشاهده می‌شود که این کانال‌ها از نظر دمای تشکیل دارای ۲ گرما متغیراند [۳].

۱-کانال‌های دیکیت، پیروفلیت و ایلیت که در گستره ۲۸۰-۳۰۰ درجه C تشکیل می‌شوند.
۲-کانال‌های زبیس و آلوئینت که در گستره ۲۰۰ درجه C تشکیل می‌شوند.

بنابراین غنی شده أما در این کانال زبیس یا آلوئینت، تشکیل شده است. برای کناره‌نشدنی به دستاورد شده در این روش در نتیجه تشکیل کانال‌های ایلیت، دکیت و پیروفلیت شده است.

۱- شاده با دمای بالا ولی به حساب شده باشتر می‌گردد، موجب دوگانه سنج ماد و در نتیجه تشکیل کانال‌های ایلیت، دکیت و پیروفلیت شده است.
۲- شاده نانو که به شدت خاص‌گذار جوی گردیده و چون از تشکیل ثابت در درون آن با توجه به عناصر نادر خاکی به حرکت این شاده مربوط می‌شود. بنابراین فرض اول در مورد غنی شدگی REE ها در اعماق صحیح است.

![Rare earth elements](image-url)
نتیجه‌گیری
الف) کانی شناسی
1- ترکیب کانی شناسی کانسار کیوبترکوئه از کاتلونیت، بیروفیلت، کوارتز، دیکیت، زیپس، اپیت و آلونت تشکیل شده است.
2- ظرفیت تبدیل کاتلونیت رسه‌ای کانسار در بزرگ 1.8/5 تا 1087 meq/100 g است که دلیل این گستره وسیع، تنوغ کانی شناسی کانسار است.
3- ظرفیت تبدیل کاتلونیت گالی دیکیت برای است با 2تا 100 g meq/21 تا 4.2 درجه سانتی‌گراد است. زون دگرسانی کانسار زون بیروفیلت است.
4- با توجه به ترکیب کانی شناسی، دمای تشکیل کانسار بین 210 تا 280 درجه سانتی‌گراد وجود کانی‌های زیپس و آلونت، استفاده از این ماده معدنی را برای ساخت بدن کاشی و سرامیک را بدون فراوری ناممکن ساخته است.

ب) زئو‌شیمیایی
1- میزان SiO2 در کانسار مذکور به‌ترتیب با میانگین 21/02 و 21/8 درصد است.
2- با توجه به نمودار اکوس 201 و اطلاعات زمین‌شناسی از منطقه، سنگ‌ماد کانسار کیوبترکوئه اندرتیت است.
3- الگوی تحرک عناصر اصلی نشان از گنگ‌شکلی عناصر K و P، Al، Ti، Si در خلاء K و P، Al، Ti، Si، Th، Ba، Nb، Zr، Y، Sr، Rb، As غنی‌شکلی و عناصر Co و Ni، Cu، Zn، V، U نشان از گنگ‌شکلی و حجم‌شکلی نشان میدهد.
4- الگوی تحرک عناصر کمیاب نشان میدهد که عناصر Co و Ni، Cu، Zn، V، U غنی‌شکلی و غنی‌شکلی نشان میدهد.
5- الگوی عناصر نادر خاکی و نسبت LREE/HREE نشان از لگدگی نشان میدهد.

قدرتانی و تشکر
از دانش‌آموزان شیراز که امکانات این پژوهش را فراهم اورده است، صمیمانه قدردانی و تشکر می‌شود.

مراجع:


