Study on the structure of $\text{HoBa}_2\text{Cu}_3\text{O}_{7-\delta}$ ceramic superconductor

M. Zargar Shoushtari, L. Borvayeh and M. Farbod
Department of physics, Shahid Chamran University
M.Zargar@hotmail.com

(Received: 31/12/2002, received in revised form: 23/11/2003)

Abstract
The structural properties of $\text{HoBa}_2\text{Cu}_3\text{O}_{7-\delta}$ high Tc superconductor by XRD, SEM and EDX, resistivity, critical electrical current density and oxygen content measurement have been studied. The sample of $\text{HoBa}_2\text{Cu}_3\text{O}_{7-\delta}$ is prepared by solid state reaction, with two different thermal conditions. The XRD results have shown the formation of pure phase of $\text{HoBa}_2\text{Cu}_3\text{O}_{7-\delta}$. The oxygen content measurement for two samples by iodometric titration gives 6.76±0.9 and 7.0±0.09. The measurement of critical current density measurement for two samples has shown that between I_c and I_{co} the potential versus current has exponential behavior ($V = aI^\beta$). Also measuring I_c near transition temperature gives lower critical current density than measuring it far from the transition temperature. The critical current density of the sample with lower oxygen content is lower than in other samples. The SEM results showed that by increasing the oxygen content and slow cooling, the grains growth of sample increase.
بررسی و مقایسه ساختار ابرسانای سرامیکی با دو شیوه یاخت\n\nمرتضی زرگر شوشتی و لیلا بروایه و منصور فرید

دانشگاه شهید چمران اهواز- دانشکده علوم- گروه فیزیک

(دریافت مقاله 10/10/1381، دریافت نسخه نهایی 1387/9/2)

