The effect of Variations in Pore Fluid Properties on the Physical and Micro-structural Characteristics of Bentonite

V.R. Ouhadi, A.R. Goodarzi

Department of Geology, Bu-Ali Sina University, Hamean, Iran.
E-mail: vahido@basu.ac.ir

Abstract: Considering the importance of micro-structural characteristics of clayey soils on their behavior, the main objective of this research is to investigate the effect of pore fluid properties variations on clayey soils and their physical and micro-structural changes. For experimental purposes, soil-electrolyte solutions with the ratio of 1:50 prepared. A series of physical experiments, as well as, SEM and XRD experiments performed to investigate any variation on the soil behavior due to the changes in pore fluid properties. The results of the physical experiments indicate that, with increasing the electrolyte concentration, one will be faced with a change on the soil behavior including its interaction with water. The SEM pictures indicate that with the presence of sodium ions at low concentration, first soil takes a dispersive structure. With a further increase in salt concentration, and due to an increase in attractive forces in comparison with repulsive forces within clay particles, a flocculated structure forms. In addition to the above, during this process, a change will happen on the intensity and basal spacing of clay mineral. It is concluded that the main reason for a noticeable change in physical behavior of soil can be attributed mainly to the significant change in electrostatic forces of clay particles.

Keywords: Micro-structural characteristics, Bentonite, Pore fluid, SEM, XRD.
تأثیر تغییر مشخصات مايع روزنهای بر خصوصیات فیزیکی و ریزساختاری بنتونیت

وحید رضا اوحدی، امیررضا گودرزی

دانشگاه بูله سیاسه همدان

vahido@basu.ac.ir

چکیده: هدف اصلی این پژوهش با توجه به اهمیت مشخصات ریزساختاری کانی شناختی و زیبایی در رفتار مهندسی خاک‌های زیستی، بررسی تأثیر خصوصیات کمیتی مايع روزنهای خاک‌های رسی بر تغییر ریزساختار آن است. به منظور نخست با استفاده از مخلوط خاک بنتونیت و نمک‌های سدیم با منشا آلیونی متواصل، مجموعه‌ای از نمونه‌های مصنوعی خاک-الکترولیت به نسبت ۱:۵ و سپس با آزمایش‌های فیزیکی و آزمایش‌های XRD و SEM تغییر رفتار خاک بررسی می‌شود.

نتایج آزمایش‌های فیزیکی نشان می‌دهد که با فراوانی غلظت الکترولیت، رفتار خاک از نظر تمایل به بردگی کننده با آب کامل تغییر می‌کند. نتایج تصادفی که نشان می‌دهد که با حضور کانیون سدیم و در غلظت‌های کم نمک، نخست ساختار خاک پراکنده و با افزایش بیشتر غلظت نمک به لحیه تبدیل می‌شود که ناشا از غلیظ نیروهای جاذبه بر نیروهای دافعه بین سطوح رسی است. همچنین با تغییر روزنهای بنتونیت، تغییرات عمده‌ای در موقعیت و شدت قله پرانت پتو X ایجاد می‌شود. بر این اساس، تغییرات ایجاد شده در رفتار مکانیکی را می‌توان به تغییر نیروهای بین سطوح ذرات رسی در مقیاس ریز ساختاری نسبت داد.

واژه‌های کلیدی: خصوصیات ریزساختاری، بنتونیت، مايع روزنهای XRD, SEM
مقدمه

خلاصات رفتاری و مشخصات مهندسی خاکهای رسی، از جمله پارامترهای مقاومت برشی، نیرو تورم و درصد جذب آب و نیز نسبت فرسایشی پذیری آنها، به‌طور قابل ملاحظه‌ای متأثر از نوع کانال‌های تشكیل دهنده خاک و خصوصیات آب روزه‌ای است. علاوه بر این، در پی خاک مشخص با حضور کانال‌های رسی معمولی، با تغییر نوحه آرایش و قرارگیری سطوح رس در کنار یکدیگر، احتمال تغییر خصوصیات رفتاری خاک به‌طور قابل توجهی افزایش یافته است.[۱۱]

