Mineralogical and Geochemical studies of Zeolitic tuffites in Damavand-Firuzkoh area, East of Tehran

B. Taghipour¹, M. Noghreyan², M.A. Mackizadeh², A. Ghasemi¹

¹- Jahad Daneshgahi, Isfahan university of technology.
²- Department of Geology, University of Isfahan. Iran 81746-7344.
E-mail: jahad59@sepahan.iut.ac.ir

(received: 28/9/2003, received in revised form: 3/3/2004)

Abstract: This study focused on the upper parts of Karaj Formation in Damavand-Firuzkoh area. Field study indicated that the green tuffites of Karaj Formation in Kilan, Hesarbone, and Zarindasht irregularly altered and changed to zeolite and bentonite. Microscopic studies of zeolitic tuffites have shown that the main components of these tuffites are altered glass shards. The shards changed to zeolites from their margins. In addition to zeolite, clay minerals also changed to glass shards. Scanning Electron Microscopic studies confirmed the change of glass shard to zeolite and clay mineral from their margins. The presence of clinoptilolite and carbonate impurity in vitric altered tuffite are determined by thermal curves tests (TG & DTG). Also, X-ray showed clinoptilolite, crystobalite as major mineral and muscovite, montmorillonite as minor mineral in these tuffites. On the base of XRF and ICP, chemical composition of these tuffites are in the range of acid to intermediate rocks compositions. Chemical composition of altered and unaltered tuffites is unique. Base on the petrological studies, the componential magma of the tuffites is cale alkaline. Spider diagrams indicated the enrichment of K, Ba, Th, Rb, which is characteristic of arc magmatism.

Keywords: Tuffite, Zeolite, Firuzkoh, Clinoptilolite.
مطالعات کانی شناسی و زئوشیمی توفیقی‌ای زئولیتی‌ی شده منطقه دماوند- فیروزکوه (شرق تهران)
بتول تقي پور، موسی نقردیان و مهدعلی مکی زاده، علی قاسمی

1- جهاد دانشگاهی دانشگاه صنعتی اصفهان
2- گروه زمین‌شناسی دانشگاه اصفهان

jahad59@sepahan.iut.ac.ir

چکیده: بخش فوتوانی سازند کرج در محدوده دماوند- فیروزکوه مطالعه شده است. بررسی‌های صحرایی نشان می‌دهد که توفیق‌های سبز سازند کرج در مناطق کیلان، حصارین، و ژرین‌دشت به صورت نامنظم درگزار و در طی این دگرسانی به زئولیت همرأه با بتنویت تبدیل شده‌اند. مطالعات سنجش‌های نشان می‌دهد که بخش اعظم توفیق‌ها در زمینه زئولیتی شیشه‌ای (Glass Shard) تشکیل شده است، به طوری که این زئولیت‌ها نیز از حاشیه درگران شده‌اند. مطالعات میکروسکوپ الکترونی روبشی نیز تبدیل تیغه‌های شیشه‌ای از حاشیه به زئولیت و کلینوپیرولیت تناخلی ارتباط را در توفیق‌های شیشه‌ای نشان می‌دهد. هجوم فازهای اصلی کلینوپیرولیت، کریستالیت‌های فرمول‌های مسکوکس و مونت موریتیون با آزمایش‌های برای نمونه‌برداری (XRD) برای تیغه‌های شیشه‌ای نشان‌دادند. مطالعات زئوشیمی انجام شده در توفیق‌های شیشه‌ای نشان دادند. مطالعات زئوشیمی و ترکیب شیمیایی توفیق‌های زئولیتی را داشته تا پوادسیت تایید می‌کند که با ترکیب شیمیایی توفیق‌های نادرسان این منطقه تقابل ندارد. همچنین برای این مطالعات مکانی سازند توفیق‌ها از نوع کالکوآنالن است. نمونه‌برداری به‌نهر جدید نیز را نشان می‌دهد که این مکانی کمک‌ها ویژه‌ای به‌نورهای Th، Ba، Rb و K یافته‌های نورهای اشکال‌انداز است.
واژه‌های کلیدی: توخاتی، زئوتیت، فیروز‌کوه، کلینتهلولیت.
مقدمه
مناطق مورد مطالعه در ۱۴۰ کیلومتری شرق تهران موقعیت جغرافیایی ۳۵°۲۰۰ طول شرقي و ۳۵°۳۰ شرقي شمالی بین دماوند تا فیروزکوه قرار گرفته‌اند. مطالعات در این پژوهش بر خشي از گمرکند آنشفشنائي انسن البرز (دامغان-کوههای طالش) در شرق و غرب تهران انجام شده که در شکل 1 مشخص شده است. سنگ میزان، نهشتی‌های آنشفشنائي-رسوبی سازند کرج است. حوضه رسوبی این سازند احتمالاً یک محيط فرونشست مربوط به عملکرد فازهای کششی یا گروه‌های کرتاسه-پالوئوسن است [1]. لیتوژئی سازند شامل توقفت و مرن، همره با میان لايهای شیل به رنگ سیاه روشن تا کرم و در مواردی همره گچ با توده‌های توق و توقفت سیارتری دیده شده است.
توجهتی سیز-بخش فوقانی سازند کرج در بخش‌های کوهستانی دگرسان شده‌اند. زئولیتی شدن و بنتونیت‌های شدن محصولات غالب توقفت‌ها هستند [2]. دگرسانی در این مناطق نظام خاصی نداشته و به صورت انتخابی عمل کرده است. به صورتی که بین واحدهای دگرسان، بخش‌های سنگی و همچنین برخی از واحدهای زئولیتی-بنتونیتی و در انتهای گسل‌ها موجود در منطقه نیز از دیگر خصوصیات مشترک دگرسان شده است. مطالعات زئولیت‌زایی در سه سیستم کیلان جنوب شرق دماوند، حصارین جنوب غرب فیروزکوه، و زرسند جنوب غرب فیروزکوه صورت گرفته است.

