The investigation of the chemical and structural variations of copper and silver sulphides by SRS (A case study of Mineralogical and Geochemical applications of X-ray absorption spectroscopy)

Morteza Razmara
Department of geology, Ferdowsi University of Mashhad, Mashhad, Iran.
E-mail: MRAZMARA2000@yahoo.com

(Received: ---/2002, received in revised form: ---/2003)

Abstract: The ABS₂ sulphides (A=Cu, or Ag), B=As, Sb, Bi) are a naturally occurring group of minerals, typically found in polymetallic vein deposits. Behind chemically simple, the minerals have a complex structure and undergo several temperature/composition phase transitions. In this study, synchrotron radiation is used to collect Ag, As, Bi, Cu, Cd, Hg and Sb K-edge EXAFS data from a series of synthetic sulphosalts. EXAFS are used to characterize and determine the local structure behavior. Analysis of the spectra has provided direct evidence about the coordination environment, the structural and electronic environments of major and minor cations within the substituted phases. In this study, M (metal or semimetal)-S bond distances of emplectite, chalcobite, miargyrite and smithite minerals were determined by EXAFS and XANES methods.

Keywords: synchrotron radiation, EXAFS (X-ray Absorption Fine Structure), XANES (X-ray Absorption Near Edge Structure), X-ray K-edge, sulpho-salt, miargyrite, smithite, emplectite.
رزم آرا
مطالعه تغییرات شیمیایی و ساختاری سولفیدهای نقره و مس توسط SRS (مطالعه‌ای از کاربردهای میکروسکوپیون بر مینای XAS در کانی‌شناسی - بلوش‌نشانی و زوئشیمی)

مرتضا رزم آرا
عضو هیئت علمی گروه زمین‌شناسی دانشگاه فردوسی مشهد.
پست الکترونیکی: MRAZMARA2000@yahoo.com

(دریافت مقاله 29/3/1381، دریافت نسخه نهایی 1381/12/14)

چکیده: سولفیدهای (As Sb, Bi = B و Cu = Ag = A) ABS، کاتینهای طبیعی هستند که بیشتر در کانسارهای رگه‌های پلیمتالیک بافت می‌شوند. گرچه این کاتینه‌ها از نظر ترکیب شیمیایی ساده به نظر می‌رسند اما از نظر ساختاری پیچیده‌اند. قضاوت کننده می‌باشد. در مطالعه‌ی سری K-edge EXAFS سولفیدهای سنتز شده از سینکروترون برازیده‌اند و داده‌های استفاده شد. داده‌های مورد نیاز موقعیت کاتینهای اصلی و فرعی در فازهای جانشینی شده به صورت موضعی، از آنالیز طیف‌ها به طور مستقیم به دست آمدند. علاوه بر این، مطالعه‌ی با استفاده از EXAFS از دسترسی به تغییرات ساختار در میکروسکوپیون، تغییرات ساختار و رفتار کاتینه‌ها در مکان‌های ساختاری انجام شد. Cu-S, Sb-S, Bi-S, Cu-Bi, Ag-S, As-Ag, As-S و طیف‌ها پیوندی‌های As-As نیز در کاتینهای سینکروترونی، ساختارهای جدید پرتو XAS، و تغییرات شیمیایی جدید پرتو XANES و ا Đôngهای کلیدی: تغییرات سینکروترونی، سولفیدهای X-ray, روش EXAFS، و نتیجه‌گیری به روش K-edge X-ray.
مقامه

