Geochemistry and Mineralogy of Qopi Bauxitized Horizon in west of Miandoab, West-Azarbaidjan, Iran

A.A. Calagari¹, ², A. Abedini¹, M. Moazzen¹, ²

¹- Department of Geology, Natural Science Faculty, Tabriz Univ., Tabriz 51664, Iran. E-mail: calagari@tabrizu.ac.ir
²- Research Institute for Fundamental Sciences (RIFS), Tabriz 51664, Iran.

Abstract: The Qopi bauxitic horizon is located west of Miandoab, in West-Azarbaidjan province, NW of Iran. It lies along the boundary of Ruteh (middle-upper Permian) and Elika (lower Triassic) Formations. This horizon includes four distinct lithologic facies such as (1) bauxitic iron ore, (2) ferruginous bauxite, (3) Fe-rich bauxite, and (4) Fe-rich clayey bauxite. Microscopic examinations showed various textures including pelitomorphic, fluidal, colloform, pseudo-breccia, and pseudo-porphry within the horizon, suggesting an authigenic origin. Based upon field evidence and geochemical data, the fine-grained diabase in the area may be the probable parent rock from which the bauxite layers developed. The results of calculations of mass changes showed that elements such as Na, K, Mg, P, Si, and Ca were depleted, and Fe, Al, and Ti were enriched during bauxitization processes. According to field observations, microscopic examinations, and geochemical investigations, Eh variations (from reducing to oxidizing) and suitable pH (6-8) of descending meteoric waters were the prime factors controlling the formation of Qopi bauxite layers. In addition, the enrichment pattern of immobile elements and field evidence indicate that the Qopi bauxitic horizon may be classified as Mediterranean karst bauxite.

Keywords: Bauxite geochemistry, Pelitomorphic texture, Bauxitization process, Mediterranean karst bauxite, Immobile elements.
زمین شیمی و کانی شناسی افق بوسکسیتی قیبی (غرب میاندوآب-
آذربایجان غربی)

علي اصغر کلاگری، علي عابدی، محسن مؤرخی

1- گروه زمین شناسی دانشگاه تبریز، کد پستی 51664، تبریز.
2- مؤسسه تحقیقاتی علوم پایه، تبریز، کد پستی 51664، تبریز.

(دریافت مقاله ۱۳۸۲/۳/۲۶، دریافت نسخه نهایی ۱۳۸۲/۷/۲۶)
واژه‌های کلیدی: زمین‌سنجی بومسی، برف پلیتوموروفیک، فرایند بومسی‌زایی، بومسیت کارسینی

مدیرانهای، عناصر بی‌تحرک.

مقدمه

نهشته بومسیتی قیه میاندوب بخشی از ابالت کوهک بومسیتی جنوب استان آذربایجان غربی است. افق بومسیتی قیه در 22 کیلومتری شهرستان میاندوب و 100 کیلومتری جنوب شرق شهرستان ارومیه در محدوده‌ای با طول جغرافیایی ۳۵°۱۷ تا ۳۵°۱۹ و عرض جغرافیایی ۴۵°۵۴ و ۴۵°۵۶ شمالی قرار دارد. حدود ۷۵ نمونه سنگی برای بررسی افق بومسیتی و سنگهای بستر و بوشان، نیز سنگهایی که احتمالاً از نظر زنتیکی مرتبط با این نهشته هستند، برداشت شدند. جهت بررسی‌های کانی‌شناسی، سنگ‌شناسی، و زمین‌سنجی، تعداد 46 مقطع نازک و منظمی به همراه 24 نمونه آلاتش شیمیایی دستگاهی (فمتوارسالی برتو (XRF و شیمیایی) تر مورد استفاده قرار گرفتند. با توجه به رزپلوپرودن کانی‌ها سازنده بومسیت برای شناسایی کانی‌ها، برای هشت نمونه از روش پرسی برتو (XRD) نیز استفاده گردید.

مطالعات صحرایی

بارزترین واحدهای سنگی موجود در منطقه مورد مطالعه به ترتیب از قبیل به جدید، از سازندهای کربنات- استیل میلی‌سنگی درود، کربناتی رتوه، شیلی-کربناتی- آنتفسی، کرنسی و نهشته‌های دوران جهار تشکیل شده‌اند. در مزرعه‌ای دیگری درود و میلا به نواز آدنین ساب‌آنتفسی نکته‌ترکیب دیازی با ضخامت تقریبی ۳۰ متر بالا تشکیل است. افق بومسیتی قیه به شکل لایه‌ای از مزرعه سازنده‌ها و یکی به صورت هم شیب با NW-SE شیب (شکل 1 [1]).