شکل ۱ موقعیت زمین ساختی آنشفشنائي دوران سوم و محدوده مورد مطالعه.
در این کار بیشترین پس از مطالعات صحرایی و نمونه‌برداری، نخست با استفاده از میکروسکوب نوری مدل BH2 مطالعات سنتیشن‌سازی انجام گرفت. برای شناسایی کاتیون‌های زولوتئینی، رسی و دیگر کاتیون‌های همراه از میکروسکوب الکترونی روشی مدل Stero Scan S360 کمپرسی انجام‌شده است. آنالیز گرمایی 1 M توسط دستگاه مدل 990TA ساخت کمپرسی انجام شد. مطالعات زولوتئینی شرکت DU PONT ICP-MS و بررسی‌های XDR و XRF به ترتیب توسط دستگاه مدال HP4500+ و PW2400-Philips در شرکت کیان طیف انجام شد.

زمانی شناسی عمومی منطقه

فعالیت ماکی‌یا اتیس در دریای انتخاب شد. به‌خودی از فراورده‌های انتخابی توسط از دریای انتخابی - رسی سازند کریک در بری می‌گردد. در این میان، توقف و توقف‌های سیز رنگ با میان لایه‌های انتخابی غیر‌سیز رنگ را به خود اختصاص دادهند. توقف‌های سیز کریک در مناطق کیل، حصار و زورین دست تا تأثیر عوامل مختلف به کاتیون‌های زولوتئینی و رسی تبدیل شده‌اند. زولوتئینی شدن شکل‌پذیری سیزی چنانچه دیگر نیازمندی کریک نسبت بوده و دارای شکستگی صدق هستند.

سنگ‌نگارشی و سنگ‌شناسی

توقف‌های شیشه‌ای زولوتئینی شده با بافت شیشه‌ای آوار نخست در غالب سنگ‌های این منطقه را تشکیل می‌دادند. توقف‌های دارای زمینه شیشه‌ای متشکل از تغییرات شیشه‌ای به اشکال مختلف کروی، جناغی و تغییرات دیده شده‌اند. در داده‌ها متغیری از حالت‌های به وسیله زولوتئین جابجایی شده‌اند. از طرفی کاتیون‌های زمینه علاوه بر زولوتئین می‌توان از پلازموکلاس به صورت خرد شده و یا دارای ماکل پلی استرسیک رفتار کرده‌اند که باید توضیح می‌شود که در حالت‌های این هسته‌ها فلسفات پتاسیم به صورت خرد شده و یا دارای خاموشی موجب، بیرون‌های تغییرات اکسپرسیون‌های نادرست، جریان برکنده آمیلی و کلیپی شباهت اشرار کرد (شکل ۲ و ۳). از دیگر شاخص‌های دگرانشی در این سنگ‌ها وجود آنترفیلی زولوتئینی شده است. میکروفسیله‌های سیلیسی و رادیولیره‌ها می‌توانند منشا زولوتئین باشند و به صورت درجرا به این کاتیون تبدیل شوند [5].

