Mineralogy and petrography of calc-silicate xenoliths

M. Khalili, M.A. Mackizadeh

Department of Geology, University of Isfahan, Iran 81746-7344.
E-Mail: mahmoud_khalili@hotmail.com

(Received: 24/8/2003, received in revised form: 19/2/2004)

Abstract: The calc-silicate xenoliths, within the Shir-Kuh batholith are characterized by melilite, garnet, vesuvianite, and wollastonite mineral assemblage. On the basis of paragenetic relations, prograde and retrograde metamorphism are involved in the formation of these minerals. Melilite, wollastonite and diopside formed during progressive metamorphism which was accompanied by thermal peak shocking and decarbonization reactions in pyroxene-hornfels faces. The effect of fluids in later stage, which released during crystallization of batholith, caused the formation of hydrous minerals (hornblende-hornfels facies during retrograding metamorphism.

Keywords: Calc-Silicate, Melilit, Xenolith, Shir-Kuh.
کانیشناسی و سنگشناسی زینولیتهای کالک- سیلیکاته

محمود خلیلی، مهدعلی مکی‌زاده

دانشگاه اصفهان، گروه زمین شناسی
mahmoud_khalili@hotmail.com

چکیده: به‌شکلی که در پاتولوژی شیرکوه با مجموعه کانی‌های ملی‌لیت، گارن، وزووژنیت، ولستونیت مشخص شدند، بررسی روابط باران‌شکنی مجموعه کانی‌های فوق دو مرحله اساسی شکل‌گیری این کانی‌ها را مشخص می‌کند: مرحله بخشندگی و مرحله پسرودن. هنگامی که در مرحله بخشندگی پسرودن که به عوامل ضربه‌گرمایی و واکنش‌های کربن‌زایی در خسارت پیروی می‌کند، هورنفلس بهره‌برداری است و لیت، ولستونیت و دیوبسید شکل‌گیری می‌دهد. شاره‌های آبادان‌آتیکی از نقطه‌گذاری در حال تبلور باعث شکل‌گیری کانی‌های عمده‌ای می‌شود که ابزار مرحله پسرودند است (خسارت‌های هورنفلس).

واژه‌های کلیدی: کالک- سیلیکاته، ملی‌لیت، زینولیته، شیرکوه.
مقیده

همیشه مواد فاصله‌گذار هنگام دگرگونی، به ویژه CO$_2$ و H$_2$O. مورد مطالعه بسیاری از محققین قرار گرفته است [1-3]. این مطالعات ترکیب شاهراهی دگرگونی همگاری و نفس بارز آنها در تشکیل مجموعه‌های کانی‌شناختی را مورد بررسی دقیق قرار داده‌اند. مطالعه باهم کننده‌شانه – سنگ‌های ویژه دگرگونی نیز موضوع تحقیق در سرزمین‌های دگرگون، به ویژه در هاله‌های مجاورتی بوده است. در این راستا و به منظور مطالعه شاهراه و شارش آنها در مجاورت پلیتون‌ها از کالک- سیلیکاتها به خوبی استفاده شده است [4]. اثرهای دگرگونی یافته شده در کریز، زنده‌ویزه‌ای و دگرگونی پسونده شمل آب‌زدایی و دگرگونی پسونده شامل آب‌زدایی موجب شکل‌گیری و مجموعه‌های کانی‌شناختی ویژه‌ای در کالک- سیلیکات‌های دگرگونی مجاورتی می‌گردد. کانی‌های گروه ملایت به عنوان گروه‌های شاخه‌ریزشی شاخه‌باریاتیشن شناخته شده‌اند [5]. این گروه کانی‌ها در دماهای بالای از 500 درجه سانتی‌گراد و 100 درای گسترش یابند. و در دماهای بالایتر و در حضور فشار بخار آب، در گستره 4/8 تا 67 کیلوبار به مجموعه کانی‌های ولستونیت، وزویتیت، باستنیت، دیوپیت و کلسیت تبدیل می‌شوند [6].

هدف از این بررسی، سنگ‌شناختی زنولیت‌های کالک- سیلیکاته در سنگ‌گونه‌های گراییتی شیرکوه و ماکاپیسم تشکیل کانی‌های گروه ملایت و فراورده‌های دگرگوگی ارائه شده است. کانی‌های مورد مطالعه در فاصله 40 کیلومتری جنوب غرب و پردد در موقعیت 31°31’45” غربی و 31°41’45” شمالی در طول شرقی قرار دارد (شکل 1).
شکل ۱ موقعیت منطقه مورد مطالعه در جنوب یزد

موقعیت زمین شناسی منطقه

منطقه مورد مطالعه در تکمیل زمین شناسی ایران در زون ایران مرکزی قراردارد. بیشتر این ناحیه را ارتفاعات شیرکوه پوشانده است. این ارتفاعات با روند شمال غرب- جنوب شرق و با بلندایی بیش از ۴۰۰۰ متر شامل واحدهای زیر است:

سازند های ناپید- شمشک (ترابس- زوراسیک): این سازنده بیشتر از ماسه سنگ، کوارتزیت و میان لاشه به آهکی (سازنده ناپید) [۶] و نیز ماسه سنگ و شیل سیاه (سازنده شمشک) [۷] تشکیل شده است.