روشهای جدید سینکروترون را حل‌های منحصربه‌فرد در حل مسائل کاتی‌شناختی، بلورشناسی، زنده‌یافتنی، شیمی و حتی ریزشناسی را فراهم آورده‌اند. این باعث شده است که توانایی به دست آوردن اطلاعات ساختاری، حتی انجام آزمایش‌هایی در سیستم‌های ناهماهنگ را برای پژوهشگران ممکن ساخته است. گرچه بدست‌آوردن نتایجی جذاب برای X- خط مدتی پخش شده بود، اما به دلیل ایجاد XAS به وسیله خود سینکروترون که به فناوری‌های بسیار پیشرفته‌ی نیاز دارد، کاربردهای سینکروترون بر مبنای XAS فناوری جدیدی است. توانایی و قابلیت‌های منحصربه‌فرد این روش در حل مسائل کاتی‌شناختی، لزوم استفاده و کاربردهای آنها در علوم زمین را روز به روز افزایش داده است، به نحوی که روش XAS به یک روش با ارزش در حل پیامبری از مسائل کاتی‌شناختی، بلورشناسی و زنده‌یافتنی در دهه‌های اخیر تبدیل شده است. کاربرد روش EXAFS در حل مسائل تقارن بلوری، ابهامات ساختاری بلورها، هندسه‌پذیری و شیشه‌های جندرکی وی و تعمیم‌ها و ساختاری کاتی‌شناختی را بیشتر برای کاتی‌شناخت و بلورشناسی برای اولین بار ارائه و مهوری این امر است. مهوری این امکان به‌وجود آمدن ارائه‌های پژوهشگران از ساختار سینکروترونی واروند از:

1- گستره وسیع طول موجی قابل استفاده برتری‌های X که از 0.1 nm تا 1 تغییر می‌گردد.
2- امکان ایجاد برتری‌های کاملاً موازی با وگرایی قائمی هست که در حد یک میلی‌موسی در واقع 0.8 mm³
3- یافتن روش برتری‌ها در حدود 200 MHz 5 تغییر می‌گردد.
4- نیاز به حمایت نهایی تکرار تهیه از 0.1 MHz تا 500 MHz می‌گردد.
5- مهوری این امکان به‌وجود آمدن این امر در تعیین ساختار مواد بلورینی، تعیین ساختار مواد بلورینی و حالت اکسیژن کاتی‌شناختی با ترکیب پیچیده و نیز بهینه‌ی تغییر توزیع کاتی‌شناختی گونه‌بار.
1- تعیین ساختار مواد با ساختار سیس‌بی‌سی با نتایج بسیار مفید و نزدیک به کاتی‌شناختی و نیز بهینه‌ی تغییر ناهماهنگی تغییر شده با تغییر.
2- مطالعات تغییر گذارهای فاز و فرایند‌های تشکیل هسته‌های بلوری.
3- تغییر و تشخیص موقعیت‌های مختلف در مقدار ایندک در کاتی‌شناختی و شیشه‌های.
4- مطالعات تغییر گذارهای فاز و فرایند‌های تشکیل هسته‌های بلوری.
5- مطالعات و اکتشاف‌های سطحی بین آب و کاتی‌شناختی.
6- کاربردهای دیگری مثل مطالعه‌کاتی‌شناختی در دماها و فشارهای بالا، و نیز بررسی فرایند‌های ذوب و غیره.
چکنگی ایجاد نابه‌ای سیمک‌ترونی

در این مقاله تنها نظریهٔ پیوسته‌ی انتقال الکترون با استفاده از حلقه‌امسی پر انرژی خبره‌ای برای سیمک‌ترونی نشان داده نمی‌شود. در عمل نابه‌ای سیمک‌ترونی با استفاده از حلقه‌های ذخیره‌سازی بر انرژی خبره‌ای برای سیمک‌ترونی نشان داده نمی‌شود. در این مقاله انتقال الکترون از یک شناخته دشی با انرژی تا حد چندین گیگالکترونیولت تزریق می‌شوند و سپس این ذرات با انرژی‌هایی از میان 15 جی‌می‌سیستم انتقال الکترون‌های حاصل در گستردگی پرتوهای X سخت (eV) 5000 - 2000 تا پرتوهای فرابنفش (eV) 2000 - 1 تغییر می‌کند.