در محدوده مورد مطالعه، با توجه به رنگ و مشخصات ظاهری، بنابراین محبوبی بومسیت (CB) (01) یا برای ترتیب از پان‌ال، با لیر براب (1) کلوئیدی (CB)، (02) قمرز (GCB)، (03) قمرز و مرز (PB) (لیرپروتوویک (PB)، (04) قمرز فهورها (BRB) و (05) کرم مایل به سبز کامل‌شکل مشخص اغلب لایه‌های بومسیت موجود (ژس بومسیت کلوئیدی با بومسیت سرخ) نشان می‌دهد که تبدیل این افق‌ها به هم علاوه بر تغییر شرایط زمین‌سنجی و کانی‌شناسی، ناشی از تغییر وضعیت رسوبی‌گذاری است. وجود رنگ‌های سرخ، سرخ فهورهای کرم و کرم مایل به سبز در لایه‌های بومسیتی، دلالت بر وجود شرایط منفی‌کننده و احیاء در حین تشکیل این نهشته
داد. عدم وجود الگوهای جدید رنگی در سطح لاشهای بورسیتی نشان می‌دهد که احتمال و آسیبی همانندی از شدت بالایی برخورد بوده و شرایط زمین شیمیایی یکسانی در تشکیل خود لاشهای ضمن فرآیندهای بورسیت‌زاپی وجود داشته است [1].

شکل ۱: نمای زمین‌شناسی منطقه مورد مطالعه [1].

مطالعات سنگ‌شناسی و کانی‌شناسی

به‌دلیل ریزیودن کانی‌های سازنده بورسیت، مطالعات سنگ‌شناسی نشان می‌دهد که برای شناسایی کانی‌های تشکیل‌دهنده از روش XRD، نتایج غیر منتظره را در افق‌های بورسیتی مشخص کرده است. مطالعات میکروسکوپی نشان می‌دهد که لاشهای بورسیتی ناشی از پت‌هاپ و گرفت نشان می‌دهد همبستگی بین کانی‌های دیسپرسر و رنگ این لاشه‌ها مشخص است. در روند غنی‌شدن با افزایش نسبی آن در حاصل یافته‌های از کانی‌های الومینیوم و آهن در بافت‌های کلوفریمی و
برشي دروغی به بوکسیت‌های کلوتیدی، قرمز و قرمز فیروزه‌ای و بافت‌های پلیمرورفیک، جریانی و پورپری دروغی به بوکسیت‌های کرم مایل به سبز و پلیمرورفیک مربوط می‌شوند. وجود بافت‌های کلوتیدی و پلیمرورفیک (افانتیک) در این لایه‌ها می‌تواند بین بوکسیت‌شن در گرده‌بستگی نسج مادر باشد. می‌تواند یکی از تشکیل‌کننده‌های تاریک شده بوکسیت قیبی به دلیل عدم وجود سرعت کافی در خروج سلیس حلق داشته باشد [2]. عدم تشکیل کنکروت‌سیت‌های پورپری و اپتی‌بدی در این لایه‌ها ممکن است از تأثیر سبزکشیدگی سنج مادر باشد. نشان‌دهنده آن کنترل تشکیل مقاطع میکروسکوپیک کانی هماینده است که ممکن است نشان‌دهنده همایش‌های آن باشد. این سطح خارجی آن به سیله‌کریمی با ترکیب سنگین بوشیده شده است. این شکاف‌ها احتمالاً در اثر تراکم زل حالت شده [3] و پوششیه‌های نابین است در طی فرآیند دیاژنیزی انتهایی و یا بهصورت ایپ تنزیک در اطراف داخته‌های هماینده بوجود آمده باشد که می‌تواند به نوبه خود دیلی بر برجای بودن نهشته باشد [5].

برای بررسی افهایی مختلف بوکسیت قیبی از نظر درجه تکامل کانایی، از روش گلیشنوسکوپی نورماتیپارادویسی [4] استفاده شد. اساساً چنین محاسباتی برای تعیین مقادیر فازهای کانایی، بر فرضیات و ساده‌سازی‌های اسکالر است. به‌دنبال نمودار نمونه‌هایی که فازهای کانایی آنها به شکل مشخص شده بود، با استفاده از روش XRF برای تعیین مقادیر اکسیدهای اصلی، فرم و XRD مواد فرار آلایندر شدند. سپس کانایی برای کاناهای سازند، به صورت که در ستون اول جدول ۱ نشان داده شده است، به‌عنوان حروف اختصاصی انتخاب شدند. در این جدول، ۵٪ مقادیر سبلس واکنشی است که در ترکیب با مقادیر آلومینیوم مورد نیاز (A%) و مقادیر مناسب مواد فرار (K%) کانالوئینت، پروپنولیوت، موسکویت، و کالکولوئینت ساخته می‌شود. با توجه به نوع کاتی‌ها در افهای بوکسیتی، باقی‌مانده آلومینیوم با مقادیر مناسب مواد فرار (K%) ترکیب شده و دیاسبور را تشکیل می‌دهد. بدین منظور با استفاده از جدول ۱ معادلات مربوط برای محاسبه تورم کانایی استخراج و مورد استفاده قرار گرفتند (پیوست ۱).