باتولیت شیرکوه: توده نفوذی شیرکوه از بخش شمالی تا بخش‌های غرب و جنوب غرب منطقه مورد مطالعه گسترش دارد. سن احتمالی این توده زوراسیک میانی است و سنگ‌های گرانیتی آن بیشتر شامل گرانیتریت بیوتیتی‌دار، مونوزیمیتی، آکالی گرانیت و تریمیت است. بر اساس ویژگی‌های کانی‌شناسی و زنوشتمیاپی، طبیعت این گرانیت‌ها از نوع S است [۱۰] این توده سنگ‌های نرمی- زوراسیک را به صورت همجواری دکرگون کرده است.

سازنده‌های سنگستان و فلت: سازنده سنگستان به سن نتویگمین [۸] شال سکانس ضخیمی از نهشت‌های سرخ آوای است. این نهشت‌ها گرانیت شیرکوه را با یکی دگرشناسی واریه‌دار می‌پوشانند. روی کنگلومار و ماس سنگ این سازنده، آهک‌های فلات قرار یافته سازنده فلت قرار دارند. این آهک‌ها به رنگ‌های خاکستری، کرمی و بهصورت لاشه به‌ضمن سنگ‌نی نازک دیده شده است.

سازنده‌های دکرگونی همجواری منطقه مورد مطالعه در دو حاشیه شمالی و غربی پائولیت شیرکوه گسترش دارند. در حاشیه غربی، توده‌ای عمده‌ای منشکل از آکالی گرانیت و تریمیت‌ها دارد که مانند سنگ‌های دکرگونی و سیاه فلات، کانی‌های کدر و میکای سفید را به‌وجود آورده است. در حاشیه شمالی، گرانیتی و بیوتیت‌های بیونیتی‌دار گسترش وسیعی دارند. این سنگ‌های دکرگونی از اوایل سازنده‌های ناپید- شمشک اثر دکرگونی همجواری داشته و این واحدها به‌اسبلیت شیب‌دریافت هر بیشتر دارد. در این واحدها غیر و شیب‌ها به‌شکل شیب‌های گرانیتی و بیونیتی‌دار تبدیل گردیده است. این شیب‌ها به‌شکل شیب‌های گرانیتی و بیونیتی‌دار تبدیل گردیده است. در بخش‌های غربی و شمال غربی منطقه، سازنده‌های سیاه، سازنده‌های ترارد- زوراسیک اثر دکرگونی مصنوعی، بنابراین می‌توان تصور کرد که تنها فاز دکرگونی از تأثیر منابع ناشی از نفوذ گرانیت شیرکوه بوده و شیب‌دریافت هر فاز دکرگونی اثر زیرآبی‌آلویی پایین‌ترین هورنلس‌ها اثری از لایه‌背 نیست. این سنگ‌ها به‌شبیه شیب‌دریافت هر در رخ‌های هورنلس‌ها تأثیر می‌دهد. بر این اساس، سنگ‌های اصلی منطقه مورد مطالعه در رخ‌های هورنلس‌ها تا پایان.
سنجشکی و کانی شناسی زینولیت‌های کالک - سیلیکاته

زینولیتهای کالک - سیلیکاته محدود به حاشیه شمالی باتولیت شیرکوه است. مجموعه کانی شناختی این سنجش‌های نادر از نظر تحولات دگرگونی پیمای قابل توجه است. بررسی‌های سنجشکی مجموعه کانی‌های زیر را نشان داده است:

1) ولستونیت، گارنت، هیدروفوسولار;
2) ولستونیت، وزوباینیت، گارنت، ملی‌لیت، هیدروفوسولار;
3) گارنت، ملی‌لیت، وزوباینیت.

والستونیت‌ها به دو شکل مختلف قابل مشاهده‌اند:
الف) ولستونیت‌های مشوری بزرگ تا کوچک با ماکل جنگ و اشکال گرانولاستیک قابل رویت هستند (شکل ۲). این ولستونیت‌ها در مواردی بافت چند پهلو (با زاویه ۱۲۰ درجه) را نیز به درجات مختلف به عنوان تعدادی از والستونیت‌های مشوری واقع می‌شوند.