در این راستا، به عنوان مثال در خاکهای رسی دارای ساختار لخته شده، نسبت به خاکهای رسی دارای ساختار بافته، به دلیل افرادی چهار نواحی و میزان تراکم‌پذیری خاک، افزایش داده است که نشان دهنده تأثیر ساختار خاک بر خصوصیات رفتاری آن است.[۲] همچنین، مطالعات انجام شده نشان می‌دهد که مقهومی به‌طور اساسی در حالت ارزیابی نقش خصوصیات شیمیایی و دیگر رفتار آب روزه‌ای، به‌طور مکانیکی و تکنیکی خاکهای رسی را که افراد نماید.[۵] همچنین، تحقیقات نیز به‌طور کامل شده است که در فشارهای تکنیکی، مدل بلوک‌کریئی با تأثیر نسبت منفی فشار داشته است.[۷] همچنین، تحقیقات انجام شده یافته است که در آزمایشات مختلف، نیز تأثیر نسبت منفی در این حالت افزایش داده است که نشان می‌دهد که مقاومت و خواص زمین‌شناسی مخلوط آب خاک و به خصوص برای گزینه‌های تیپ‌سنجی و پیش‌بینی اثر (تند بند) دارد.[۹] نوع کانال‌های تشكیل دهنده خاک در این راستا سبب مشاهده رفتارهای منفی در نمونه‌های مورد مطالعه شده است.

از طرفی در طریquaه‌ی زیست محیطی با استفاده از خاک بنیان سعی می‌شود که با توجه به حضور کانال‌های مونتریلولیت و به دلیل بالا بودن ظرفیت تبدیل کانال‌های خاک (CEC) و نیز بافته بودن نفوذپذیری آن، امکان انتشار ال‌ان‌دی‌های محیط طراحی و آب‌های زیرزمینی به حداکثر ممکن کاهش داده شود.[۱۰] به عنوان نمونه، با در نظر گرفتن وابستگی قابلیت گذره‌های خاک به ساختار آن، مطالعات گسترشی نشان می‌دهد که با تغییر مشخصات مايع

1- Flocculated Structure
روش آزمایش
با توجه به اینکه خاک بنتونیت در زمینه طراحی لایه‌های رسی زئونکتیبا (CCLs)، طراحی لایه‌های رسی متراکم (GCLS)، موجود در مراکز دفن زباله و نیز هسته رسی سدهای خاکی دارای کاربرد وظایفی است [14]. کلیه مطالعات این پژوهش نش و روی خاک بنتونیت تهیه شده از شرکت باریک ایران صورت گرفته است. نخست برای شناسایی خاک خصوصیات شیمیایی آن با توجه به روش توصیه شده توسط بانگ و همکاران [15] تعبیه و برای آنالیز شیمیایی مایع روزنه‌ای از دستگاه جذب اتمی مدل GBC 932، AB Plus استفاده شد. همچنین خصوصیات فیزیکی خاک نیز بر اساس روش استاندارد ASTM D 4226-98 انجام شده، خصوصیات فیزیکی-شیمیایی بنتونیت مورد استفاده مطابق جدول 1 به دست آمد. برای اینکه اثر غلظت الکترولیت بر خصوصیات ریزساختاری محلول‌هایی با غلظت صفر تا صد میلی‌آمپر در لتر (meq/l) از نمک‌های کلرید سدیم
نمودهای خاک - الکترولیت در نسبت ۱:۵ به هم مخلوط

