Mineralogical and geochemical evaluation of fire clay of Kabutarkuh deposit, Gonabod

B. Etemadi, R. Miri

Department of Earth science, Shiraz University, Shiraz, Iran.
E-mail: Etemadi@geology.susc.ac.ir


Abstract: Fire clay of the Kabutarkuh deposit, located about 50 km southeast of Gonabod (Khorasan Province), was analyzed for its mineralogical and chemical compositions. Kaolinite, pyrophilite, quartz, dickite, gypsum, illite and alunite are the dominant minerals, and a minor phase of hematite is also present. Geochemical data show that the whole rock sample is mainly composed of SiO₂, Al₂O₃ and K₂O. Chemical results and petrographical studies give an indication of andesite-latite parent rock, which has been altered under the influence of hydrothermal fluids. The chondrite-normalized rare earth element (REE) patterns show enrichment in the Light REEs. The LREE/HREE ratio of upper layer is higher than the lower ones, which indicates mobility of HREE toward the depth. Generally, REE, trace elements and major elements patterns show evidence of intense alteration and weathering processes related to kaolinization. The high measured values of EC and Low measured values of PH are due to solubility of alunite and gypsum minerals.

Keywords: Kabutarkuh, Mineralogy, Geochemistry, Fire clay.
بررسی کانی شناسی و زئوشیمیایی کانسیر خاک نسوز گیوتروکوه گناباد

بیژن اعتمادی، روح یامیری

پخش علوم زمین دانشگاه شیراز
Etemadi@geology.susc.ac.ir

چکیده: کانسیر خاک نسوز گیوتروکوه در ۵۰ کیلومتری جنوب شرق گناباد در استان خراسان قرار گرفته است. بررسی‌های کانی‌شناسی و شیمیایی نشان می‌دهد که کاتولینیت، پیروفیلیت، کوارتز، دیکیت، زئیس، ایلیت، و آلوده به عنوان کننده اصلی و همتایی به عنوان کانی فرعی در کانسیر حضور دارند. داده‌های زئوشیمیایی نشان می‌دهد که اکسیدهای SiO۲، Fe۲O۳ و Fe۳O۴ به صورت برابر در کانسیر یافت می‌شوند. ترین شکل هدنهای کانسیر، ترین زئوشیمیایی و بررسی‌های سنگ شناختی نشان می‌دهد که سنگ ماداکان کانسیر آندزیت-لاتیت است که تحت تأثیر شاره‌های گرمایی در گرانش شده است. الگوهای عناصر خاکی نادر به‌هنجار شده و اکسیدهای SiO۲ در طبقات بالای کانسیر خیلی LREE/HREE بیشتر از طبقات پایین آن می‌باشد که بیانگر تحرک بیشتر HREE به وسیله شاره‌های جوی است. همچنین نسبت REE به مجموع اکسیدهای عناصر اصلی به‌طور کلی که در طیف‌های شیمیایی مشاهده می‌شود. LREE به‌طور کلی در این کانسیر میزان PH بسیار پایین است که می‌تواند به دلیل وجود نمکهای محلول و کانی‌های با حل‌الذینی‌های آلیات با نظیر آلودگی و ژیست باشند.

واژه‌های کلیدی: کانسیر گیوتروکوه، کانی شناسی، زئوشیمیایی، خاک نسوز.
مقدمه
کانی‌های رسی، از آلومینو سیلیکات‌های آبدار است که بیشتر از Al₂O₃ و SiO₂ و آب تشکیل یافته‌اند. بعضی از این کانی‌ها حاوی مقادیر متنوع آهن، قلیایی‌ها و قلیایی‌های خاک‌پوش هستند. کانی‌های رسی در زمین‌های مختلف کاربرد گسترده‌ای دارند، از جمله در صنایع گوناگونی از قبیل کاغذ سازی، سرامیک، پلاستیک‌ها، صنایع سنگین، صنایع پلاستیک و... کانی‌های رسی، مواد تولید شده در ناحیه کانی‌های رسی، صنایع سنگین، صنایع پلاستیک، صنایع شیمیایی... و غیره از این مواد استفاده می‌شود [1]. کانسرهای رسی می‌توانند رسمی جاماند، باشد و یا گردن پاشند که هر کدام ویژگی‌های مختلفی دارند.