میزان سلبس ترکیبی (R. SiO۲) از طریق درصد کانی رسی در بوکسیت‌های کلوتیدی، سرخ، پلیمرورفیک، سرخ فیروزه‌ای و کرم مایل به سبز مقادیر کانالوئینت به ترتیب برای با ۸۴.۸، ۸۳.۴، ۸۲.۶، ۷۹.۹ و ۷۸.۸ درصد بودند. در نظر گرفتن مقادیر پایین شده به عنوان درصد کانالوئینت نمونه‌های بوکسیت قیبی، مقادیر ر. SiO۲ (٪) برای افهای کلوتیدی (۸۲٪)، سرخ (۸۲٪)، پلیمرورفیک (۷۳٪) و قرمز مایل به سبز (۳۷٪) و کرم تاریک با سبز (۳۲٪) به دست آمدند (جدول ۲).
جدول ۱ فرمول نرمی مقایسه‌ای %A، %H، %Q، %Fe و %Ti و کمیت‌ها از [۸] و حروف اختصاری کامپیوتر از [۷]

<table>
<thead>
<tr>
<th>Code</th>
<th>نام کانی</th>
<th>%A(\text{Al}_{2}O_3)</th>
<th>%H(\text{LOI})</th>
<th>%Q(\text{F. SiO}_2)</th>
<th>%Fe(\text{Fe}_2O_3)</th>
<th>%Ti(\text{TiO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLN</td>
<td>Kaolinite</td>
<td>۳۹.۵</td>
<td>۱۴.۰</td>
<td>۴۶.۵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DSP</td>
<td>Diaspore</td>
<td>۸۵.۰</td>
<td>۱۵.۰</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HEM</td>
<td>Hematite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱۰۰.۰</td>
<td>-</td>
</tr>
<tr>
<td>QTZ</td>
<td>Quartz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱۰۰.۰</td>
</tr>
<tr>
<td>RT</td>
<td>Rutile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ANT</td>
<td>Anatase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PRT</td>
<td>Pseudo-rutile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳۹.۹۹</td>
<td>۶۰.۰۱</td>
</tr>
<tr>
<td>PRL</td>
<td>Pyrophyllite</td>
<td>۲۸.۰۰</td>
<td>۵.۰۰</td>
<td>۶۵.۰</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MS</td>
<td>Muscovite</td>
<td>۳۸.۰۰</td>
<td>۴۰.۵۳</td>
<td>۴۳.۲۶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KPT</td>
<td>Kaliophyllite</td>
<td>۲۲.۳۳</td>
<td>-</td>
<td>۳۸.۰۰</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۲ درصد کانی‌های نمودارهای پوکست قبی بر اساس محاسبات نورمازی، انتخاب از [۳]