چکیده

در این مقاله نتایج بررسی‌های انجام شده روی ساختار بلوری به وسیله SEM، XRD، مقاومت ویژه، جریان بحرانی، ضریب اکسیژن دو نمونه از ابرسانای سرامیکی HoBa2Cu4O7-5\n\nکه به دو شیوه گرمادهی متفاوت تهیه شده‌اند، ارائه شده‌اند. اندوزه گیری ضریب اکسیژن نشان می‌دهد که یکی از نمونه‌ها در حالت آلیش فرو بهینه با ضریب اکسیژن 0.67 ± 0.09 و دیگری در حالت آلیش فرا بهینه با ضریب اکسیژن 0.68 ± 0.09 است. عکس‌های SEM نشان می‌دهند که با افزایش دمای کلیدسازی و نیز افزایش ضریب اکسیژن، دانه‌ها رشد کرده و اندوزه آنها نسبتاً از 8 برای می‌بود. نتایج بلو رگن‌سازی XRD نشان می‌دهند که دمای پایین و زمان طولانی مرحله تکلبی، موجب حصول فاز خالص تکریپ Jc می‌شود. همچنین بررسی قله‌های حاصل از نتایج XRD حاکی از این است که اثر افزایش ضریب اکسیژن موجب افزایش خاصیت راستگویی می‌شود. اندوزه گیری جریانی NMR نشان می‌دهد که در محدوده V=\alpha T0 ضریبی می‌کند. تابع منحنی R-T نمونه در حالت آلیش فرو بهینه در ناحیه گداز، رفتاری غیر قابل داده به طور کلی نتایج حاصل از این بررسی‌ها نشان می‌دهد که تغییر در شیوه ساخت و افزایش دمای مرحله کلیدسازی سایه‌های با شار اکسیژن منجر به تغییر خواص مختلف ابرسانایی HoBa2Cu4O7-5 می‌شود.
واژه‌های کلیدی: ابرسانای سرامیکی \(HoBa_2Cu_3O_{7-\delta} \) XRD, SEM.
نمونه‌های تک فاز Ho–123 با استفاده از روش استاندارد واکنش حالت جامد با دو شیوه، گرمادهی متفاوت ساخته شدند. برای تعیین مقادیر حاصل از عنصرسنگی مواد اولیه، Ho₂O₅ با خلصه 99/99 درصد را به طور جدایی سپاریده، سپس با دقت جرمی مخلوط و دوباره سایه شدند. شیوه اولیه شامل سه مرحله تکلیس است که در هر مرحله پودر مواد اولیه در مدت 10 ساعت در دمای 900 °C قرار می‌گیرد و پس از هر مرحله ماده به دست آمده به خوبی سایه‌دهید و پودر بسیار نرمی حاصل شد. پس از مرحله سوم تکلیس، از پودر حاصل فرصت‌هایی به قطر 20 μm و ضخامت تقریبی 2 mm با فشاری در حدود 250 Kg/cm² تهیه و به مدت 5 ساعت در دمای 900 °C قرار گرفتند. اکسیژن دهی در دمای 550 °C به مدت 24 ساعت انجام شد. برای اکسیژن دهی فرصت‌ها در استوانه شیشه‌ای از جنس پیرکس که دهانه آن به روزنه‌خوری گاز وصل شده بود و انتهای بارپیکی داشت قرار دادیم (نمونه اول). شیوه دوم گرمادهی نیز شامل سه مرحله تکلیس 12 ساعتی در دمای 900 °C انجام گرفت. پس از مرحله سوم تکلیس، پودر را به صورت قرص درآورد و کلکه‌سازی همراه با شار اکسیژن را در دمای 960 °C به مدت 24 ساعت انجام دادیم. شار اکسیژن را به دمای 945 °C گاز و پس از 24 ساعت دما را به آرامی کاهش دادیم و سپس نمونه‌ها در دمای 750 °C به مدت 3 ساعت نگه داشتند و آنگاه نمونه‌ها را از کوره بیرون اورده و در محیط غلیظ اکسیژن سرد کردیم (نمونه دوم).
2.2 اندازه‌گیری‌ها
نمودنی اول در اثر مایع در دمای ۷۷K اثر مایسنتر را نشان نداد. اما نمونه دوم اثر مایسنتر را به خوبی در این دما نشان داد. برای تعیین کیفیت نمونه‌های ساخته شده آزمایش‌های XRD، EDX، SEM و اندوزه‌گیری ضریب اکسیژن به روش تیوتراپسیون بدست‌آیندی انجام شدند. دمای برخی مقاومت ویژه و جگالی جریان بحران نیز تعیین شدند.
برای بررسی ساکت فلایسری استفاده شد. همچنین برای اندازه‌گیری دمای بحرانی، روش جهانی مختلط با جریان مستقیم مورد استفاده قرار گرفت. جریان ۲۰۰mA مورد مستقیم مورد استفاده قرار گرفت. برای این‌که یک چشم جریان مستقیم به‌دست آوردی به تولید شده بود ولتاژ به وسیله دستگاه سرمایه شرکت SIEMENS دقت ۱۵۰۰۰۰ اندوزه‌گیری شد. برای داشتن اتصال‌های خوب با مقاومت‌های در محل اتصال میله‌ها به نمونه از این‌دید و جسم نقره استفاده شد. نقطه اتصال دارای مقاومت کم‌تری باشد. دما با استفاده از ترمومکسیپت نوع T ساخته شد. با استفاده از جدول استاندارد صورت گرفت. برای اندازه‌گیری جریان چگالی بحرانی (IOL) از روش چهار‌میله و جریان مستقیم استفاده شد.
برای اندازه‌گیری ضریب اکسیژن نیز شیوته تیوتراپسیون بدست‌آیندی که شامل دو مرحله است مورد استفاده قرار گرفت. در مرحله اول تیوتراپسیون بدست‌آیندی با اضافه کردن HCl به نمونه، کل بیونه‌های مس موجود در نمونه را به Cu۲⁺ تبدیل کرده و سپس به‌دست‌آید در آزاد تولید شده در اتم (۱) اضافه کردن KI به Cu۲⁺ را با نیو سولفات سدیم ۱۰۰ مولار تیتر کرده (روابط) (۲)
\[
\text{(Cu-O)}^{n⁺} + (2-P)\text{H}^+ \rightarrow \text{Cu}^{2⁺} + (2-P)/2\text{H}_2\text{O} + \text{P}/4\text{O}_2
\]
\[
\text{Cu}⁺ + 2\text{I}^⁻ \rightarrow \text{Cu}^{2⁺} + \text{I}₂
\]
\[
\text{I}₂ + 2\text{S}_2\text{O}_₃^{2⁻} \rightarrow 2\text{I}^⁻ + 2\text{S}_4\text{O}_₆^{2⁻}
\]
در مرحله دوم برای جدا کردن آثار ناشی از اضافه کردن HCl و سپس KI نخست Cu⁺ و Cu²⁺ اضافه کردن. با توجه به واکنش (۴) یافته مس موجود در نمونه به استنیلی مقداری بدن خنثی می‌باشد. برای اکسیژن (۱) تولید می‌کند. همانند مرحله پیشین به‌دست آزاد تولید شده از
\[
\text{(Cu-O)}^{n⁺} + (2-P)/2\text{I}^⁻ \rightarrow \text{Cu}^{2⁺} + (1+P)/2\text{I}₂
\]
با تیوتراپسیون سدیم تیتر شدند. با استفاده از معادلات تیوتراپسیون مصرف شده در دو مرحله و جرم نمونه می‌توان ضریب اکسیژن را محاسبه کرد.
بحث و برداشت