جدول ۱

<table>
<thead>
<tr>
<th>خصوصیات فیزیکی - شیمیایی خاک به‌نتیجه‌ی مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشخصه مورد ارزیابی</td>
</tr>
<tr>
<td>Liquid Limit, %</td>
</tr>
<tr>
<td>P.I., %</td>
</tr>
<tr>
<td>Soil Classification</td>
</tr>
<tr>
<td>Clay fraction, %</td>
</tr>
<tr>
<td>Silt fraction, %</td>
</tr>
<tr>
<td>Sand, %</td>
</tr>
<tr>
<td>pH (1:50, Soil-water)</td>
</tr>
<tr>
<td>EC (dS/m)</td>
</tr>
<tr>
<td>NaCl (cmol /kg)</td>
</tr>
<tr>
<td>Na⁺ (cmol /Kg)</td>
</tr>
<tr>
<td>Mg²⁺ (cmol /Kg)</td>
</tr>
<tr>
<td>Cl⁻ (cmol /Kg)</td>
</tr>
<tr>
<td>CEC, (cmol /Kg)</td>
</tr>
<tr>
<td>SSA, (m⁲/g)</td>
</tr>
<tr>
<td>Carbonate, %</td>
</tr>
<tr>
<td>Organic, %</td>
</tr>
</tbody>
</table>

به منظور تهیه نمونه‌های مناسب برای SEM از مجموعه لوله‌های پلاستیکی که در دو طرف آن سنگ متخلخل قرار گرفت استفاده شد [۱۲]. برای این منظور، ابتدا نمونه‌های خاک - الکترولیت به مدت ۹۶ ساعت، به این ترتیب که هر روز تا ۱۵ دقیقه بهم زده می‌شوند، نگهداری شدند تا همگنی فیزیکی - ظاهری آنها اطمینان حاصل شود. سپس، این نمونه‌های خاک-الکترولیت به تعداد رسیده درون لوله‌های پلاستیکی تونلی به قطر داخلی ۷ سانتی‌متر و ارتفاع ۱۵ سانتی‌متر ریخته شدند و با استفاده از یک پیستون و بارگذاری مرحله‌ای نشان داد. ۲۵ کیلو پاسکال بارگذاری شدند. پس از خروج کامل آب روزنه‌های اضافی، نمونه خاک از درون لوله بردن اورده شد و تا ۲۴ ساعت برای خشک شدن درون گرمخانه با دمای ۶۰ درجه سانتی‌گراد شد. پس از این مرحله بر اساس روش باردن و سایر [۱۷] با شکستن هر یک از نمونه‌ها قطعاتی به ابعاد تقیبی یک سانتی‌متر تهیه شد و با استفاده از دستگاه میکروسکوپ الکترونی

روشی مدل Jeol - Jsm ۸۴۰A تهیه شد.

نموده‌های مناسب برای XRD براساس روش توصیه شده توسط مور و رینولدز تهیه شدند [۱۸]. بر اساس این روش، جنگله از مخلوط خاک - الکترولیت روی لشکری ریخته شد و پس از خشک شدن یکی از نمونه‌ها در دمای اتاق و ۵۵ درجه سانتی‌گراد مورد بررسی قرار گرفت.

۲- Soil - Electrolyte
۳- Air-dried
پرسی برای X آنها با استفاده از دستگاه پروتو ایکس مدل Siemens-Diffraktometer-D5000
تله، شد. لازم به ذکر است که در مراحل مختلف این پژوهش برای کنترل شرایط
آزمایشگاهی، از آب مقطر به عنوان آب مورد استفاده در ساخت محلول استفاده شده است.

ازمایش‌های فیزیکی
مشخصات رفتاری و زیست‌خانگی خاک‌های ریزدانه تابعی از پشم‌کن نیروهای دافع، و جاذبه
بین سطوح رسی می‌باشد. به طوری که میزان چگونگی توزیع این نیروهای روی سطوح رسی
نیز خود نام تردد و ترمش نظری لایه دوگانه است [16 و 17]. از این روی، و با در نظر گرفتن روابط
نظری لایه دوگانه، تغییر مشخصات شیمیایی مابین روزنه‌های اطراف رس سبب تغییر میزان
ضخامت لایه دوگانه یک‌ساعتی می‌شود که در نهایت سبب تغییر چگونگی توزیع نیروهای بین
پولکهای رسی و در نتیجه تغییر رفتار خاک خواهد شد.