<table>
<thead>
<tr>
<th>Code</th>
<th>نام کانی</th>
<th>CB</th>
<th>RB</th>
<th>PB</th>
<th>BRB</th>
<th>GCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLN</td>
<td>Kaolinite</td>
<td>۸۴.۶</td>
<td>۴</td>
<td>۳</td>
<td>۵</td>
<td>۸۵</td>
</tr>
<tr>
<td>DSP</td>
<td>Diaspore</td>
<td>۱۷۷.۶</td>
<td>۳۴.۴۱</td>
<td>۳۹.۷۱</td>
<td>۲۵.۲۵</td>
<td>۳۶.۷۵</td>
</tr>
<tr>
<td>ANH</td>
<td>Anhydrite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳۱.۱</td>
<td>-</td>
</tr>
<tr>
<td>HEM</td>
<td>Hematite</td>
<td>۵۹.۶</td>
<td>۲۵.۱۳</td>
<td>۷.۷۳</td>
<td>۵.۱۷</td>
<td>۱۳.۷۹</td>
</tr>
<tr>
<td>QTZ</td>
<td>Quartz</td>
<td>۱۰.۹</td>
<td>۳۹.۲۵</td>
<td>۳۱.۷۹</td>
<td>۱۰.۲</td>
<td>۲۷.۰۵</td>
</tr>
<tr>
<td>RT</td>
<td>Rutile</td>
<td>۲.۴۴</td>
<td>۲.۷۷</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ANT</td>
<td>Anatase</td>
<td>-</td>
<td>-</td>
<td>۲.۷۵</td>
<td>-</td>
<td>۴.۷۵</td>
</tr>
<tr>
<td>PRT</td>
<td>Pseudo-rutile</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
وجود مقادیر مشابهات کانی‌های همان‌نامه، دیسبور و کوارتز در افق‌های مختلف پوکسیت قبی در
جدول ۲ نشان دهنده تأثیر شدید یون‌دهی‌های سورپرزن در تشکیل این افق‌های است. در بخش‌های نسبتاً
احیایی (PB, GCB) از این نشته، کانی همان‌نامه کمتری وجود دارد. در آن با پشتیبانی از (PB)
بخش‌های شدیداً اکسیدان مجاورت (BRB, CB) این مشابه با انحلال آهن (Fe۳+) در شرایط نسبتاً
احیا و رسوب SiO۲ از ایسید سیلیسیک در محلول قابل توضیح است. [۲] نهایتاً با استفاده از نمودار
تهیه کننده کانی‌های آهنی آر. الومینیوم و رس‌دار [۸] در شکل ۲ معلوم شد که نمونه‌های پوکسیت
قبی از نظر درجه تکامل کانی‌ای شامل چهار نوع رخساره سنگی مجزا از قبیل: (۱) کانسیگ آهن
پوکسیت، (۲) پوکسیت آهن‌دار، (۳) پوکسیت غی ناز از آهن و (۴) پوکسیت رس غی ناز از آهن هستند.

<table>
<thead>
<tr>
<th></th>
<th>PRL Pyrophyllite</th>
<th>MS Muscovite</th>
<th>KPT Kaliophyllite</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>279</td>
<td>530</td>
<td>430</td>
<td>988.0</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>9834</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>7959</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>9693</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>9478</td>
</tr>
</tbody>
</table>
شکل ۲ موقعیت افقهای بوكسیتی قبی در طبقه‌بندی سنگ‌شنایی والیتون (۸)

سنگ‌شنایی

برای تعیین سنگ‌شنایی این نهشته، از نمودارهای مختلف زمین شیمیایی استفاده شد. بکارگیری نمودار دو متغیره Ni, Cr نموداری هوشمند در شکل ۳ نشان می‌دهد که افق بوكسیتی مورد مطالعه از نظر بوكسیت کارستی بیهوده و محل تمرکز نمونه‌ها از نظر سنگ‌شنایی با ترکیب افقهای مختلف بوكسیتی قبی با بوكسیت‌های کارستی بازالت است. مقاپسه متغیره Zr, Cr, Ga, Zr, Ga، مدل‌سازی و کاراکتری ارکان‌سای (جدول ۲) و ترسیم آنها در نمودار سه متغیره [۶] به صورت شکل ۳ نشان می‌دهد که سنگ‌شنایی بایدی‌های بوكسیتی قبی در محدوده سنگ‌های آذربایجان (ماهیک) قرار می‌گیرد.
مقدار متوسط عنصر کمیاب در نمونه مورد نظر، مقدار متوسط عنصر کمیاب در نمونه مورد نظر و

\[R = \frac{1}{n} \sum_{i=1}^{n} k_i \]

که در آن،

\[R \] ضریب انبارش عنصر کمیاب،

\[N \] تعداد عنصر کمیاب مورد استفاده،

\[k_i \] مقدار عنصر کمیاب در نمونه مورد نظر و

\[i \] عنصر کمیاب معین است. معادله محاسبه شده

\[R \] در نمونه‌های پوکسیتی قبی با مقادیر مشابه در پوکسیتیای کارستی‌ مدیترانه‌ی و لاسیونی ارکانزاس قابل مقایسه‌اند (جدول 4). از آنجا که مقادیر محاسبه شده

به نهایی نمی‌تواند خصوصیات سنگ‌شناسی سنگ‌شناسی سنگ مادر پوکسیتیای کارستی را تعیین کند،

لذا باید آنها را نسبت به مقدار کروم (Cr) گزارش کرد (شکل 5). برای اساس، پوکسیتی‌ها کسله‌ی سرخ و پلینومورفیک در محدوده

مشترک اثر سنگهای مادر اولتراکین و ماکیک و پوکسیتی‌های سرخ فوهای و کروم ماهی به سبب در

محدوده اثر سنگهای مادر ماکیک قرار می‌گیرند از مقایسه میانگین مقدار \(\overline{R} \) پوکسیتی قبی با سایر

ذخایر پوکسیتی در نمونه و \(\overline{Zr} \) و \(\overline{Ga} \) در نمونه این شکل در نمونه و \(\overline{Cr} \) در نمونه در شکل 4 به همراه نمودار در نمونه در شکل 5 مشخص می‌شود که افتهای پوکسیتی قبی شبهات زیادی با کاساره‌ای پوکسیتی‌های مدیترانه‌ی

پوکسیتی قبی و Obrovac، و ذخایر Ariege جنوب شرق فرانسه دارد.
شکل ۲ موقعیت پوکسیت‌های کارستی و لاتریتی و سنگ مادرهای مختلف آنها بر اساس نسبت Cr/Ni.