از این نکته ناگهانی جذب پرتوهای X به وسیله یک ماده، در گستردگی یک ماده
یک ساعت، برای برای استفاده کاربران آماده است. سینکروترون به صورت شبانه‌روزی قابل استفاده است.

شکل ۱ نموداری از فرآیند تکیپراکش در ناحیه EXAFS و نیز فرآیند پراکنش‌های متعدد در XANES [۲] ناحیه XANES
روش‌های آزمایش

انجام آزمایش XAS در سینکروترون نیازمند عوامل زیر است:

1- چشمه تابشی سینکروترون (SRS).
2- حلقوی ذخیره.
3- تکفام‌سازی و تابش سینکروترون با استفاده از آهن‌پاهای خمیده.
4- اندازه‌گیری میزان جذب در این زمینه، روش تراکسیل در نمونه‌هایی که مقدار عصر مورد نظر قابل توجه باشد (بیش از 2/٪ وری) قابل استفاده است. ولی در موارد نمونه‌هایی که مقدار عصر مورد نظر کمتر از 2/٪ وری باشد باعث روش غیر مستقیم پاید استفاده کرد.
5- آنالیز طیف‌های EXAFS آنالیز داده‌ها معمولاً به صورتی استاندارد به شرح زیر انجام می‌شود:

1- تصویب تغییرات بیناب‌سنج (همستجی).
2- حذف زمینه.
3- بپنجارش.
4- دریافت علامتهای EXAFS (شکل 3).
5- برقراری مقدار 0E.
6- تبدیل فوریه (شکل 3).
Debye کوارتز کمترین مربعات که عدد همان، فاصله متوسط آنی و ضریب Waller را به دست می‌دهد.

![EXAFS experiment](https://example.com/exafsexperiment.png)
شکل ۲ مراحل نهایی بررسی یک طیف EXAFS

بسته به انرژی فوتون برتو X تابیده شده و انرژی پیوند الکترونها در ماده جذب کننده، طیف جذب یک عنصر در تندیکی لبه جذب به دو ناحیه اصلی تقسیم می‌شود:

1. جذب برتو X در تندیکی لبه جذب، که خود شامل دو بخش زیر است (شکل ۳). این بخش با انرژی پایین که به پیش‌آمده‌های معروف است و با تعداد الکترون به لایه داخلی مشخص می‌شود. دیگر بخش با انرژی متوسط که برای بررسی موضعی شیمی مورد استفاده قرار می‌گیرد.

2. جذب برتو X در مراکز لبه جذب، که ساختار ریز جذب برتو X را ایجاد می‌کند. در حذف جذب سیلیکاتولت بعدی جذب کاهش می‌یابد و موجب ناب‌طبیعی EXAFS می‌شود (شکل ۴).

کاربردهای سیلیکاتولت در کانی شناسی، بلورشناسی و زئوپسی

در ادامه، نخست کاربردهای سیلیکاتولت در این پژوهش بررسی می‌شوند، سپس برخی کاربردهای دیگر سیلیکاتولت در علوم کانی شناسی و بلورشناسی معرفی خواهند شد.

1. **تئوری فواصل بین اتمی**. روش XAS در مقایسه با روش‌های دیگر، مناسب‌ترین روش در انتخاب کنترل‌های مختصات اتمی و فواصل بین اتمی است (جدول ۱). روشهای XANES نیز امکان بررسی زوايا بین پیوندها را در شرایط مطلوب فراهم می‌آورند. در تحقیق حاضر، طول متوسط
پیداکردن از آنتیماتونی‌های As-As و Ag-S، As-Ag، As-S، Cu-S، Sb-S، Bi-Sb، Cu-Bi در کانی‌های میازیبرایت، امیلکنایت، چلکستیپایت، و اسمیتایت از سولفوسالتهای تقریباً آراسته و بس با استفاده از XAS تعیین شد که نتایج حاصل در جدول ۱ رأی اظهار دادند.