برای بررسی تأثیر تغییر شرایط مابین روزنه‌های در تغییر خصوصیات فیزیکی خاک، تغییر حد
آگوئی خاک مورد مطالعه در غلظت نمک‌های مختلف بر اساس آنی‌نامه ASTM
اندازه‌گیری شد. برای ترمیم نسپاره‌ای از آگوئی خاک مورد نگهداری موازین گونه به سطح رسی
آگوئی هر نمونه اندازه‌گیری شد که نتایج آن در شکل 1 ترسیم شده است. ملاحظه می‌شود
که با افزایش غلظت الکترولیت، حد آگوئی نخست افزایش و سپس کاهش یافته است. به
عبارت دیگر، نتایج نشان می‌دهد که نکست با حضور نمک و در محدوده بانین غلظت
الکترولیت، با علت نیروهای دافع بر نیروهای جاذبه بین سطوح رسی [17]. سطح در نمود با
ای بین ذرات افزایش و در نتیجه امکان قرارگیری مولکول‌های آب بین پولکهای رسی بیشتر
می‌شود. در ادامه و با افزایش بیشتر غلظت الکترولیت، با توجه به کاهش ضخامت لایه دوگانه
خاک و با علت نیروهای جاذبه بر نیروهای دافع، سطح رسی به کننده تبدیل شده و با
کاهش امکان قرارگیری مولکول‌های آب بین ذرات، مقدار حد آگوئی کاهش یافته است. از
طرفی ملاحظه می‌شود که در نمونه بانونیت حاوی نمک کلرید سدیم، حداکثر حد آگوئی در
غلظت 5 و در نمونه ترکیب شده با نمک کربنات سدیم حداکثر حد آگوئی در
meq/lit 25 رخ داده است. همچنین میزان حد آگوئی در نمونه بانونیت با کربنات
سیدم نسبت به نمونه حاوی نمک کلرید سدیم افزایش بیشتری نشان داده. علت اصلی این
افزایش اتصال شیمیایی آن‌ها است که سطوح ذرات رسی و افزایش بار محتوی روی
این سطوح می‌تواند باشد. به نحوی که این اتصال می‌تواند سبب افزایش نیروهای دافع بین ذرات رس و
افزایش پراکندگی ساختاری می‌شود که در نهایت افزایش پتانسیل جذب سطحی خاک را در پی
خواهد شد [19].
آزمایش های میکروسکوپ الکترونی روبشی (SEM)

نتایج آزمایش های فیزیکی نشان دهنده تأثیر خصوصیات شیمیایی مابع روزنهای بر رفتار خاک است. همانطور که در بالا آمده، تغییرات رفتار خاک می توانند ناشی از تغییر نیروی بین ذرات رس و در نتیجه تغییر چگالی را و آرایش سطح رس باشد. برای تحقیق تغییرات ایجاد شده در خاک از هر یک از نمونه ها در غلظتی از نمک که پیشترین تغییرات را در خصوصیات فیزیکی (حد آگوئی) ایجاد کرد، نمونه های بوف سه تا آزمایش تهیه شدند. برای ارزیابی تأثیر نمک‌های اضافه شده بر ساختار کلی چربی را، بیشتر عکس‌های SEM از بزرگ‌ترین آنها کم تهیه شدند.

