Geothermobarometry and determination type of metamorphism in the amphibolites of the north and north-west of Khoy on the basis of amphibole chemistry

H. Azizi1, H. moinvaziri2, K.Smaeili1

1- Mining Dept., University of Kurdistan, Iran.
E-mail: hossien_azizi@uok.ac.ir
2- Geology Dept.,University of Tarbiat e moalem, Iran.

(Received: 30/5/2003, received in revised form: 20/7/2003)

Abstract: Amphiboles are one of the major minerals in metabasic rocks in greenshist to upper amphibolite facies. Amphiboles have variable chemical composition, therefore, various elements with different ionic charge and radius can entering into their structure that occupy special mineralogical sites. There are some elements in amphiboles which are sensitive to the changes of pressure and temperature. The important elements from this points of view are Al, Na, Ti and Ca. Once that pressure and temperature of metamorphism is determined, the type of metamorphism can be distinguished. On this basis, we studied metabasic rocks of north and northwest of khoy township in north-west (NW) Iran. Geothermobarometry estimation indicates that amphiboles have crystallized at temperatures between 550°C and 680°C and pressures between 4.5 and 7 kbars. Therefore, metamorphism in the Khoy area was low to medium grade.

Keywords: Amphibole, Metabasite, Khoy, Geothermobarometry.
محاسبه زئوترومبومتری و تعیین نوع دگرگونی آمپیولیتهای شمال و شمال غرب خوی بر اساس ترکیب شیمیایی آمپیولیتهای حسین عزیزی، حسین معین وزیری، کامران اسماعیلی

چکیده: آمپیولیتهای یکی از کانی‌های اصلی متابولیتهای، از رخساره شیست سپر نا آمپیولیت فوق‌تقایی را تشکیل می‌دهند. این کانیها به دلیل فرمول شیمیایی منحصر به‌فردی که دارند از نظر بار الکتریکی و شعاع برونی، عناصر مختلفی را می‌توانند در ساختار خودی دهند. بین اجزای تشکیل دهنده آمپیولیتهای عناصری وجود دارد که نسبت به تغییر فشار و دما حساسند و در واقع مقدار آنها در ساختار کانی تابع فشار و دما می‌باشند. معمولاً این عناصر عبارتند از: Ti، Al، Na و Ca که علاوه بر مقادیر جایگاه فضایی بلوشناختی آنها نیز می‌تواند در تغییر دما و فشار در تشکیل آمپیولیتهای کمک کند. همچنین علاوه بر تعیین دما و فشار از ترکیب آنها می‌توان انواع دگرگونی را نیز مشخص کرد. بر این اساس متابولیتهای شمال و شمال غرب خوی از لحاظ زئوترومبومتری مورد بررسی قرار گرفته‌اند. دما و فشار در تشکیل این سنگها با استفاده از ترکیب شیمیایی آمپیولیتهای محاسبه شده است. نتایج حاصل از محاسبات زئوترومبومتری نشان می‌دهد که این آمپیولیتهای در دمایی بین 70 تا 80 درجه سانتی‌گراد و فشاری بین 45 تا 7 کیلوبار شکل کرفت‌هایی که نشان می‌دهد دگرگونی این منطقه در فشار متوسط تا فشار بانی صورت گرفته است.
واژه‌های کلیدی: آمپیلیت، متانزیت، خوی زئوتروپومتری