جدول ۱ مختصات انتمی (B) در کانی‌های (الف) امیلکنایت و (ب) چلکستیپایت حاصل از بررسی‌های EXAFS (۱) نتایج تحقیق حاضر، ۲) نتایج برگرفته از مرجع [۷].

<table>
<thead>
<tr>
<th>وکل</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>B (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>۰.۱۷۴(۷)</td>
<td>۰.۱۲۰(۷)</td>
<td>۰.۱۲۴(۷)</td>
<td>۰.۱۷۴(۷)</td>
</tr>
<tr>
<td>Bi</td>
<td>۰.۱۷۱(۷)</td>
<td>۰.۱۲۱(۷)</td>
<td>۰.۱۲۴(۷)</td>
<td>۰.۱۷۱(۷)</td>
</tr>
<tr>
<td>Sb</td>
<td>۰.۱۷۴(۷)</td>
<td>۰.۱۲۰(۷)</td>
<td>۰.۱۲۴(۷)</td>
<td>۰.۱۷۴(۷)</td>
</tr>
</tbody>
</table>

This work: CuBiS₂: Rᵢ = ۱۴.۹; Rᵥ = ۲۰.۲; Rₑ = ۸.۰
CuSbS₂: Rᵢ = ۲۶.۸; Rᵥ = ۲۳.۵; Rₑ = ۱۱.۵

جدول ۲ پارامترهای ساختاری در کانی‌های میازیبرایت، امیلکنایت، چلکستیپایت و اسمیتایت حاصل از بررسی‌های EXAFS

<table>
<thead>
<tr>
<th>فاز</th>
<th>متاناس</th>
<th>انتم</th>
<th>R (Å)</th>
<th>C.N.</th>
<th>D.W. (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>حاکم</td>
<td>Ag-S</td>
<td>۲.۵۷</td>
<td>۴</td>
<td>۰.۰۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sb-S</td>
<td>۲.۳۰</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi-S</td>
<td>۲.۵۹</td>
<td>۴</td>
<td>۰.۰۹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-Bi</td>
<td>۲.۴۴(۸)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-S</td>
<td>۲.۷۰(۸)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S(1)-Cu-S(1)</td>
<td>۱.۹۷(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S(1)-Cu-S(2)</td>
<td>۱.۸۷(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-S(1)-Cu</td>
<td>۱.۷۶(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-S(2)-Cu</td>
<td>۱.۷۷(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-S</td>
<td>۲.۴۹</td>
<td>۴</td>
<td>۰.۰۱</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu-Sb</td>
<td>۲.۴۴(۸)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sb-S(1)</td>
<td>۲.۳۰(۸)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S(1)-Cu-S(1)</td>
<td>۱.۹۷(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S(1)-Cu-S(2)</td>
<td>۱.۸۷(۲)</td>
<td>۴</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
2) تعیین عدد هم‌ارابی: آگاهی‌های مورد نیاز در مورد تعداد لیگاندها در اطراف یک اتم (عدد هم‌ارابی) را می‌توان به طور مستقیم از بررسی‌های EXAFS (جدول 2) و به طور غیرمستقیم از طیف‌های XANES به دست آورد. بررسی‌ها نشان دادند که دامنه نوسان‌های تعداد لیگاندهای پس پراکندگی وابسته است. عدد هم‌ارابی تعادلی از این سولفورسالتها در جدول 2 ارائه شده‌اند.

3) تعیین وایپچش مکانی: وایپچش مکانی به معنی خارج از تقارن شدن گروهی از نقاط موضعی مفروض است. در فلزات واسطه، وجود یا عدم وجود مرکز تقارن در محل هم‌ارابی (به ویژه وقتی که مدارهای الکترونی خالی هستند) تأثیر زیادی بر شدت‌های گیب جذب (در طیف‌های XANES) دارد. هنگامی که گره نقاط فاقد مرکز تقارن باشد، این تأثیر به دلیل اختلال نسبی d-p است که به‌طور خوبی می‌تواند خوب شوید است.