موقعیت جغرافیایی و زمین‌شناسی
کانسار خاک نسوز کویر کوه در موقعیت جغرافیایی ۳۳°۰۳ـ۵۸ شرقی و ۲۷°۱۴ـ۰۶ شمالی در فاصله ۵۰ کیلومتری جنوب شرق غناق قرار دارد. راه‌های دسترسی به کانسارهای مذکور در شکل ۱ نشان داده شده‌اند. قدمی‌ترین سازندگان مکانی محور بی‌سی‌بی در این اثر و سازندگان قدم‌برنده نیز ندارند. فعالیت‌های انسانی در منطقه بسیار محصور است و به سبب زور و چرخش و جایگاه کانسار، نتایج نفوذی گرانی‌مرمر به آن توسط دیک‌های مس که سنگهای اطراف را دگرگون کرده است [2].
شکل ۱ راه‌های دسترسی به منطقه مورد مطالعه.

در شکل‌های ۲ و ۳ نشان داده شده است که در منطقه مورد مطالعه وارد شهر مشاهده می‌شود که تعداد زیادی نسبی به کیوبتهای سنگ‌ساختی و زباله‌های صورت گرفته در این منطقه باعث می‌شود که تعداد سنگ‌ساختی آتش‌نشانی از نوع آندزیت-لاتین هستند.

شکل ۲ سنگ‌ساختی که توسط کاسار کیوبتهای سنگ‌ساختی و چینه‌های کاسار کیوبتهای سنگ‌ساختی مورد مطالعه قرار گرفته است. مطالعات سنگ‌ساختی و زباله‌های صورت گرفته در این منطقه باعث می‌شود که تعداد سنگ‌ساختی آتش‌نشانی از نوع آندزیت-لاتین هستند.
روش مطالعه

یکی از روش‌های این است. برای تعیین فازهای کانی‌ای کانسار کیسرو، چهار نمونه انتخاب و به روش XRD از روی برش‌های پروتو پرسی مدل PW3710 بررسی شدند. نتایج حاصل در جدول 1 ارائه شدند.

روش دارای شرایط سطوح پیرونوی پیوسته در مقابل تبادل کاتیونی (CEC) نامیده می‌شود. این طرفیت با شماره مجموع بیوهای که در سطوح درونی و بیرونی بیوهای در انتقال پیوسته، انتلاز گیری می‌شود. در این کار پژوهشی رساندن‌گی الکتریکی مربوط به نمونه‌های کانسار کیسرو در نظر گرفته شدند. نتایج به‌دست آمده در جدول 2 ارائه شدند.

برای تعیین ترکیب شیمیایی این کانسار از روش‌های فلورسنت پروتو (XRF) برای بررسی درصد اکسید عناصر اصلی و نیاز عناصر کم‌بود، از روش نتایج به‌دست آمده در جدول 3 ارائه شدند. برای تعیین عناصر نادر خاکی (REE) از روش فعالیت‌های نوترنی استفاده شد. نتایج به‌دست آمده در جدول 4 نشان داد.

نمونه 3K انتخابی می‌باشد که حاوی بیش از 98 درصد کانی دیکیت است (جدول 1) از این رو در تعیین میانگین درصد اکسید عناصر اصلی این کانسار بکار نرفته است.

جدول 1 ترکیب کانی شناسی کانسار خاک نسور کیسرو (به صورت درصد)

<table>
<thead>
<tr>
<th>مجموعه</th>
<th>آلیات کورتزر</th>
<th>اپتیت</th>
<th>دیکیت</th>
<th>پیروفیلک</th>
<th>کانولیت</th>
</tr>
</thead>
</table>

شکل 2 نقشه منطقه مورد مطالعه.
توضیحات جدول ۲ ترکیب شیمیایی کانساز خاک نسوز کیوترکوه:

عناصر اصلی بر حسب درصد و عناصر کمیاب بر حسب PPM

جدول ۱ نمونه‌های کانساز خاک نسوز کیوترکوه.