مقدمه
کانی‌های خانواده آمپیلیت به عنوان یکی از کانی‌های اصلی سنگ‌های دگرگونی بازیک به حساب می‌آیند. در این سنگ‌ها، آمپیلیت‌ها از رخ‌سازی شیست سنگ (با دمای حدود 350 درجه سانتی‌گراد) شروع به تبلور می‌کنند و به تدریج با افزایش درجه دگرگونی به سیستم پلاژیوکلار غنی از کلسیم، کارتن و نورودسته شده‌اند. در مورد این که در مواردی به صورت نیمه‌ای از اکسلون استفاده می‌شود. در صورت رخ‌سازی سنگ‌های دگرگونی به سمت پلاژیوکلار وسیع استفاده می‌شود و به تدریج با افزایش درجه دگرگونی به سمت پلاژیوکلار وسیع استفاده می‌شود. هورنیلد شکلی می‌گیرد که در صورت نیمه‌ای از اکسلون استفاده می‌شود. در صورت رخ‌سازی سنگ‌های دگرگونی به سمت پلاژیوکلار وسیع استفاده می‌شود. در مورد این که در بسیاری از مسایل‌ها به دلیل حضور این کانی‌ها از رخ‌سازی شیست سنگ تا نیمه‌ای از پلاژیوکلار وسیع استفاده می‌شود. هورنیلد شکلی می‌گیرد که در صورت نیمه‌ای از اکسلون استفاده می‌شود. در صورت رخ‌سازی سنگ‌های دگرگونی به سمت پلاژیوکلار وسیع استفاده می‌شود. در مورد این که در بسیاری از مسایل‌ها به دلیل حضور این کانی‌ها از رخ‌سازی شیست سنگ تا نیمه‌ای از پلاژیوکلار وسیع استفاده می‌شود. هورنیلد شکلی می‌گیرد که در صورت نیمه‌ای از اکسلون استفاده می‌شود. در صورت رخ‌سازی سنگ‌های دگرگونی به سمت پلاژیوکلار وسیع استفاده می‌شود.

انتخاب نمونه و روش تجزیه
با توجه به این که هدف شناسایی نوع آمپیلیت‌ها و تعیین ترکیب شیمیایی آنها برای محاسبات زئوتروپومتری سنگ‌های دگرگونی است، لذا در این راستا از پردازش بیش از 400 مقطع نازک از منابع‌های شمال خوی و نمونه‌سازی آمپیلیت‌ها به دلیل گسترش وسیعی که داشته‌اند برای مطالعه ترکیب شیمیایی آمپیلیت‌ها انتخاب شد، که عبارتند از:
- نمونه E از سنگ‌های رخ‌سازی آمپیلیت با مجموعه کانی‌ای و دستگاه پلازیوکلار + کانی‌هایی + کانی‌هایی
- نمونه D از سنگ‌های رخ‌سازی آمپیلیت با مجموعه کانی‌ای و دستگاه پلازیوکلار + کانی‌هایی + کانی‌هایی
- کانی‌های موجود در این نمونه‌ها با اکثریت میکروبروت (CaO) در دانشگاه لیدز انگلستان مورد تجزیه نظارت‌های قرار گرفتند که نتایج حاصل از آن در جدول 1 آورده شدند. محاسبه مقدار %FeO به طور مستقیم و مقدار %F به طریق مشابه با بروز فیزیستان می‌تواند در حالات گوناگون و برای کنترل آنها به شیوه غیرمستقیم

جدول 1. ترکیب شیمیایی آمپیولها در امپلولتپای شمال و شمال غرب خوی به روش الکترون میکروسکوپی (EMPA) با ولتاژ 15 kV. جزیی: A: مجموعه کانابی هورنلند + پلاژیوکالز + کلینوبروکس + گارنت + کوارتز. نمونه E: هورنلند + پلاژیوکالز. * = اکتینولیت ناشی از تجزیه هورنلند که در محاساب زئولیومتری مورد استفاده قرار گرفته است.