4) تعیین ساختار کانی‌ها حتی به صورت موضعی: به روش برای تولید جدول تغییرات موضعی حکیم یک از کاتیون‌ها را تعیین کرد. اما با بررسی‌های EXAFS در تغییرات بهتر از ساختار موضعی حکیم در اطراف کاتیون‌هایی که فقط یک موقعیت بلورگیری را اشغال می‌کنند به دست می‌آید. علاوه بر این، از بررسی‌های محاسباتی این می‌توان از نظر کوتاه‌برد آگاه شد، که برای معمول فازی به ارائه آن آگاهی‌ها نیست (شکل‌های 4، 5 و 6).

<table>
<thead>
<tr>
<th></th>
<th>3.58</th>
<th>3.57</th>
<th>3.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(2)-Cu-S(2)</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>Cu-S(1)-Cu</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>Cu-S(2)-Cu</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
</tr>
</tbody>
</table>

شکل 4: فاصله برای تغییرات خودانالیزی طیف Ag K-edge EXAFS. تغییرات فوریه مربوط به آنتیز طیف Ag-S.
شکل ۵ ساختار چهاروجهی هرم‌های سه‌گوش به موارد (۰۰۱) در CuBiS با استفاده از کانی امیلکانیت استنیشده در ۳۱۰°C به دست آمده است.

شکل ۶ ساختار چهاروجهی هرم‌های سه‌گوش به موارد (۱۰۰) در CuSbS₃ با استفاده از کانی جلکستیپ استنیشده در ۴۵۰°C به دست آمده است.

۵) اندازه‌گیری مستقیم بر روی Debye-Waller با استفاده از ضریب EXAFS Debye-Waller می‌توان به‌منظورای موضعی یک ماده را به طور مستقیم به دست آورد (جدول ۲). این عمل از طریق مشاهده غلظت که وابسته به یک لاگه هم‌ارضی خاص در تبدیل فوریه است به دست می‌آید. غلظتی بر تنش‌های تنش‌های تنش‌هایی که دستگاهی جنگل به درشته و سیستمی از قواعد شاعور و در نتیجه به منظوری بیشترند.

۶) تشخیص انری مجاور در مقایسه با روش‌های پیشینمایی دیگر، توانایی بررسی EXAFS در فرآیند اوردن آگاهی‌های کمی از انری مجاور به طور مستقیم، محکم به فرد است (جدول ۲). در این ترتیب تعمیم ساختار امیلکانیت با روش‌های XAS است. این کانی جهانی و جنگل‌های CuS₃ شند در بافتکه آن (شکل ۲).

۷) اطلاعات در مورد پیوند با مطالعه طیف‌های کاتیون‌ها و آنیون‌ها، ساختار الکترونی XANES سولفیدها و سولفوسالت‌ها قابل برداشت است. آگاهی از پیوند نیز به طور غیرمستقیم و از طریق اندازه‌گیری‌های EXAFS به دست می‌آید.
شکل 7: ساختار امپلئیت که در آن چهاروجهی‌های Cu و قوشهای به یکدیگر بسته شده‌اند، پاره‌های S، امپهای S، چهاروجهی‌های واحدهای Cu، با خانه‌ی یکه‌ی Bi.

8) تعیین درجه به‌نظمی: اندازه‌گیری مستقیم به‌نظم‌های موضعی در یک ماده، از مقدار ضریب Debye-Waller با تحلیل‌های EXAFS امکان‌پذیر است. معلوم شده است که عرض هر عملکرد در ارتباط با همان‌ریز ویژه‌ای در تبدیل فوریه به دست می‌آید.