در شکل ۲ تصویر SEM بسته‌بندی مرده مطالعه در حال نمونه‌گیری شده با آب مختلط و در mcq/lit بسته‌بندی مطالعه در شکل ۳ اف آب نیز بسته‌بندی شده از نمک کلرید سدیم در غلظت ۵ از نمک ارائه شده است. لازم به ذکر این است که غلظت اکثر افراد در زمان اضافه کردن نمک کلرید سدیم به خاک است. مقایسه این تصاویر نشان می‌دهد که فضای خالی میان پولکهای رس در نمونه‌ی با غلظت نمک ذکر شده بین از نمونه به شده با آب مختلط است که می‌تواند ناشی از افزایش نیروهای دافعه بین ذرات رس در حال غلظت کم تکولوپت باشد [۱۵]. تصویر SEM شکل ۳ ب نیز نمونه بسته‌بندی غلظت ۱۰۰ نمک کلرید سدیم را نشان می‌دهد. مشاهده می‌شود که با توجه به افزایش قابل ملاحظه غلظت اکثر، نیروهای دافع بین ذرات کاهش یافته است که موجب نزدیک شدن سطح رسی به یکدیگر و لختن شدن خاک و در نتیجه ایجاد روزنه‌های وزرگ می‌گردد. در کنار ساختار خاک است مطالعات انجام شده نشان داده که ضرب نفوذ‌پذیری در چنین حالتی به شدت افزایش می‌یابد [۱۲]. که با در نظر گرفتن لزوم باین بودن نفوذ‌پذیری خاک در طرح‌هایی نظیر لیستهای محافظ مراکز دفن زباله و نیز هسته رسی سدنهای خاکی، تغییر ساختار ناشی از تغییر مشخصات شیمیایی مابع روزنهای خاک از همیشه بهبود یافته حاصل می‌گردد [۱۰].
شکل 2 تصوری نمونه بتنوئینی تهیه شده با آب مقرت.

شکل 3 نتایج SEM نمونه همراه با NaCl 5 نمک (الف) بتنوئینی همراه با 100 نمک NaCl (ب) بتنوئینی همراه با 100 نمک NaCl در شکل 4 تأثیر نمک NaClCO3 در غلظت‌های 24 و 100 بر 100 meq/l نمونه تهیه شده با NaClCO3 در این مطالعه نسیم داد. مشاهده می‌شود که در غلظت 25 meq/L غلظت 25 لیتر (غلظتی که بیشترین حد ایکنی در آن دست آمده است)، ساختار شدته پراکندگی را به دو کلاه‌های افزایش پراکندگی ساختار شدته است. به طوری که مشاهده شد، شدت کاهش پراکندگی ساختار شدته در مقایسه با نمونه تهیه شده با غلظت 5 نمک NaClCO3 در شکل 3-الف هسته ایکنی؛ این تغییر ساختار نمک تهیه شده با غلظت 5 نمک NaClCO3 در شکل 3-الف هسته ایکنی؛ این تغییر ساختار نمک تهیه شده با غلظت 5 نمک NaClCO3 در شکل 3-الف هسته ایکنی؛ این تغییر ساختار نمک تهیه شده با غلظت 5 نمک NaClCO3 در شکل 3-الف هسته ایکنی؛ این تغییر ساختار N
تأثیر تغییرات مشخصات مایع روزنهای بر...

و افزایش بیشتر تریو های دافعه بین سطوح رسی و در نتیجه جذب قابل توجه آب (نتایج آزمایش حد آبگیری) در این مطالعات از نمک باشد [21]. علاوه بر این، در مقایسه تفاوت‌های سختایی و ظرفیت بذرهای سنتی و کالکولیت‌های چسبنده در شکل‌های ۳ و ۴، تأثیر نوع آبیون بر سختای خاک مشخص می‌شود. به طوری که نمک‌های حاوی آبیون تغییر دهنده تناسل سطحی رس (مثل CO۳ هنگام در غلظت‌های بیشتر سپر پراکنده گی خاک می‌شود، بلکه شدت پراکندگی نمونه خاک نیز در حضور این نمکها بیشتر است.

![SEM Images of Bentonite](image1)

شکل ۴ نتایج بتنونیت به همراه نمک Na۲CO۳

XRD آزمایش‌های

برای شناسایی حضور احتمالی میزان کالکولیت در نمونه بتنونیت مورد مطالعه، نمونه خاک بسیار طیف‌سنجی XRD انجام شد. با توجه به شکل ۵، فرکانس شیفت ۱۲۳.۳۷ ˚C شدتتر از نمونه مورد آزمایش XRD کانی مواد موجود در این خاک است [۱ و ۱۰]. از آنجا که نتایج XRD نشان دهنده حضور یک آب منجر به شکل‌گیری سطحی رس است که تغییر نمک‌های حاوا را باعث می‌کند، مشخص نشان دهنده تغییر شیائی ریز ساختاری خاک خواهد بود. از این رو به یادگیری کاملاً تأثیر حضور اکترولیت‌های حاوا به روش XRD مورد بررسی قرار گرفته شد.