<table>
<thead>
<tr>
<th>oxide</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4 core *</th>
<th>D4 rim</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>24.42</td>
<td>28.52</td>
<td>20.62</td>
<td>21.68</td>
<td>23.61</td>
<td>22.84</td>
<td>24.20</td>
<td>24.53</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.86</td>
<td>0.77</td>
<td>0.50</td>
<td>1.08</td>
<td>1.38</td>
<td>1.22</td>
<td>1.47</td>
<td>1.33</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>3.51</td>
<td>5.13</td>
<td>3.75</td>
<td>1.63</td>
<td>1.67</td>
<td>1.51</td>
<td>1.61</td>
<td>1.56</td>
</tr>
<tr>
<td>MnO</td>
<td>1.84</td>
<td>3.33</td>
<td>1.84</td>
<td>1.71</td>
<td>1.71</td>
<td>1.73</td>
<td>1.95</td>
<td>1.99</td>
</tr>
<tr>
<td>CaO</td>
<td>11.75</td>
<td>11.76</td>
<td>11.76</td>
<td>11.73</td>
<td>11.72</td>
<td>11.70</td>
<td>11.55</td>
<td>11.13</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
<td>1.84</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.74</td>
<td>0.74</td>
<td>0.75</td>
<td>0.78</td>
<td>0.83</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>H₂O</td>
<td>1.91</td>
<td>1.91</td>
<td>1.91</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>F</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Cl</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe as FeO</td>
<td>18.34</td>
<td>19.73</td>
<td>18.88</td>
<td>18.87</td>
<td>18.82</td>
<td>19.29</td>
<td>18.36</td>
<td>15.79</td>
</tr>
</tbody>
</table>
فرمول ساختاری و محاسبه اعضای نهایی آمفیبول‌ها

آمفیبول‌ها دارای فرمول عمومی
\[\text{C}_{x} \text{B}_{y} \text{A}_{z} \text{Br}^{n} \text{C}_{2y} \text{Ti}_{z} \text{O}_{4y} \text{Cr}_{2} \text{OH}^{n} \text{y} \]

ساختاری آمفیبول‌ها را اشغال می‌کنند. با توجه به اندک‌سازی A، C و B این اشغال‌ها در متوازندهای مختلف رنگ‌های مختلفی دارند. در این مثال، A توسط Ca + Na، B توسط Cr2O3 و C توسط Al2O3 توسط Fe2O3 و FeO نیرویی به کنار آمده‌اند.

c\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{oxide} & \text{E1} & \text{E2 core} & \text{E2 rim} & \text{E3 core} & \text{E3 rim} & \text{E4 core} & \text{E4 rim} & \text{E5 core} & \text{E5 rim} \\
\hline
\text{TiO}_2 & 3.1 \text{D} \\
\text{Al}_2\text{O}_3 & 5.12 & 5.12 & 5.12 & 5.12 & 5.12 & 5.12 & 5.12 & 5.12 & 5.12 \\
\text{Cr}_2\text{O}_3 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{Fe}_2\text{O}_3 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{FeO} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{MnO} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{MgO} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{CaO} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{Na}_2\text{O} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{K}_2\text{O} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{H}_2\text{O} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{F} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\text{Cl} & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 & 1.2 \\
\hline
\hline
\text{Fe as} & 4.95 & 4.95 & 4.95 & 4.95 & 4.95 & 4.95 & 4.95 & 4.95 & 4.95 \\
\hline
\end{array}

1- آمفیبول‌های (Ca+Na) B<1.5 و (Mg,Fe,Mn,Li) B≥1.5 که در این گروه برای آنها 2.1 و NaB > 1.5
2- گروه کلسیک که در آنها NaB ≤ 2.1 و CaB > 1.5
3- گروه سدیک-کلسیک که در آنها NaB = 1.1-1.5
4- گروه سدیک که در آنها NaB ≥ 1.5
ما نیز از این روش برای آمافیبوپاتها موجود در منابع تحلیلی شما خوی استفاده کرده‌م. فرمول ساختاری آمافیبوپاتها بر اساس 22 آکسیژن با استفاده از ترم افزارهای ویژه این کار (منند) تعیین شده که نتایج آن در جدول 2 آمده است. درمونیه