9) تعیین شکل کوتاه‌برد در کانی‌ها: یکی از کارایی‌های مهم به‌نظم‌های SRO در تشخیص انواع امپهای است که در کنار یکدیگر قرار گرفته‌اند. چون نموداری که بر این کار با خود می‌دهد، گاهی تفاوت‌های زیادی بین دست‌آوردهای حاصل از EXAFS و داده‌های XRD در مورد طول پیوند و عدد هم‌ارایی یک فاز با ماده‌ای خاص وجود دارد، زیرا از فقط ساختار انمایش جامد XAS کوتاه‌برد (SRO) به دست می‌آید، در جدول که چگونگی ساختار در گستره نظم دوربرد را نشان می‌دهد [8]
10. تعطیل‌سازی عنصری با ریزپردازی جذبی: با استفاده از بروهای X در سینکروترون، امکان ایجاد تصاوير فراهم می‌شود. در تحقیق حاضر، تصاویری از ناحیه پراکنش عناصر Ag و Sb در Fe²⁺ و Na₂FeSi₂O₆ و FeSiO₃ داشته‌ایم. سلفوسالت‌ها به دست آمده.

(2) کاربردهای دیگر سینکروترون:
11. 1-1. مطالعه ساختار شیشه‌های سیلیکات: شیشه‌ها نمک ساختاری ناچیزی در گسترده‌ای از انتگرال در اطراف یک کاتیون در دنده‌ای XAS به‌وسیله پرتو بررسی می‌شود.
11. 2-2. مطالعه مواد غذای سیلیکات: مطالعه ساختاری مواد آیکون سیلیکات در دنده‌ای XAS به‌وسیله پرتو می‌شود. انتگرال در اطراف یک کاتیون در دنده‌ای XAS به‌وسیله پرتو می‌شود. انتگرال در اطراف یک کاتیون در دنده‌ای XAS به‌وسیله پرتو می‌شود.
11. 3-3. مطالعه مواد تشکیل دهنده زمین در دما و فشارهای مقاوم به چاه‌های گوشت: زمین از جمله می‌توان به امکان پرتو برای X در فشارهای بالاتر از 500 GPa و دماهای 2 K هندسه همراهی با ترکیباتی در Fe²⁺ هندسه همراهی با ترکیباتی در Fe²⁺ با دماهای 10 K و 200 GPa در شرایط کرده.

4-4. بررسی تنگی - کرنش در فشارهای بیش از 500 GPa و نیز دماهای حدود 6000°C.
5-5. بررسی تعیین نیرو در XRD و دماهای 2 K و دماهای 2 K و دماهای 2 K.
6-6. امکان مطالعه تک پلوهای XRD نیز دماهای حدود 6000°C.
7-7. مطالعه خواص کاتیون‌ها و گاز فاز در آنها.
8-8. امکان پژوهش‌های گاز فاز با نانوژی بالا.
9-9. تصویر برداری با کمک پرتو X با نانوژی بالا.
10-10. امکان آزمایش پرتو برای X در زاویه‌های نسبی کوچک.

برداشت
سیلیائی جدید سینکروترون که قابلیت ایجاد اثرهایی ناپایدار را دارد تأثیر شگرفی در تولید علوم کاتیون‌سازی و پلیمراسی داشته و خواص می‌گست. گسترش پژوهش‌های بنیادی در کاتیون‌سازی و پلیمراسی به تکامل سیلیائی جدید سینکروترون بستگی دارد که فرصت‌های نوینی از کاربردهای سینکروترون در کاتیون‌سازی و پلیمراسی دارای خواص اورث. امکان به دست آوردن گاما‌های شفاف و یکه‌ای با سیلیائی و مواد شناسی جدید محدود جدید (مثل محلول جامد، چلکسترول و امیدکونت) و نیز معرفی چند فاز جدید (مثل گاماپراپروت) در این پژوهش شده است.

مراجع

[6] Razmara, M.F., *The chemistry, structure and solid solution of Ag(Sb, As,Bi)S₂ and the effect of Cd, Hg and Zn substitution into Ag (Sb, As, Bi)S₂*, PhD thesis, The University of Manchester (1997).