[۹] دانشگاه تهران مشهور به پوکسیت، مادرهای سنگی با نسبت مختلف، انسان در نمایشگاه می‌دهند.

شکل ۴ محل نمونه‌های پوکسیت قبیل (مثلث‌های توخالی) و مقاپسه آن با پوکسیت‌های کارستی مدیرانهای و پوکسیت لاتریتی ارگانیک بر اساس مقاپسه‌ای Na, Cr, Zr و پوکسیت‌های اثر سنجشی مادرهای مافیک، حد واسط و اسمایت هستند. به ترتیب بانکر مناطق D, C, B, A به ترتیب مربوط به مقاپسه عناصر Ga, Cr, Zr در سنگ‌های مادرهای مافیک، حد واسط، مافیک و ازمافیک‌های باشند. اعداد ۱ تا ۱۴ مربوط به دخیاب پوکسیت‌های مختلف در دنیا هستند که در جدول ۳ آورده شده‌اند.

کلاغی، عابدینی و همکاران

172
جدول ۳: مقادیر Zr، Ga و Cr کناره‌های پوکسیت کارستی میدان‌هایی از کرانه‌های پوکسیت کارستی نیست و فقط برای مقایسه ارتفاع شده است، و نمونه‌های پوکسیت قبی [1].

<table>
<thead>
<tr>
<th>موقعیت</th>
<th>Zr, ppm</th>
<th>Ga, ppm</th>
<th>Cr, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Ariege (France)</td>
<td>367</td>
<td>42</td>
<td>530</td>
</tr>
<tr>
<td>2) SE France</td>
<td>389</td>
<td>61</td>
<td>485</td>
</tr>
<tr>
<td>3) Herzegovine (Yougoslavie)</td>
<td>380</td>
<td>40</td>
<td>740</td>
</tr>
<tr>
<td>4) Obrovac (Yougoslavie)</td>
<td>140</td>
<td>40</td>
<td>900</td>
</tr>
<tr>
<td>5) Bosnie</td>
<td>714</td>
<td>40</td>
<td>280</td>
</tr>
<tr>
<td>6) Kosova</td>
<td>285</td>
<td>20</td>
<td>350</td>
</tr>
<tr>
<td>7) Parnasse I (Jurassic) (Greece)</td>
<td>314</td>
<td>40</td>
<td>323</td>
</tr>
<tr>
<td>8) Parnasse II (Cretaceous) (Greece)</td>
<td>376</td>
<td>32</td>
<td>991</td>
</tr>
<tr>
<td>9) Mandra II (Greece)</td>
<td>590</td>
<td>30</td>
<td>2000</td>
</tr>
<tr>
<td>10) Tran (Bulgaria)</td>
<td>200</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>11) Padura Graului (Romania)</td>
<td>80</td>
<td>43</td>
<td>430</td>
</tr>
<tr>
<td>12) Gant, Halimbia (Hongrie)</td>
<td>400</td>
<td>40</td>
<td>250</td>
</tr>
<tr>
<td>13) Arkansas (USA)</td>
<td>1300</td>
<td>66</td>
<td>110</td>
</tr>
<tr>
<td>14) Akseki- seydisehir (Turkey)</td>
<td>530</td>
<td>685</td>
<td>365</td>
</tr>
<tr>
<td>15) CB- Qopi (Iran)</td>
<td>479</td>
<td>38</td>
<td>976</td>
</tr>
<tr>
<td>16) RB- Qopi (Iran)</td>
<td>516</td>
<td>40</td>
<td>1143</td>
</tr>
<tr>
<td>17) PB- Qopi (Iran)</td>
<td>589</td>
<td>33</td>
<td>1212</td>
</tr>
<tr>
<td>18) BRB- Qopi (Iran)</td>
<td>515</td>
<td>42</td>
<td>982</td>
</tr>
<tr>
<td>19) GCB- Qopi (Iran)</td>
<td>563</td>
<td>37</td>
<td>573</td>
</tr>
</tbody>
</table>

جدول 4: مقادیر ضرایب انباشته‌گی عناصر کمیاب نمونه‌های پوکسیت به‌سوی خیاره و مقایسه آنها با ضرایب انباشته‌گی کناره‌های پوکسیت کارستی میدان‌هایی و لاتریتی ارکانزا [10].