<table>
<thead>
<tr>
<th>نمونه‌ شماره</th>
<th>PH</th>
<th>CEC meq/100g</th>
<th>EC μs/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>۴,۸۸</td>
<td>۰,۹۸</td>
<td>۶۸۳۵</td>
</tr>
<tr>
<td>K2</td>
<td>۳,۴۲</td>
<td>۰,۹۷</td>
<td>۶۸۴۳</td>
</tr>
<tr>
<td>K3</td>
<td>۷,۴۶</td>
<td>۰,۷۰</td>
<td>۶۷۳۵</td>
</tr>
<tr>
<td>K4</td>
<td>۵,۱</td>
<td>۰,۱۲</td>
<td>-</td>
</tr>
<tr>
<td>K1</td>
<td>۳,۸</td>
<td>۰,۱۴</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۲ نمودار های کانساز خاک نسوز کیوترکوه.

<table>
<thead>
<tr>
<th>نمونه‌ شماره</th>
<th>PH</th>
<th>CEC meq/100g</th>
<th>EC μs/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>۴,۸۸</td>
<td>۰,۹۸</td>
<td>۶۸۳۵</td>
</tr>
<tr>
<td>K2</td>
<td>۳,۴۲</td>
<td>۰,۹۷</td>
<td>۶۸۴۳</td>
</tr>
<tr>
<td>K3</td>
<td>۷,۴۶</td>
<td>۰,۷۰</td>
<td>۶۷۳۵</td>
</tr>
<tr>
<td>K4</td>
<td>۵,۱</td>
<td>۰,۱۲</td>
<td>-</td>
</tr>
<tr>
<td>K1</td>
<td>۳,۸</td>
<td>۰,۱۴</td>
<td>-</td>
</tr>
<tr>
<td>عنصر</td>
<td>درصد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث و بررسی
الف) کانی شناسی
بر مبنای انباشتگی کاتبایی، زونهای مختلف دگرسانی را معرفی کرد که در شکل 4 Velde نشان داده شده است. در این شکل هر کانی مرتبط با کانسارهای رس در گستره مشخصی وجود دارد. محور x در این شکل گستره دماهای پایداری هر کانی را نشان می‌دهد. با توجه به ترکیب کانی شناسی در جدول 1، دگرسانی از نوع اسیدی بوده و دما تکشی بین 210 تا 280 درجه سانتیگراد داشته و در گستره زون بیروفیلیت قرار دارد [3].
شکل 4 اشباع غنی یکی از کانال‌های کیوترکوه در زون پروفیلیت از دگرشان نوع اسیدی [۳]

مربوط به نمونه‌های کانال‌های کیوترکوه در گستره ۱۸۵ تا ۱۰۱۰ meq/۱۰۰۰ g CEC محاسبه شده که نتایج حاصل در جدول نشان داده شده است. نمونه بطور تقریبی دیپت خالص K3 نشان داده شده است. نمونه ۳/۱۲ meq/۱۰۰۰ g CEC است که با راه اندازی می‌توان ۳ تا ۵ پیشنهاد کرد. طریقی برای تبدیل کانال‌های گیاهی در مرجع [۴] ارائه شده است که می‌تواند از:

<table>
<thead>
<tr>
<th>کانالیت</th>
<th>هالوژنیت</th>
<th>اپیت</th>
<th>کلریت</th>
<th>آلوفان</th>
<th>ورمیکولیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵ تا ۱۰۰</td>
<td>۱۵۰ تا ۱۰۰۰</td>
<td>۵۰ تا ۲۵۰</td>
<td>۲۰ تا ۱۰۰</td>
<td>۱۰ تا ۵۰</td>
<td>۱۰ تا ۵۰</td>
</tr>
</tbody>
</table>

با توجه به جدول نمونه‌های این کانال در گستره نسبتاً پایینی قرار دارند که علت آن نبود کانال‌های تاثیر گذار بر افزایش CEC (جز مقدار گمی اپیت) نظیر مونت مورپولیت، ورمیکولیت و غیره است [۴].