![XRD Spectrum](image2)

شکل ۵ نتایج بتنونیت به همراه نمک Na۲CO۳

مشرق‌ها

Na۲CO۳ (میکروسمولیت حاوی Na۲CO۳) ۱۰۰ نمک کپسول Na۲CO۳ (میکروسمولیت حاوی Na۲CO۳) ۱۵ نمک کپسول Na۲CO۳
بیش از شکل ۵، در نمونه خاک بنتونیت حاوی غلظت‌های ۱۰۰ meq/lit و ۵ meq/lit نمک کلرید سدیم، شدت بقایای نیترات در مقایسه با خاک حاوی آب مقطر در شکل ۵ تغییر قابل توجهی نشان نمی‌دهد. در حالی که با توجه به شکل ۷ در نمونه بنتونیت حاوی نمک کربنات سدیم، شدت بقایای نیترات در هر دو نمونه خشک شده در دمای اتاق و خشک شده در دمای کوره نسبت به نمونه‌های شده با آب مقطر تغییرات قابل توجهی نشان می‌دهد. به عنوان مثال، در غلظت ۲۵ meq/lit از نمک کربنات سدیم، قله ۱۲.۳۷ Å به ۱۲.۳۷ Å با چاپ شده است که نشان دهنده افزایش قابلیت بین سطوح رئیس (ایجاد ساختار پراکندگی) است. و بیان کندن تأثیر تغییر مشخصات شیمیایی مابع روزنامه بر نحوه فرارگی پولکهای رسی است.
نتایج آنالیز XRD خاک بنتونیت مورد مطالعه همراه با نمک NaCl

شکل 6: نتایج آنالیز XRD خاک بنتونیت مورد مطالعه همراه با نمک NaCl

شکل 7: نتایج آنالیز XRD خاک بنتونیت مورد مطالعه همراه با نمک Na2CO3

نتایج آنالیز XRD مایعات مطالعه همراه با نمک Na2CO3 به همینن با افزایش غلظت الکترولیت، شدت قله اصلی از 79 در نمونه بنتونیت تهیه شده با
8 ħ.5 5.6 12.53 Å 13.54 Å 14.62 Å 9.93 Å 9.74 Å 3.34 Å 3.20 Å 3.02 Å 12.45 Å 9.88 Å 3.33 Å 3.02 Å

Bentonite with 25 meq/lit Na2CO3

Bentonite with 100 meq/lit Na2CO3

Air-dry Condition

Oven-dry (550ºC)

Air-dry Condition

Oven-dry (550ºC)

Na2CO3 مایعات مطالعه همراه با نمک Na2CO3 به همینن با افزایش غلظت الکترولیت، شدت قله اصلی از 79 در نمونه بنتونیت تهیه شده با
8 ħ.5 5.6 12.53 Å 13.54 Å 14.62 Å 9.93 Å 9.74 Å 3.34 Å 3.20 Å 3.02 Å 12.45 Å 9.88 Å 3.33 Å 3.02 Å

Bentonite with 25 meq/lit Na2CO3

Bentonite with 100 meq/lit Na2CO3

Air-dry Condition

Oven-dry (550ºC)

Air-dry Condition

Oven-dry (550ºC)

Na2CO3 مایعات مطالعه همراه با نمک Na2CO3 به همینن با افزایش غلظت الکترولیت، شدت قله اصلی از 79 در نمونه بنتونیت تهیه شده با
8 ħ.5 5.6 12.53 Å 13.54 Å 14.62 Å 9.93 Å 9.74 Å 3.34 Å 3.20 Å 3.02 Å 12.45 Å 9.88 Å 3.33 Å 3.02 Å

Bentonite with 25 meq/lit Na2CO3

Bentonite with 100 meq/lit Na2CO3

Air-dry Condition

Oven-dry (550ºC)