<table>
<thead>
<tr>
<th>منطقه پوکسیت</th>
<th>R</th>
<th>منطقه پوکسیت</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas (USA)</td>
<td>0.91</td>
<td>Parnasse II</td>
<td>0.58</td>
</tr>
<tr>
<td>Bosnie</td>
<td>1.33</td>
<td>Padurea Graului</td>
<td>0.66</td>
</tr>
<tr>
<td>Parnasse I</td>
<td>2.77</td>
<td>Kosova</td>
<td>4.54</td>
</tr>
<tr>
<td>Ariege</td>
<td>3.33</td>
<td>Mandra II</td>
<td>5.72</td>
</tr>
<tr>
<td>Akseki- seydisehir</td>
<td>2.44</td>
<td>CB- Qopi (Iran)</td>
<td>2.81</td>
</tr>
<tr>
<td>Obrovac</td>
<td>3.55</td>
<td>RB- Qopi (Iran)</td>
<td>2.11</td>
</tr>
<tr>
<td>Istrie (Yougoslavie)</td>
<td>3.84</td>
<td>PB- Qopi (Iran)</td>
<td>1.89</td>
</tr>
<tr>
<td>SE France</td>
<td>3.50</td>
<td>BRB- Qopi (Iran)</td>
<td>3.00</td>
</tr>
<tr>
<td>Gant, Halimbia</td>
<td>3.00</td>
<td>GCB- Qopi (Iran)</td>
<td>2.11</td>
</tr>
</tbody>
</table>
شکل ۵: تغییرات ضریب اتباعنگی (R) و عناصر کمیاب در نمونه‌های بورکیسیت قبی (مثبت‌های تو خالی) و مقایسه آن با بورکیسیتهای کارستی میان‌رودانی ای و لاتریتی ارکانتاس به عنوان تابعی از عناصر Cr [10]. A. ب و B به ترتیب بین‌گیری مناطق اثر سنگ‌های مادر الی‌امیک، مافیک، حد واسط و اسیدی هستند. IV. III. II (مثبت‌های تویور) به ترتیب مربط به لاتریت‌های حاصل از آن بی‌پودریتی، بازالت و گرانیت هستند. برای C و (مثبت‌های تویور) به ترتیب بررسی داده‌های حاصل از آن بی‌پودریتی، بازالت و گرانیت هستند. برای توضیح اعداد به شکل ۴ مراجعه کنید.

بر اساس شواهد صحراپی با توجه به شکل‌های ۴، ۵ و ۶ (که نوع سنگ مادر احتمالی را مشخص می‌کنند) سنگ‌های دیاپاژی موجود در منطقه را می‌توان محتمل ترین سنگ مادر نهشته در قبی در نظر گرفت. برای تعیین صحت و سبیم این مسئله از روش زمین شیمیایی، الی‌امیک و همکاران [12] استفاده شده است. این روش براساس ترکیب نمونه‌های دو متغیره (عکس منحنی بی‌تحک) در طول فراهنگ‌های هواردی اسکال است. در انباره باران‌های کاستگه‌های بورکیسیت، Al پرتره‌یک عناصر في‌تحک‌گی (در محدوده pH تا ۵) شناخته می‌شود [13]. برای تعیین عناصر بی‌تحک در این نهشته همان‌گونه که در ضرایب همبستگی خطی بین عناصر استفاده شد [14]. که تحقیق در جدول ۵ نشان داده شده است. عناصر مناسب Na، Nb، Ti و (R>0.9) را با عناصر آلومینیوم كه ضرایب همبستگی بالای ۹۰٪ (R>0.9) را با عناصر آلومینیوم
مشخصات تغییر جرم عناصر

با توجه به اینکه برای انتخاب نوع بکسیتی، برای دستیابی به فرایندهای زمین‌شیمیایی، تغییرات جرم در تشکیل آن، از روش زمین‌شیمی‌محاسبات تغییر جرم [16] که بر منیا (1) عصر شاخص

قاب‌ها، (2) عامل غنی‌شدنی، (3) ترکیب پارسالی، شده و (4) تغییر جرم عناصر استوار است، استفاده شده است که هر مورد در ادامه بررسی می‌شود.

۱- عنصر شاخص بی‌تحرک: برای محاسبه تغییر جرم عناصر، لازم است عناصری که تغییرات

شیمیایی و کاملاً دارای عناصری باشد در طول فرآیندهای هوازی و دگرگونی

بی‌تحرک می‌شود انتخاب عناصری که را نسبت به این عنصر محاسبه کرد [17] با اعیاد

بر اینکه شناختی دیگری خط یک دهم تشکیل دهد لیا به های بکسیتی است، فرآیند عناصر

بر آن به عنوان بنیای محاسباتی انتخاب شد.