<table>
<thead>
<tr>
<th>elements</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4 core</th>
<th>D4 rim</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.27</td>
<td>0.157</td>
<td>0.197</td>
<td>0.199</td>
<td>0.159</td>
<td>0.159</td>
<td>0.138</td>
<td>0.135</td>
</tr>
<tr>
<td>Sum T</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
</tr>
<tr>
<td>Al</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Ti</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Cr</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
</tr>
<tr>
<td>Mg</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
<td>1.124</td>
</tr>
<tr>
<td>Elements</td>
<td>E1 Atomic Proportion</td>
<td>E2 Atomic Proportion</td>
<td>E3 Atomic Proportion</td>
<td>E4 Atomic Proportion</td>
<td>E5 Atomic Proportion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: E1, E2, E3, E4, E5 represent different samples or conditions for analysis.
<table>
<thead>
<tr>
<th></th>
<th>Na</th>
<th>SumB</th>
<th>Na</th>
<th>K</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Ca+Na on B</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Ca on B</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Na+K on A</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Sum L</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Mg(Mg+Fe)</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Tschermakite</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Mg-hbl</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Mg-hbl</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Mg-hbl</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Tschermakite</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Mg-hbl</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>Mg-hbl</td>
</tr>
</tbody>
</table>

Diagram: CaB>=1.50, (Na+K)A>=0.50

- **CaB**: Ca on B
- **(Na+K)A**: Na+K on A

<table>
<thead>
<tr>
<th></th>
<th>Ti<0.50</th>
<th>Ti>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>edenite</td>
<td>pericline</td>
</tr>
<tr>
<td>Mg(Mg+Fe)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Si in formula</td>
<td>6.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Diagram: CaB>=1.50, (Na+K)A<0.50

- **CaB**: Ca on B
- **(Na+K)A**: Na+K on A

<table>
<thead>
<tr>
<th></th>
<th>CaA<0.50</th>
<th>CaA>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tremolite</td>
<td>actinolite</td>
</tr>
<tr>
<td>Mg(Mg+Fe)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Si in formula</td>
<td>6.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>
زئوتروموتری براساس ترکیب شیمیایی آمافیل‌ها

به دلیل فرمول شیمیایی گسترده آمافیل‌ها، عناصر زیادی می‌توانند در ساختار این کانی‌ها شرکت کنند. مقدار بعضی از این عناصر (Na, Ca, Ti, Al) تابع فشار، دما و فوگاسیت اکسیژن است. بنابراین مقدار و جابجایی این عناصر می‌تواند در زئوتروموتری و زئوتروموتری آمافیل‌ها مورد استفاده قرار گیرد. \[9\] در جدول 3 رابطه مثبت و یا منفی عناصر شاخص نسبت به تغییرات فشار، دما، فوگاسیته اکسیژن و قرار اولیه عنصر (غلفت) در آمافیل‌ها نشان داده شده است. با توجه به جدول 3 مشخص می‌شود که برای Ti\((AI^5=AI^{iv}+AI^{vi})\) Al\(^{iv}\)، نسبت تابع دما است و با افزایش دما در آمافیل‌ها مقدار آن افزایش می‌یابد. بنابراین مقدار تابع دما موجود در آمافیل‌ها می‌تواند به عنوان یک زئوتروموتری، دمای تشکیل آمافیل‌ها را پیش [9]. همچنین Al\(^{iv}\) و Al\(^{iv}\) نسبت میان ایزوتروپ در آمافیل‌ها محسوب می‌شود. زیرا مقدار Al\(^{iv}\) در آمافیل‌ها تابع غلفت آن (غلفت) Al در سطح ماده نیست، بلکه نابع فشار حاکم در طول تشکیل آمافیل‌هاست (جدول 3). به طور کلی آمافیل‌ها به دست آمده در تاریک‌تری از آمافیل‌های فشار پایین (Mg / Mg + Fe\(^{2+}\)) دارند. همچنین مقدار SiO\(_2\) در آمافیل‌ها (به ویژه در سنگ‌های آدرین) تابع مقدار SiO\(_2\) می‌باشد. در حالتی که فشار Al در آمافیل‌ها ناشی از کاهش نیست، بلکه ناشی از افزایش فشار است، زیرا غلبه‌ای در آمافیل‌ها ادغام‌های کوارتز وجود دارد.