الگوی براش پرتو X نهیش شده پس از مرحله مختلف تکلیس، کلوخه سازی، و اکسیژن دهی BaCO₃، CuO، و Cu₂O برای نشان می‌دهد که عمداً تأثیرات هر نتیجه مرحله اول تکلیس قافل 211. و با TBP از آنها بهبود و افزایش شده. تمرکز کریستال‌های تکلیس با تغییرات در فاز 123 تبدیل می‌شود. شکل (1) الگو براش مرحله مختلف با ترتیب در جدول 44، CuO، BaCO₃ و Cu₂O به ترتیب در زوالی 3، 11 و 43 قرار دارند که در مراحل بعدی یکی از این رفتگان الگوی براش پس از مرحله اکسیژن دهی و XRDP نمایه در شکل (2) نشان می‌دهد که ارتقاء قله‌ها در نمونه دوم افزایش یافته‌اند. نتایج نشان می‌دهد که ساختار هر دو نمونه راستگوشه ساده است و تنها تغییرات در اندازه پراسترهای شبکه و حجم باعث به وجود آمدن است. جدول (1) خلاصه نتایج به دست آمده از الگوی براش را نمایش می‌دهد.
سکه (1) اگر پراش مراحل مختلف بختیفه) نمونه اول (ب) نمونه دوم

جدول (1) مشخصات بااختن هایی به دست آمده از تابعیت‌های پراش دو نمونه

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>V (Å³)</th>
<th>(b-a)/(b+a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه اول</td>
<td>3.761</td>
<td>3.933</td>
<td>11.688</td>
<td>172.889</td>
<td>0.0223</td>
</tr>
<tr>
<td>نمونه دوم</td>
<td>3.822</td>
<td>3.909</td>
<td>11.702</td>
<td>175.287</td>
<td>0.0099</td>
</tr>
<tr>
<td>نمونه استاندارد</td>
<td>3.814</td>
<td>3.882</td>
<td>11.632</td>
<td>172.193</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

یکی از پارامترهای بسیار مهم ابرسانه‌ها خصوصاً ضرب اکسیژن است. تغییرات ضرب اکسیژن بر کلیه خواص ابرسانه‌ای تأثیر می‌گذارد و آنها را تغییر می‌دهد. اندازه‌گیری ضرب اکسیژن به روش تیتراسیون یادست تصویری ضرب اکسیژن را برای نمونه اول ۷/۶۶ ± ۰/۰۷ به دست داده است.

یکی از روش‌های شناخت بهتر ترکیبات ابرسانه، ترسیکی متقاوم نمونه های ابرسانه است. Rb₃CuO₇/₈. شکل (3) منحنی ρ–T دو نمونه ۱/۸۴ Ho-12۲ در نشان می‌دهد. چنان‌که گفته شد نمونه اول اثر

شکل (3) منحنی ρ–T دو نمونه ۱/۸۴ Ho-12۲ در نشان می‌دهد. چنان‌که گفته شد نمونه اول اثر

شکل (3) منحنی ρ–T دو نمونه ۱/۸۴ Ho-12۲ در نشان می‌دهد. چنان‌که گفته شد نمونه اول اثر

شکل (3) منحنی ρ–T دو نمونه ۱/۸۴ Ho-12۲ در نشان می‌دهد. چنان‌که گفته شد نمونه اول اثر
انجام شده در جدول (۲) داده شده است. در آن دما $T_{c(on)}$ شامل است که در آن دما گذاشته شده است که $T_{c(on)}$ در دماهای بالا کمتر از مقاومت تجمعی مصرف می‌شود.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
$T(K)$ & 0.002 & 0.004 & 0.006 & 0.008 & 0.010 \\
\hline
R_ℓ & 0.002 & 0.008 & 0.014 & 0.018 & 0.025 \\
\hline
\end{tabular}
\caption{مقاومت تجمعی سیال در دمای مختلف}
\end{table}
شکل (2) نمودار مقاومت بر حسب دما (ف) در دمای دوم. نمودن اول (ب) نمودن دوم.