جدول ۵ ضریب همبستگی خطی عناصر در بکسیت قبی [14]

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>V</th>
<th>Ti</th>
<th>Cr</th>
<th>Fe</th>
<th>Ni</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Th</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1.00</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>1.00</td>
<td>0.29</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.99</td>
<td>0.32</td>
<td>0.002</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.98</td>
<td>0.98</td>
<td>0.003</td>
<td>0.98</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.97</td>
<td>0.97</td>
<td>0.004</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.96</td>
<td>0.96</td>
<td>0.005</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.93</td>
<td>0.93</td>
<td>0.006</td>
<td>0.93</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.87</td>
<td>0.87</td>
<td>0.007</td>
<td>0.87</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.84</td>
<td>0.84</td>
<td>0.008</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
<td>0.87</td>
<td>0.88</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.80</td>
<td>0.80</td>
<td>0.009</td>
<td>0.80</td>
<td>0.81</td>
<td>0.82</td>
<td>0.83</td>
<td>0.84</td>
<td>0.86</td>
<td>0.90</td>
<td>1.00</td>
</tr>
</tbody>
</table>
شکل ۶ نمودارهای همبستگی الالف (A)، بی (B) و بی‌پرتینی (C) تیتانیت و شیمیایی و هفته‌های سیلیزیوم هوازه‌گی است.

۲- تعیین عامل غنی‌شادگی: پس از بهبود سازی داده‌های زمین‌شناسی براساس مواد فراوانی (LOI)، عامل غنی‌شادگی براساس مقدار Zr در سنج دیپارام و لایه‌های بوکسیت از معادله زیر برای هر یک از لایه‌ها محاسبه شد [16]. به این ترتیب که:

\[
E.F = \frac{\text{فراوانی Zr در سنج دیپاراب}}{\text{فراوانی Zr در سنج هوازه بوکسیت}}
\]
3- تعيين تركيب باسازی شده: با استفاده از عامل غنی‌شده‌گی، تركیب باسازی شده از رابطه زیر برای هر عنصر محاسبه می‌شود [16]:

\[
\text{R.C.} = \text{E.F.} \times \%
\]

فوراوانی عنصر در پوکسیت بر حسب درصد وزنی:

4- تعيين تغيير جرم عناصر: مقدار تغيير جرم عناصر از رابطه زیر محاسبه شده:\[16]:

\[
\text{M.C.} = \text{R.C.} - \text{R.C.}
\]

نتایج بدست آمده از محاسبات تغيير جرم عناصر در لايههای مختلف پوکسیت چی در جدول 6 نشان می‌دهد که در افهای پوکسیت کلوئیدی و سرخ قهوه، مقدار اکسید اه در مقادیر خيلي زياد و در افهای پوکسیت سرخ به مقدار ناجی افزایش یافته است. در افهای پوکسیت پلیپروموفیک و Fe کرم مابل به سبب خروج Al و SiO₂ وجود دارد. با توجه به مطالعات میکروسکوپی انجام شده وجود یک کلوئید گنی از آهن (سیبودزول) در تشکیل پوکسیت‌های سرخ قهوه و کلوئیدی محتمل است. همچنین وجود یک کلوئید گنی از (الوموزول) در تشکیل پوکسیت کرم مابل به سبب پلیپروموفیک و یک کلوئید Al Fe از (الوموسیدزول) در تشکیل پوکسیت سرخ، همراه با خروج سایر عنصر متغیرکرک محیط قبلی تصور است. نهایتاً با جمع جبری تغيير جرم عناصر برای هر یک از افهای مشخص شد که لايههای مختلف پوکسیت کاشت جرمی در گستره 0.01 تا 20.79٪ میانگین 17.84٪ در طول فرآیندهای هوازی از خود نشان می‌دهند.