Air-dry Condition

Oven-dry (550ºC)
رس بنا به افرازیش شدته قلیه پراشی اصلی خاک می‌شود. این در حال است که کاهش شدته قلیه نمونه‌های حاوالی Na₂CO₃ در مقایسه با خاک فاقد اکثربخشی، ناشی از تأثیر تجمع کاتیون‌ها بر شکل دادن خوشه‌های رسمی است. ولی از آنجا که تأثیر حضور آبیون تغییر دهنده یکسانه، سطحی کاهش تجمع دار با منفی اضافی در سطح پوک رسمی خاک، اثر شکل‌گیری خوشه‌های پراکنده بر کاهش شدته قلیه به میزان نمونه‌های حاوالی نمک ۲۵ meq/l نبوده است. نتایج این پاسخ‌گو است.

در مجموع با در نظر گرفتن جایگاه قلیه‌های پراشی XRD و تغییر شدته در آنها، می‌توان متوجه گریختن که خصوصیات ریزساختاری خاک به طور مؤثری تابع مشخصات شیمیایی مابع روبرهای و نوع آبیون موجود در آن است. که با توجه به ارتباط قابل ملاحظه خصوصیات رفتاری و مهندسی خاک با ریزساختار آن، توجه به این تغییرات در طرح‌های مهندسی اهمیت دارد.

![دیагرام](https://via.placeholder.com/150)

شکل ۸ تأثیر غلظت الکترولیت و نوع آبیون بر شدته قلیه اصلی در طرح پراش پرتو ایکس خاک بنتونیت

برداشت

مهمترین نتایج حاصل از آزمایش‌های فیزیکی و ریزساختاری به شرح زیرند:

- نتایج آزمایش میکروسکوپ الکترولیت روبشی (SEM) نشان دهنده تأثیر مشخصات شیمیایی ماپ مابع روبرهای بر ساختار ریزبافت خاک است.

- نتایج آزمایش‌های XRD نشان می‌دهد که ریزساختار خاک علاوه بر نوع کاتیون‌های رسی تشکیل دهنده آن، متأثر از ماپ روبرهای و نوع آبیون موجود در خاک است. به طوری که، قله برشی خاک با تغییر غلظت نمک چابجا شده و شدته قلیه اصلی نیز به طور قابل توجهی بر افزایش غلظت الکترولیت کاهش می‌یابد. در غلظت ۲۵ meq/l ۲۵ نمک کربنات سدیم (حداکثر پراکنده نمونه)، قله اصلی از ۱۲.۳۷ آ به ۱۲.۳۷ آ بین ۱۲.۳۷ آ جابجا می‌شود که نشان دهنده افزایش
تأثیر تغییرات مشخصات مایع روزنهای بر...

فواصل بین سطوح رسی (ایجاد ساختار پراکنده) است و تأثیر مشخصات شیمیایی مایع روزنهای بر نحوه فوارگیری پولیژهای رسی را نشان می‌دهد. این امر می‌تواند ناشی از تأثیر حضور آنیون‌های تغییر دهنده پتانسیل سطحی در رسمی باشد.

از آمیزش‌های فیزیکی و ریزساختاری علاوه بر تأثیر تأثیر آب‌زاگی غلظت الکترولیت (حضور کاتیون‌های سدیم) بر خصوصیات مقاومت و ریزساختاری خاک، نشان دهنده تأثیرپذیری این مشخصات از نوع امکان موجود در مایع رسی‌های خاک نیز هست. در این راستا نتایج این بررسی نشان می‌دهد که در نمونه پنترین حاوی نمک کلرید سدیم، بیشینه حد آیگونی در غلظت ۲۵ meq/l رخداده است. میزان حد آیگونی در نمونه پنترین با کربنات سدیم نسبت به نمونه حاوی نمک کلرید سدیم نیز افزایش بیشتری نشان می‌دهد. که می‌تواند ناشی از اتصال شیمیایی آنیون‌هایی مانند کربنات به سطوح ذرات رسی و آب‌زاگی بار منفی روند سطوح (تغییر پتانسیل جذب سطحی رس) باشد.

مراجع