مقدار Al\(^{iv}\) تابع دمای دمای در طریکه به ازای هر سد درجه سانتیگراد دما، تقریباً Al\(^{iv}\) کاپنشی [9] باید در نظر گرفته شود. به ویژه مقدار Al\(^{iv}\) اضافه می‌شود.

\[K_{Al^{IV}}=0.33 Al^{IV}+0.5 Kbar\]

\[S_{Al^{IV}}=0.43 Al^{IV}

\] منظور از Al\(^{IV}\) کل آلومینیوم موجود در آمافیل است.
جدول ۳ تغییرات عناصر شاخص در امپیولیت ها مناسب با فشار، دمای فوگاسیون اکسید افزایش و غلظت عنصر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>غلظت فوگاسیون اکسید</th>
<th>دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>۹۰۱۰</td>
<td>+</td>
</tr>
<tr>
<td>Al(^{III})</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Al(^{V})</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ti</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(^{3+})/(Fe(^{2+})+Fe(^{3+}))</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mg/(Mg+Fe(^{2+}))</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>عنصر اکسید</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Al(^{(I)})</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

چنانچه در بخش‌های قبیل نیز اشاره شد، امپیولهای شمالی گیسو بسیار متغیرند. سیل‌‌تا در امپیولیت نمونه E که بیشتر از هورنلند + پلاژیولسار ± کارکت تشکیل شده است (منطقه غرب جاده خوی-عسگرآباد)، بین مرکز و حاشیه امپیولیت از هم ترکیب شیمیایی اختلاف وجود دارد. (جدول ۱). در امپیولیت نمونه D که آمپیولیت با گازت=کلینوپروکسین(دیوپسید) پلاژیولز و همراهاند نیز دو نوع امپیولیت دیده شد. یک نوع در مسمار با گازت و دیگری بدون تماس با آن. امپیولهای که در تماس با گازت هستند (نمونه‌های D7, D2)، فشار در جدید

۸.۹ کیلوبار اولی امپیولهای بدون تماس با گازت در همان سطح فشاری بین ۵.۰ تا ۸.۹ کیلوبار ولی امپیولهای بدون تماس با گازت در این مقدار نیز در همان سطح فشاری بین ۵.۰ تا ۲.۰ کیلوبار و در نمونه‌های افراشی فشار افزایش در امپیولیت افراشی در تماس با گازت شده و با Al\(^{(I)}\) در امپیولیت در تماس با گازت صدایی نشان دهنده دیگری دخالت داشته‌اند. با توجه به این که بین گازت و آمپیولیت بیک حاشیه این‌گونه مهندسی که آب در این منطقه افراشی فشار باعث افراشی در امپیولیت A۱(۱) در امپیولیت در تماس با گازت شده و با فراشی آمپیولیت افراشی، (نمونه‌های افراشی + کوارتز حامل شده ایست. برای این مکان ممکن است شکل ۲) منشکول منشکولت + کوارتز حامل شده است. برای این مکان A۱(۱) در امپیولیت در تماس با گازت شده و با Mg(۱۱) و Fe\(^{3+}\)/(Fe\(^{2+}\)+Fe\(^{3+}\)) وجود دارد که در حین تحلیل هورنلند به اکتینولیت، مقداری در هورنلند کاهش و Fe\(^{3+}\)/(Fe\(^{2+}\)+Fe\(^{3+}\)) کاهشی به افراشی فشار نسبت‌یابش بیشتر در جنوبی حالتی افراشی A۱ در امپیولیت نمی‌تواند با افراشی فشار نسبت‌یابش بیشتر باشند. ضمناً نمودار که در نمونه‌های افراشی و اکتینولیت، با فشرد است که A۱(۱) در امپیولیت با پلاژیولزراسیت، امپیولیت‌های دارای ساختار

منطقه‌های هستند و بین مرکز و حاشیه بلوغ‌ها اختلاف ترکیب کاملاً واضح است. محاسبه
محاسبه زومترولومتری و تعمیم نوع دگرگونی آمفيبول‌هایی...

بارومتری نشان می‌دهد که بخش مرکزی این آمفيبول‌ها در فشاری بین ۵ تا ۶\(^2\) کیلوبار و بخش حاشیه‌ای آنها در فشارهای کمتر (حدود ۵۰۰ تا ۷۲۰ کیلو بار) می‌باشد است.