1. Differntial Thermal Gravimetry
2. Glass Slard
با توجه به ریز دانه بوادن تویفیته‌ها، برای مطالعه و شناسایی بیشتر کانی‌های زئولیتی از میکروسکوب الکترونی روبشی استفاده شد. تصاویر SEM نشان داده است که زمینه تویفیته‌ای زئولیتی شده منطقه فیروزکوه از قطعات به شکل و ریزدانه‌ای تشکیل شده است. آنالیز کیفی این قطعات نیز نشان می‌دهد که عناصر تشکیل دهنده آنها (شکل ۴)، با توجه به ترکیب شیمیایی احتمالاً این قطعات تیقف‌های شیشه‌ای زئولیتی شده است. همچنین همراه با قطعات زئولیتی شده کانی‌های ورق‌های شکل رسی نیز دیده می‌شوند. آنالیز نقطه‌ای از این ورق‌ها با ترکیب شیمیایی کانی رسی منت موریلوسیت مطابقت دارد (شکل ۵).

شکل ۲ پیونت در زمینه شیشه ای توف زئولیتی شده فیروزکوه.

شکل ۳ تیغه‌های شیشه‌ای که از حاشیه زئولیتی شده است.
شکل 4 تصویر SEM تیغه شیشه ای دگرسان شده.

شکل 5 تصویر SEM به همراه آنالیز تقطعی آن از کانپهای رصد.

زنلیت ها از جمله کانپهای ابداری هستند که در اثر گرمایه بدون اهمیتی ساختاری اب خود را از دست می دهند. در روش گردن سنگی گرمایی و گران سنگی گرمایی افتراقی این کانپهای ابدار با از دست دادن آب ساختاری خود قلله گرمایی ظاهر می سازند. هر قله سرشتی کانی خاصی است که با توجه به استانداردهای مربوط به فاصله شناسایی می شودند. قله جنب گرمایی که از ۲۸ درجه سانتی‌گراد در ۴۲۵ درجه سانتی‌گراد با پیش به می رسند و با کاهش جرم

۱/۱۱ ترکیب این مقارن کالیومبولیت از نوع کالیومبولیت است. همچنین قلله گرمایی
که از 335° به زیر 374° درجه سانتی‌گراد در راحتی ۵۲ هری می‌باشد، بالا کاهش حجم ۵۰/۰۵ درصد می‌باید.

نمونه‌های ناخالصی گردن‌های است (شکل ۶).

شکل ۶: نمونه‌هایی از تغییرات ذرات زئولیت شده نشان‌دهندهٔ فاز کلینوپتیلوپت و ناخالصی کردن.

براساس نتایج XRD در شکل ۷، کمیت‌های اصلی تغییراتی که زئولیتی فورم، زئولیتی از نوع کلینوپتیلوپت کوارتز و کریستال‌های است و کانی‌های فرعي این تغییرات مطابقت و مواد - موریلونیت است. مقایسه تغییراتی سالم و زئولیتی شده منطقه فیروزکوه به وسیله و XRF بر نشان می‌دهد که ترکیب شیمیائی این سنگ‌ها شیبی کدامیانگی (جدول‌های ۱ و ۲).

شکل ۸: نسید عناصر مختلف و نیز نسید SiO$_2$/Al$_2$O$_3$ بر حسب سیلیس (را نشان می‌دهد.

Downloaded from ijcm.ir at 9:16 +0430 on Tuesday June 29th 2021
شکل ۷: بررسی طرح XRD وجود کاتی کلیپونیلونیت و غوند کاتی اصلی توقف‌های دگرسان شده. فیروزکوه ناپایدار می‌کند.

شکل ۸: مقایسه توقف‌های سالم (O) و زلولیتی شده (●).

جدول ۱: نتایج آزمایش‌های ازایش‌های ZnO های ZnO شده و شده منطقه فیروزکوه.