جدول 6: تغييرات جرم عناصر در لايههای پوکسیت بر اساس عنصر شاخت بي‌تحرک

<table>
<thead>
<tr>
<th>عنصر</th>
<th>CB</th>
<th>RB</th>
<th>PB</th>
<th>BRB</th>
<th>GCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>0.473</td>
<td>0.473</td>
<td>0.385</td>
<td>0.256</td>
<td>0.256</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.556</td>
<td>0.556</td>
<td>0.556</td>
<td>0.556</td>
<td>0.556</td>
</tr>
<tr>
<td>FeO</td>
<td>0.455</td>
<td>0.455</td>
<td>0.455</td>
<td>0.455</td>
<td>0.455</td>
</tr>
<tr>
<td>CaO</td>
<td>0.981</td>
<td>0.981</td>
<td>0.981</td>
<td>0.981</td>
<td>0.981</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
</tr>
<tr>
<td>MgO</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
<td>0.544</td>
</tr>
</tbody>
</table>
با توجه به وضعيت غنی شدنی و به انحلال عناصر در (Fe₂O₃), Fe (SiO₂), (Al₂O₃), Al عنصر در نظر گرفته شده است. با مقارن کردن این مسئله با نظرهای گرفته این افکار، با توجه به تغییرات Eh آبگیر فرو را در کنسانس 0.1 تا 0.6 در طول تشکیل این نهضته محتمل می‌دانند. با مقایسه تغییرات چرخه Al₂O₃ با SiO₂ می‌توان احتمال داد که pH آبگیر فرو را در طول Al₂O₃ تشکیل افق بوسیبی قبیل در حدود 6 تا 8 بوده که باعث انحلال SiO₂ و برقا گذاری آن شده است (شکل 8).
برداشت
وقتی رسوبی پرمرین فوقانی تا نازک باعث شده تا فرآیندهای هوازدگی بر سنگهای دیپاژی تأثیر گذارند و تناوب رسوبی غنی از آلومینیوم و آهن در منطقه تشكیل شود. در طول عملکرد فرآیندهای سوپرزی نیز کلیه اولیه، کلوئیدها از نوع سیدروزول، آلموژول و آلوسیدروزول تشكیل شده است. این کلوئیدها به دلیل عدم وجود هسته‌های مناسب و همگنی بودن، خود باعث تشكیل بافت‌های پاتوپاتیک، کلوئیدری، نورتیفی تروجم و جریانی شده‌اند. تأثیر فرآیندهای تکتونیکی بر این نهشت باعث ایجاد بافت دروژین شده است. بررسی‌های کلی شناسی حکایتی از تأثیر شدید فرآیندهای سوپرزی نیز در تشكیل این نهشت دارد. محاسبات تغییرات جرم مشخص کرد که عناصر غنی (residual) ضمن فرآیندهای پوکستیتی ایپی تحرک بوده‌اند و به‌صورت بی‌پایان Ti و Al، Fe شده‌اند. به‌طوریکه Fe در درون خود سیستم پوکستیت تغییرات جرم شدیدی نشان می‌دهد. عناصر از مهیج خارج شده و کاهش جرم نشان می‌دهد. تغییر جرم کل Mg و Mn، Na، Ca در لایه پوکستیت کلوئیدی 200-19/7/19 در لایه پوکستیت سرخ 1871 در لایه پوکستیت سرخ قهوه‌ای -2/5 در لایه پوکستیت کرم مایل به سیب این مقدار برای شرح این تغییرات به مطالعات صحراپی و سنجش‌شناختی و زمین‌شناسی، عامل اصلی تشکیل افتخال مختلف پوکستیت قبی تغییرات Eh
65
pH

M

معادلات استخراج گرديده جهت محاسبه نورم کانیها

\[
\begin{align*}
KLN &= 2.151 \text{ R. SiO}_2 \\
H_{KLN} &= 0.301 \text{ R. SiO}_2 \\
A_{KLN} &= 0.850 \text{ R. SiO}_2 \\
S_{KLN} &= 1.000 \text{ R. SiO}_2 \\
PRL &= 1.5 \text{ R. SiO}_2
\end{align*}
\]
$H_{\text{PRL}} = 0.000$
$A_{\text{PRL}} = 0.424 \text{ R. SiO}_2$
$S_{\text{PRL}} = 1.000 \text{ R. SiO}_2$
$MS = 2.282 \text{ R. SiO}_2$
$H_{\text{MS}} = 0.010 \text{ R. SiO}_2$
$A_{\text{MS}} = 0.848 \text{ R. SiO}_2$
$S_{\text{MS}} = 1.000 \text{ R. SiO}_2$
$KPT = 1.849 \text{ R. SiO}_2$
$H_{\text{KPT}} = 0.000$
$A_{\text{KPT}} = 0.848 \text{ R. SiO}_2$
$S_{\text{KPT}} = 1.000 \text{ R. SiO}_2$

$A = A^- (A_{\text{KLN}} + A_{\text{PRL}} + A_{\text{MS}} + H_{\text{KPT}})$
$H = H^- (H_{\text{KLN}} + H_{\text{PRL}} + H_{\text{MS}} + H_{\text{KPT}})$
$H = 0.176 A_{\text{DSP}}$
$A = A_{\text{DSP}}$
$DSP = 1.176 A^-$

$QTZ = T_{\text{SiO}_2}^-$ (S_{\text{KLN}} + S_{\text{PRL}} + S_{\text{MS}} + S_{\text{KPT}})$