جدول ۴ محاسبه \(\text{Al}^{(1)}\) و فشار بر حسب کیلوبار به روش زوهانسن ورتوورد [۱۶] به اختلاف فشار بین مرکز وحاشیه بلورهای آمفیبول در نمونه‌های \(E\) همچنین اختلاف فشار بین آمفیبول‌های درنماس با گرانت (D7 و 2D) و آمفیبول‌های بدون نماس با گرانت نوشه شود.

<table>
<thead>
<tr>
<th>نمونه آمفیبول</th>
<th>(\text{Al}^{(1)})</th>
<th>(\text{زوهانسن ورتوورد} \ (\text{P} \pm 0.5 \text{ Kb}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>۲.۰۹۷</td>
<td>۵۴۱</td>
</tr>
<tr>
<td>D2</td>
<td>۲.۹۳۱</td>
<td>۸۸۷</td>
</tr>
<tr>
<td>D3</td>
<td>۲.۳۹۸</td>
<td>۶۸۷</td>
</tr>
<tr>
<td>D4</td>
<td>۱.۹۵۹</td>
<td>۴.۸۳</td>
</tr>
<tr>
<td>D5</td>
<td>۰.۲۱۵</td>
<td>---</td>
</tr>
<tr>
<td>D6</td>
<td>۲.۷۱۳</td>
<td>۵۷۲۱</td>
</tr>
<tr>
<td>D7</td>
<td>۲.۹۳۷</td>
<td>۸۹۳۳</td>
</tr>
<tr>
<td>D8</td>
<td>۲.۲۱۹</td>
<td>۵۸۰۳</td>
</tr>
<tr>
<td>E1</td>
<td>۲.۷۹۶</td>
<td>۶۲۴۶</td>
</tr>
<tr>
<td>E2</td>
<td>۲.۱۸۷</td>
<td>۵۷۳۵</td>
</tr>
<tr>
<td>E3</td>
<td>۲.۱۴۵</td>
<td>۷۳۷۱</td>
</tr>
</tbody>
</table>
ژئترومونتری بر اساس مقدار تیتانیم در کلینو آمفیبول‌ها

حالاتی تیتانیم در کانی‌های سیلیکاتی بوزه آمفیبول‌ها، میکاها و پروکسنها تا دماست. نمودار تغییرات تی‌Ti-دو رای اولین بار توسط راس در سال 1974 میلادی بکار گرفته شد که بعداً توسط رایینسون کالیفورنیا و توسط هولوچر تکمیل شد [12، 13، 17 و 18]. ما نیز برای تعریف دمای تشکیل آمفیبول‌ها در متابولیت‌های شمال خوی از نمودار راس و هولوچر [12، 13، 17 و 18] استفاده کردیم. نمودار به کار برده شده در شکل 2 نشان داده شده است. در این نمودار مقدار تیتانیم و در کلینو آمفیبول‌ها با افزایش فشار رابطه مستقیم دارد. مطالعه این نمودار آمفیبول موجود در آمفیبول‌های دارای گارن‌تر و کلونپروکسن (نمونه D) دمای بین 65 تا 80 درجه سانتی‌گراد را نشان می‌دهد. این دما به روشهای دیگر نیز تأیید شد [19]. ولی آمفیبول موجود در آمفیبول‌های فاقد گارن‌تر و پروکسن (نمونه E) نسبت به آمفیبول‌های گارن‌تر و پروکسن دار (نمونه D) دما کمتری را نشان می‌دهد. به علاوه مقدار دمای اندار گری شده برای بخش مرکزی بلورهای آمفیبول (60 تا 70 درجه سانتی‌گراد) نسبت به بخش حاشیه‌ای این آمفیبول‌ها نمایش می‌دهد و هم افت دما وجود دارد. بنابراین جنین حالتی از یک هیپ‌T-T نرمال حکایت می‌کند [19 و 20].
نوع درگونی