<table>
<thead>
<tr>
<th>عنصر اصلی</th>
<th>SK7-2</th>
<th>SK6</th>
<th>SH1</th>
<th>SH4</th>
<th>عنصر اصلی</th>
<th>SK7-2</th>
<th>SK6</th>
<th>SH1</th>
<th>SH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>88.85</td>
<td>87.73</td>
<td>99.52</td>
<td>96.86</td>
<td>Ge ppm</td>
<td>0.85</td>
<td>0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>10.23</td>
<td>16.92</td>
<td>1.43</td>
<td>1.56</td>
<td>Hf ppm</td>
<td>29.9</td>
<td>27.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.83</td>
<td>0.85</td>
<td>0.38</td>
<td>0.45</td>
<td>Ho ppm</td>
<td>0.349</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.11</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>In ppm</td>
<td>1.23</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
<td>0.36</td>
<td>La ppm</td>
<td>0.27</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>1.94</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>Lu ppm</td>
<td>0.198</td>
<td>0.198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 9:16 +0430 on Tuesday June 29th 2021
جدول ۲ آزمایش چهار نمونه از توقفه‌های زنلیانی، شده، منطقه فیروزکوه

<table>
<thead>
<tr>
<th>مواد (PPM)</th>
<th>Zn-6</th>
<th>Zn-19</th>
<th>ZS301</th>
<th>Sh2</th>
<th>مواد (PPM)</th>
<th>Zn-6</th>
<th>Zn-19</th>
<th>ZS301</th>
<th>Sh2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>73.61</td>
<td>73.16</td>
<td>74.09</td>
<td>76.81</td>
<td>V ppm</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.52</td>
<td>11.84</td>
<td>11.93</td>
<td>11.65</td>
<td>W ppm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.04</td>
<td>1.10</td>
<td>1.07</td>
<td>1.27</td>
<td>Y ppm</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>CaO</td>
<td>0.87</td>
<td>0.84</td>
<td>0.85</td>
<td>0.87</td>
<td>Zr ppm</td>
<td>189</td>
<td>189</td>
<td>189</td>
<td>189</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.47</td>
<td>2.46</td>
<td>2.48</td>
<td>2.42</td>
<td>Zn ppm</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>MgO</td>
<td>0.81</td>
<td>0.98</td>
<td>0.97</td>
<td>0.89</td>
<td>Mo ppm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.17</td>
<td>1.14</td>
<td>1.17</td>
<td>1.16</td>
<td>Ba ppm</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.32</td>
<td>0.38</td>
<td>0.38</td>
<td>0.32</td>
<td>Co ppm</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>Cu ppm</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>Nb ppm</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>L.O.I</td>
<td>5.87</td>
<td>5.81</td>
<td>5.81</td>
<td>5.75</td>
<td>Ni ppm</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Cl ppm</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>Pb ppm</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>S ppm</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>U ppm</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rb ppm</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>Th ppm</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sr ppm</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

برای تأمین مواد مکانیکی - فیروزکوه از نمودار الكالی هرا بر حساب سیلیس استفاده شد. [A] که در شکل ۹ نشان داده شده است. شکل ۹ ماهیت بودن توقفه‌های فیروزکوه، که در محدوده روشی قرار دارند را نشان می‌دهد.

همچنین نمودار [B] در مقابل [C] در شکل ۱۰ نشان می‌دهد که نمونه‌ها در محدوده روشی قرار دارند. این نتیجه تأیید دیگر بر این است که وقوع توقفه‌ای این منطقه است [A]. برای تعیین قلمرو ماکمایی از نمودارهای مختلف استفاده می‌شود، به عضی از...
ماته‌الات کانی‌شناسی و زئوشیمی

این نمودارها که جهت تعیین نوع ماده‌ای در این پژوهش استفاده شده است برحسب زیر است: در نمودار تغییرات ژیلیس به آلکالی که سنتگهای آدرین را به دو محدوده آلکالین و فاک تسمیم می‌کند [۱۰۰]. سنتگهای منطقه فیروزکوه در محدوده فاک آلکالین قرار دارند. برای بررسی سنتگهای سیب آلکالین نیز از نمودار AMF استفاده شده است. این نمودار بر اساس درصد‌های (MgO)، (Na۲O+K۲O)، (FeO+Fe۲O۳)، (FeO+MnO)، (Zr/TiO۲) و اکسید منیزیم (SiO۲) و جرمی آلفا (Na۲O+K۲O) در نمودار استفاده گردیده است که در این نمودار مقادیر انتشاراتی از فیروزکوه ماهمیت کالک‌آلفا نشان می‌دهند (شکل‌های ۱۱ و ۱۲).