شکل ۵ نمودار PH در نمونه‌های کانال نشان می‌دهد کانال‌های قابل حل، نظیر آلونیت و زیبس، در کانال به وفور یافته می‌شوند. لذا در برخی از کاربردهای صنعتی مواد معدنی این کانال باید به صورت وصول شیمیایی شوند (شکل ۵).
تحرک عناصر، تغییرات شیمیایی سنگ را پس از تشکیل توصیف می‌کند که معمولاً ناشی از واکنش با شاره است. تحرک عناصر اصلی به‌وسیله سه حالت اصلی کنترل می‌شود: پایداری و ترکیب کانالها در سنگ‌های دگرسان نشده، پایداری و ترکیب کانالها در محصول دگرسانی و ترکیب، دما و حجم فاز سیال [۵] برای تعیین خاستگاه، تهران و چگونگی دگرسانی کانسار، عناصر کمیاب و نادر مورد بررسی قرار می‌گیرند [۶].

برای تشخیص سنگ مادر کانسارهای کاتولن، به‌عنوان سنگ مادر کانسار معرفی می‌شوند (شکل ۳). برای بررسی چگونگی تحرک عناصر اصلی و کمیاب، نمونه‌های کانسار با سنگ‌های اندوزی منطقه به‌نوعی‌سازی و سپس نمونه‌برداری می‌شود.

تحرک عناصر ترسیم شده (شکل ۸).
پس از آزادشدن از سنگ ماده، در تشکیل کانی ایلیت و آلونیت مصرف شده و از محیط K خارج نشده است. ترکیب کانی شناسی این کانسیار و وجود کانی ایلیت و آلونیت در بعضی نمونه‌ها (در جدول 1) این تفسیر را تأیید می‌کند. الهامات تحرک عناصر کمیاب در K، Th، Nb، Zr، Y، Sr، Rb، As، K نسبت به سنگ میزانی غنی‌شدگی نشان می‌دهند. غنی‌شدگی V با غنی‌شدگی K همراه است (شکل 8-الف) که تشکیل کانی ایلیت و آلونیت و جایگزینی Rb به جای K در ساختار این کانی‌ها دلیل اصلی این غنی‌شدگی است. غنی‌شدگی عنصر سنگین همجون Th، V، Nb، Zr مربوط به وجود احتمالی کانی‌های سنگین نظیر زبرکن است که در مقابل هوازدگی پابنداند. علاوه براین 
V و Nb در خلال هوازدگی تحرک کمتری دارند [8].

شکل 6: موقعیت نمونه‌های کیوتروکوه در نمودار دوئی Al₂O₃-TiO₂

نیز غنی‌شدگی نشان می‌دهد. As در خلال دگرسانی در نمونه‌های غنی از اکسید آهن As متمرکز می‌شود و بیان کننده شرایط اکسایش این که بر هوازدگی حاکم بوده است [9].
توجه به نتیجه شدگی عناصری مانند Mn, Cu, Zn و همچنین Co, Cu, Zn که تنها در شرایط دمای بالا متحرک می‌شوند و نیز وجود کانی پتروفیلیت و دیگر که در دماهای بالا تشکیل می‌شوند، بنظر مرسد شرایط دگرگسند کننده، شاره با دما بالا است که احتمالاً منشأ آذرین (گرانیته‌های شمال کانسار) داشته و با از بخش‌های عمیق ریشه گرفته است [2].

![Diagram](image-url)

شکل 7: رده‌بندی سه‌گه‌ای انتشافی میزان کانسار کیتئروکو بر مبنای نمودار Zr/TiO2 و SiO2.

Winchester, 1977

الف) عناصر کمیاب

ب) عناصر اصلی

![Diagram](image-url)

شکل 8: الگوهای عناصر (الف) اصلی و (ب) عناصر کمیاب در کانسار خاک تسوی کیتئروکو گناباد، نرمال شده با سنج مادر (انزیم‌های منطقه‌ای).
مهمترین عنصرکمیاب بوده و کاربردهای فراوانی REE
در سنجش‌سازی آذرین، نهشته و درگویی دانست. برای بررسی چگونگی عنصر نادر‌کمیاب در
کالسار کیوتروکو، نتایج به‌همراه آمده از تجزیه NAA (فعالسازی نوترتونی) نسبت به کنترل
بهنجار شدن. اگرچه آمده در شکل (8) آورده شده است. نمونه 3 مربوط به
اهداف سطحی و نمونه K2 مربوط به پایین‌ترین طبقه کانسار است. نسبت K2
در نمونه K1 بهترین ۷۰۰۶ و ۷۱۰۰۰ (جدول ۲) است و این نسبت در نمونه K2
برابر ۱۱۵۷ است. بنابراین HREE در نمونه غنی شده گرایش و فرآیندهای کالسار
تمک یافته‌اند. در مورد این مورد
م aby جوی شسته شده و به بخش‌های عمیق‌تر منتقل شده‌اند [5] و دیگر اینکه شاره‌های
در نمونه با ترکیب کالسیایی در کالسار کیوتروکو، مشاهده می‌شود که این کالسی از نظر دمای ترکیب