(شکل ۳) ولستونیت‌های اخیر تا حدودی کشیده و نیز شعاعی دیده شده‌اند.

شکل ۲: بافت گرانولاستیک در ولستونیت‌های Gr-۱ XPL (طول میدان دید ۱ mm).
شکل ۱: گارنت شکل اول Wol-۱ و ولستونیت Wol-۱.
شکل ۳ والستونیت با یافت بوتی کیلوپلاستیک، ادخال‌های فلوبلاست، گرانتن هستند (طول می‌داند: ۲ mm). گرانتن شکل دوم.

ب) والستونیتهای رشته‌ای و رزدانه که منحصراً همراه با گرانتن یافته می‌شوند (شکل‌های ۴ و ۵) و در مجموع یک یافت سیمبولاتیک را نشان می‌دهند. این مجموعه در ظاهر به خرج کانی می‌باشد که گرفته است (والستونیت شکل ۲).

گرانتن‌ها کامل‌اً همسانگردند. این کانی‌ها در دو مرحله شکل گرفته اند:
الف- گرانتن‌های بزرگ و بی‌شکل که فضای خالی بین بورهای کشیده والستونیت را اشغال کرده‌اند (گرانتن شکل اول) و بافت میان کانه‌ها را نشان می‌دهند. گرانتن‌های ناپایدار (گرد شده و کنگره‌دار) والستونیت با گرانتن به‌خودی نشان می‌دهد که گرانتن‌ها نسبت به والستونیت تأخیری هستند و در حقیقت والستونیت‌ها ازحاشیه به گرانتن تبدیل شده‌اند (شکل ۳). در مواردی یافته‌اند آنالیز از گرانتن داخل والستونیت نیز کامل‌اً مشهود است.

1- Atoll texture
شکل ۵ تصویر از مجموعه گارنت-
ونیت سیمپلکتیت (Wol)
ونیت سیمپلکتیت (Gr)
شکل ۶ مجموعه ملی‌هایی به شکل بارانک انتفراژ غیرعادی (Ak) همراه با ولستونیت (Wol) تبدیل با شیم ولستونیت به ملی‌لیت قابل مشاهده است (طول میدان دید ۱ mm).

شکل ۷ گارنت بافت آتولی در زمینه ولستونیت (طول میدان دید ۱/۲ mm).

جدول ۱ آنالیز‌های ماکروبروب کانی‌های سازنده زمین‌لیت.
<table>
<thead>
<tr>
<th>طبقه‌بندی</th>
<th>الکلولی</th>
<th>بیوتین</th>
<th>هیپور بیوتین</th>
<th>پیلوپت</th>
<th>آنتی بیوتین</th>
<th>مارک</th>
<th>آنتی آنتی بیوتین</th>
<th>آنتی اچ‌وی‌دی</th>
<th>آنتی سی‌اف‌دی</th>
<th>آنتی کِری‌کِر</th>
<th>آنتی فِی‌سی‌دی</th>
<th>آنتی کِری‌کِر</th>
<th>آنتی فِی‌سی‌دی</th>
</tr>
</thead>
<tbody>
<tr>
<td>جدول 1</td>
<td></td>
</tr>
<tr>
<td>جدول 2</td>
<td></td>
</tr>
<tr>
<td>جدول 3</td>
<td></td>
</tr>
</tbody>
</table>

توجه: جدول‌ها و رشته‌ها به‌عنوان یک نمونه‌ای در نمایش ذکر شده‌اند. در صورت نیاز به مشخصات دقیق‌تر، لطفاً منابع و مرجع‌های علمی مناسب را بررسی نمایید.
بحث و برداشت

بوون \(^7\) [5] نشان داد که درگوگانی به آهنگا و دولومیت‌های سبیلیسی با افزایش دما سکانس کالی‌های تالک، ترومیت، دیوبستید، فورسیرت، و استونت، پرکلاژ، موئیت سبیلیس، اکرانیت، تبلیق، اسپاریت، رتکینیت، مرزینت و لاژنینت را به وجود می‌آورد. اکرانیت‌ها محصول درگوگانی همچون تکزه‌ای گلیت‌های با تعداد بالا، رشته را ریزدانه دیده می‌شوند [11]. گلیت‌های با صورت محلول جامد کامل با اکرانیت و تاقل با سواد آن‌ها به‌دست می‌آیند.

بررسی سنگ‌شناسی زنیلیته‌های کالک-سیلبیت‌های منطقه شیرکوه نشان می‌دهد که ملی‌لیت‌ها با احتمال بیشتری در خرد و استونت و کالک و در اکرانیت هم رشد دانه‌های فرسوده شده است. به‌طور کلی اکرانیت و تاقل با سواد آن‌ها به‌دست می‌آیند.