شکل ۹ تغییرات آلکالیها بر حسب سیلیس جهت تسمي‌بندی سنتگه‌ها.

شکل ۱۰ تغییرات Zr/TiO۲ بر حسب SiO۲ جهت تسمي‌بندی سنتگه‌ها.
عنصر کمیاب و نادر به دست آمده از آنالیزهای XRF و ICP-MS نسبت به کندوقت و جهت اولیه مقیاسه شدن (شکل 13). این نمودارهای عنبیه، غنی‌شده‌گی را نشان می‌دهند که ویژگی سنگهای مagmaی که در فاصله Th و Ba، Rb، K از عناصر بیشتر. ناهنجاری منفی Nb و Ti نشان دهنده ارتباط این توپوفیت‌ها با محوریتی فوروارد و کوه‌زایی است. شیب منفی این نمودارها از مشخصات مagmaی كالوکالکان، اکالان و
شوشونیتی است. با توجه به جدول‌های ۱ و ۲ میزان بالایی استراتاسیوم مربوط به تشكیل توفیتهای زنلیتی شده در یک محیط قلبی و یا به دلیل توانایی جذب زائده توفیتهای زنلیتی بوده است‌[۱۱ و ۱۲]. زنلیت ایجاد شده در دغ‌رسانی توفیهای Ba و Sr شده برای کاتیون‌های منطقه دماوند- فیروزکوه، کلینوپتیلولیت است. کلینوپتیلولیت زنلیتی است که در سنگ‌های با ترکیب شیمیایی استندرد و در مراحل اولیه زنلیتی شدن شکل می‌گیرد [۱۳]. با توجه به اسیدی بودن توفیتهای منطقه دماوند- فیروزکوه می‌توان تشكل‌های اين کاپی را پارازاداشت.

همچنین نقش میکروفسلهای سیلیسی در زنلیت راژی بی‌تأثیر نیست [۱۴].

شکل ۱۳ نمودار بهم‌جاري شده توفیتهای زنلیتی شده.

بحث و برداشت

در کمربند توفیتهای سبز واقع در شرق تهران و در منطقه دماوند- فیروزکوه، باخیزی از سازند کرج تحت تأثیر شرایط محیطی دغ‌رسان شده و طی این دغ‌رسانی به زنلیت و کاینرسي تبدیل شده است. مطالعات SEM و XRD، DTG، TG انجام شده بر توفیتهای فیروزکوه نشان می‌دهد که ترکیب شیمیایی توفیتهای سالیم و زنلیتی شده تا به‌حدود ندارد و هر دو نوع سگ ترکیب زنلیتی دارند. همچنین نمودار AFM نشان می‌دهد که ماکم‌ای این توفیتهای از نوع کالکوانیک است. برای تشکیل زنلیت‌ها می‌توان تصور کرد که ابزار جویی و زیر زمینی حین عبور از واحدهای نمکی (احتمالاً گندیهای نمکی) و تشکیلات
مراجع
[1] امامی م.، "گردش زهیس در ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور (۱۳۷۹) صفحه ۸۰۸.
[3] دویش زاده ع.، "زمین‌شناسی ایران، انتشارات امیر کبیر تهران (۱۳۸۰) صفحه ۹۰۱.
[4] نیکی‌یار، "مطالعات زمین‌شناسی و کانی‌شناسی تولید‌های زولوئیت‌های سه‌زبان کرخ در تبریز تهران"، منتشر نشده است (۱۳۸۱) صفحه ۱۹۳.
[7] کاظمیان ج، "آمیان پسماندهای رادیواکتیو سایر حاصل از محصولات شکافت‌های اورانیوم طبیعی برتو عزیزی ۹۰ و Bq/ m3، با کارآی ایران"، پایان‌نامه دکتری (۱۳۷۸) صفحه ۲۷۷.
مطالعات کانی شناسی و زمین‌شناسی ...