با توجه به اینکه تركیب آمیپیلوتها با فشار و دما تغییر می‌کند، لازم و آبی بر اساس این تغییرات، درجه درگونی و انواع آن را مشخص کرده‌ایم [21] که در شکل ۴ نشان داده شده است. به‌گونه‌ای که دومان‌هایی دارای فشار بالا (بخشی سیستم) از دیگر دیگر فشار متوسط می‌شوند که سنگهای دارای سنگهای سنگریزه و سنگریزه‌ای زاپس و فرانسیسکا کالیفرنیا از سنگهای فشار متوسط دارای اسکالند و هاست روبر نیوزیلند متمایز‌شده‌اند. همچنین سنگهای فشار پایین، مثل آبکومای راپین، از سنگ‌های فشار متوسط قابل تمیز‌شدن در واقع اختلاف در ترکیب آمیپیلوتها می‌تواند به خوبی نوع درگونی را مشخص کند.

در شکل ۴ تغییرات در شکل ۴ تغییرات (NaK)A در مقابل Al و Fe+3+Ti+Al در مقابل Al (NaB) در مقابل Na(B) توصیف شده است. نقاط Na(B) مشخص کننده برای اندازه‌گیری فشار دارای عمق اهمیت است. نقاط شکل ۴ آمیپیلوپاتی که در نقاط با فشار بالا به وجود آمده‌اند دارای Na(B) پیشتری نسبت به نسبت به آمیپیلوپاتی سایر مناطق، و آمیپیلوپاتی مناطق فشار متوسط دارای Na(B) نسبت به آمیپیلوپاتی فشار پایین‌تر هستند.
شکل 4. ترکیب شیمیایی آمفیبول‌های شمال خوی در نمونه‌های ایران‌یادی [21].

مقدار $\text{(Na+K)}A$ می‌تواند معکس کننده دمای دگرگونی باشد و در نمونه‌های ایران‌یادی (Na+K)A افزایش یافته‌است. به‌طور کلی، این تغییرات جزء ادیتیت همچنین مقدار Na(M4)AlIV Si^V به عنوان اندازه‌گیری مقدار تغییرات ادیتی Si^V در نمونه‌های ایران‌یادی است. در نمونه‌های ایران‌یادی، Na(M4)AlIV و M4Ca(M4)SiIV به کمک اندازه‌گیری در ساختمان آمفیبول‌های کانتری، در نمونه‌های ایران‌یادی Na(M4)AlIV ویژه‌ای در فشار با توجه به خاصیت جمله‌ای و Ca(M4)SiIV در نمونه‌های ایران‌یادی در تأثیرات جهانی و را اشغال می‌کند. به همین دلیل است که نوع آلومینیوم می‌تواند در محاسبات زنده‌مانندی جامع یافت‌شود. با توجه به مطالعات گذشته، نمونه‌های شمال خوی در محدوده دگرگونی نوع فشار متوسط (بارووین) قرار می‌گیرند.
نتیجه‌گیری
نتایج حاصل از تجزیه نقطه‌ای آمی呂ولها نشان می‌دهد که آمیپولیتهای شمال و شمال غرب خوی در دمای بین ۵۵۰ تا ۶۸۰ درجه و فشاری بین ۴ تا ۷ کیلوبار می‌توانند شده‌اند. محاسبات نشان می‌دهد که نوع دگرگونی این سنگها از نوع فشار متوسط تا فشار بالای است. بنابراین با توجه به اینکه این روش به روش‌های دیگری مانند هورنلند-پلاژیوکلاز، گروسور-آوورنی-کوارتز-سیلیماتین [۱۹ و ۲۰] نیز تایید شده است، آمیپولیتهای در حال تعادل با آنها می‌توانند در تعمیم زئوتروموروتری متناوب‌شده می‌باشند. اما با توجه به محاسبات انجام شده مشکلاتی که وجود دارد این است که بسیاری از آمیپولیتهای ممکن است در حالت و با این امتیاز رخی تجربه‌ی شبیه باشد که در جنگ حالتی این روش مناسب نخواهد بود. لذا لازم است همواره در تعیین محاسبه دما و فشار تشکیل کانی‌های از کانی‌های سالم و در حال تعادل با کانی‌های دیگر مناسب دیگر نیز استفاده‌کرده.

مراجع