جدول (2) نتایج به دست آمده از اندکه‌گری $\rho(T)$ بر حسب کلوین.

<table>
<thead>
<tr>
<th>T_c (off)</th>
<th>T_c (on)</th>
<th>ΔT_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودن اول</td>
<td>20.65</td>
<td>9.800</td>
</tr>
<tr>
<td>نمودن دوم</td>
<td>91.69</td>
<td>95.08</td>
</tr>
</tbody>
</table>

یکی دیگر از پارامترهای مهم ابرسانایی جریان بحرانی است. دما، ضریب اکسیژن، سطح مقطع نمودن و میدان مغناطیسی خارجی اعمال شده بر نمودن از عوامل مؤثر بر جریان بحرانی به شمار می‌رودند.

اندازه‌گیری جریان بحرانی در دمای ثابت و در غیاب میدان مغناطیسی خارجی انجام می‌شود. شکل (4) نشان می‌دهد: با توجه به V، I نمودن دوم را در دمای K نشان می‌دهد. با توجه به $V=\alpha I^\beta$ β بر اندکه‌گری جریان در K, J_0 را اندکه‌گری کرد. با توجه به $V=I$، I در دمای دوم را نشان می‌دهد. خلاصه اندکه‌گری جریان بحرانی در جدول (3) داده شده است.

جدول (3) نتایج به دست آمده از اندکه‌گری $V-I$.

<table>
<thead>
<tr>
<th>J_{00} (A/cm²)</th>
<th>J_0 (A/cm²)</th>
<th>A (cm²)</th>
<th>β</th>
<th>ρ (gr/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمودن اول</td>
<td>-</td>
<td>1.01 ± 0.06</td>
<td>1.59</td>
<td>3.75</td>
</tr>
</tbody>
</table>

شکل (3) نمودار جریان بر حسب دما در دمای دوم.
کیفیت نمونه‌ها به چگونگی دانه‌بان‌های اندازه‌داده‌ها میزان جفت شده‌گی و اتصال دانه‌ها تخلخل، وجود ریزترکها، و همگنی وابسته است. همچنین عوامل تأثیر می‌گذارند. برای تشخیص ریز ساختار، وجود فازهای ناخالصی و نسبت عضیدنی می‌توان از SEM بهره‌گیرت. عکس‌های EDX و SEM میکروسکوپ الکترونی روبشی SEM به‌صورت می‌دهند که با ارزیابی دانه‌های کلول‌هایی و همراهی آن با شارش اکسیژن در نمونه دو موجب رشد بیشتر دانه‌ها، اتصال بهتر آنها، و نیز افزایش ایمنی به‌سیله آنها می‌شود. همین عامل نیز موجب ایجاد جفت شده‌گانه، اتصال و بدون آن (الف)
شکل (۵) عکس های SEM (الف) نمونه اول ۱ و (ب) نمونه دوم ۲

آنتیز ترکیب شیمیایی حاصل از آزمایش EDX دانه‌ها، وجود ترکیب از غلات
Si و Cu را نشان می‌دهد. آنتیز نمونه اول نشانی از مقداری ناخالصی
در یک بازین نشان می‌دهد. آنتیز نمونه دوم وجود فاز در نسبت
Ho-۱۲۳ از آنتیز EDX نمونه دوم.

به طور خلاصه می‌توان به این نتیجه رسید که افزایش دمای کلوخسازی و کاهش آنگ
سرد کردن نمونه‌ها محیط جذب بیشتر اکسیژن به وسیله نمونه شده است. همین عامل موجب
رشد دانه‌ها و افزایش ضریب اکسیژن شده و در نتیجه دمای گذار و چگالی چربی بحرانی
افزایش یافته ای.

\(\text{Counts (x10^4)}\)

\(\text{Range (keV)}\)

\(\text{HBCO-2}\)
شکل (۶) نمودار EDX نمونه دوم

قدارانی
از آقای دکتر محمد اخوان به خاطر همکاری در انداره گیری R-T نمونه اول تشکر و قدردانی می‌شود.

منابع