1-کالسی‌های دیکیت، پیروفیلیت، و ایلیت که در گستره ۵۰۰–۲۰۰۰۰ تشکیل می‌شود.
2-کالسی‌های زبس و آلودن که در گستره ۵۰۰–۲۰۰۰۰ تشکیل می‌شود.

تنیجه
۱- شاره با دمای بالا با لایه‌ای خاص‌گاهم با شکل ماگمایی، موجب داشتن سنگ‌های مادر و در نتیجه
تشکیل کالسی‌های ایلیت، دیکیت و پیروفیلیت شده است.
۲- شاره ناحیه که بیش‌تر خاص‌گاهم جوی داشته و بر اساس تشکیل توده معدنی در درون آن
گردد در شکل (9) و کالسی‌های زبس و آلودن را نهشته کرد است.
با توجه به عملکرد نهایی شاره ناحیه به منظور می‌رسد که توزیع عنصر نادر‌کمیاب به حکمت این
شاره مربوط می‌شود. بنابراین فرض اول در مورد غنی‌شدنگی HREE
با ابعاد صحیح‌تر HREE است.
نتیجه گیری
الف) کانی شناسی
1- ترکیب کانی شناسی کانسار گیوبتروکوه از کاتولیت، پیروفیلیت، کوارتز، دیکیت، زیپس، اپیت و آنیتیت تشکیل شده است.
2- ظرفیت تبادل کاتیونی رسهای کانسار در بازه ۱/۸۵ تا ۱/۱۰۰ g/۱۰۰ meq برای دلیل این گستره وسیع، تنواع کانی شناسی کانسار است.
3- ظرفیت تبادل کاتیونی کانی دیکیت برای است با ۲ تا ۳ meq/۱۰۰ g است. ظرفیت تبادل کاتیونی، دمای تشکیل کانسار بین ۲۱۰ تا ۲۸۰ درجه سانتی‌گراد است. زون دگرسانی کانسار رون پیروفیلیت است.
4- با توجه به ترکیب کانی شناسی، قدرتی نداشته باشد که برای ساخت بدن کانسار و جایگاه‌های زیبای آنیتیت، استفاده از این ماده ممکن است.
5- وجود کانی‌های زیپس و آنیتیت، استفاده از این ماده ممکن ساختمان ساختمان است.
ب) زئوپتیمیا
1- میزان SiO۲ در کانسار مذکور به ترتیب با میانگین ۴۷٪ درصد است.
2- با توجه به نمودار اکوس، به اطلاعات زمین‌شناسی از منطقه، سنگ‌های پایین کانسار کیوبتروکوه، اندوزش است.
3- در کانسار که تغییر عناصر اصلی نشان دهنده گیوه‌گلی عناصر K, P, Al, Ti, Si در خلاء و
4- در کانسار تغییر عناصر کم‌پای نشان میدهد که عناصر Th, Ba, Nb, Zr, Y, Sr, Rb, As, Co و Ni, Cu, Zn نشان گذاری می‌کنند.
5- در کانسار نادر که نشست LREE/HREE نشان از غنی‌شدن LREE/HREE دارد، که به نظر می‌رسد این نسبت به سمت غنی‌شدن کاهش می‌یابد.

قدرهای و تشکر
از دانشگاه شیراز که امکانات این پژوهش را فراهم آورده است سپرده‌می‌کنیم و تشکر می‌گوییم.
مراجع:

[2] درويش زاده علي، زمین شناسی ایران، نشر دانش امروز (1370).


[5] رولینسون ه، کاربرد داده‌های زنده‌سیمایی: ارزیابی، نمایش، تفسیر، ترجمه غیرپزشکی، زاده ثمرین، چاب و انتشارات دانشگاه تبریز (1393).