1) \(2 \text{CaSiO}_3 + \text{CaMg}(\text{CO}_3)_2 = \text{Ca}_2\text{MgSi}_2\text{O}_7 + \text{CaCO}_3 + \text{CO}_2\)

کلیسیت اکرانیت

وجود مقادیر ناچیز گلیت‌های صورت آزاد تأثیری بر قرار و باکنش خود است.

2) \(\text{Ca}_3\text{Al}_2(\text{SiO}_4)_3 + \text{CaMg}(\text{CO}_3)_2 = \text{Ca}_4\text{MgSi}_2\text{O}_7 + \text{Ca}_2\text{Al}_2\text{Si}_7 + 2\text{CO}_2\)

گلیت‌های اکرانیت می‌باشد.

چنانکه گفته شد، گردن‌گی گردن‌گی باعث می‌شود ملی‌لیت نیز بیانگر قرار و باکنش ۲ است. این‌ها به‌طور کلی و باکنش ۱ و ۲ به احتمال بسیار زیاد در تشکیل ملی‌لیت نقش داشته‌اند.

درک این تکه‌های ضروری است که از هم‌اکنون تغییرات داخل ملی‌لیت خیلی فراوانتر از بازماندهای مناسب‌تر می‌باشد. به‌نظر می‌رسد که برای تشکیل ملی‌لیت ساختار رشته‌ای، بازماندهای اکرانیت‌ها نیز از نظر شاره‌های گردن‌گی ممکن است از نظر ساختار هم‌اکنون کاربرد باشد. علاوه بر آن ملی‌لیت‌ها کاملاً از شکل و بافت و استونت‌های باز فرمول‌های بازیابی ممکن هستند. کنده در شکل‌های ۱ و ۲ با توجه به ترتیب جفت‌ها باکنش ۱ بیشتر است.

شکل‌گیری ورودی‌های خارج ملی‌لیت را می‌توان با قرار و باکنش زیر توجیه کرد:

3) \(2[\text{Ca}_3\text{MgSi}_2\text{O}_7 + \text{Ca}_3\text{Al}_2\text{Si}_7] + 3\text{SiO}_2 + 2\text{H}_2\text{O} + 2\text{CaCO}_3 = \text{Ca}_{10}\text{Al}_6\text{Mg}_2\text{Si}_3\text{O}_{34}(\text{OH})_4 + 2\text{CO}_2\)

کلیسیت‌های با سیلیت را می‌توان با قرار و باکنش ۱ در دسترس است.

هجوم شاره‌های حاوی سپیلیس و آب‌های آن‌ها از طریق توده‌گردن‌های تأخیری امکان دسترسی است. کلیسیت نیز در محیط کارگرگانی هم‌جواری و بر اثر قرار و باکنش ۱ در دسترس است.

2- Bowen
3- Ak76.162Fe-ak1.6Ge12.683 Na-me9.16
واکنش زیر همبافتی گرانت-وزویانیت به‌جای ملی‌لیت را توجیه می‌کند:

1) $2Ca_2MgSi_2O_7 + 3Ca_2Al_2SiO_7 + 3CaCO_3 + 2H_2O + 5SiO_2 = Ca_{10}Al_4Mg_2Si_9O_{34}(OH)_4 + Ca_3Al_2(SiO_4)3$ گلینیت

2) $Ca_2Al_2SiO_7 + 3SiO_2 + 6H_2O + 2CaCO_3 = Ca_3Al_2(SiO_4)3$ گلینیت

3) $CO_2 + CaSiO_3 + O_2$ ویتراپس

4) وجود مجموعه میترالی زننولیت‌های کالک - سیلیکانه در منطقه مورد مطالعه حاکی از دو پارازن متفاوت است. پارازن مربوط به سری دگرگونی پیشرونه و پارازن سری دگرگونی پیشرونه در سری پیشرونه، پارازن خشک و حرارت بالا (خسارت پیروکسن - هورنفلس) و در سری پیشرونه پارازن آباد (خسارت هورنفلس - هورنفلس) شکل گرفته است.

5) سری پیشرونه در شرایط اوج دگرگونی حرارتی حاصل از جابجایی باتولیت گراتودورینیت CO$_4$, هیدروگروسولر، کلینیت، گلینیت و ویتراپس در سیال بالا بوده است. CO$_3$ بهره‌برداری CM$_3$ در سیال بالا بوده است.

6) مورد نیاز دگرگونی پیشرونه بطور قیاسی از بخش‌های اخیر سازند نابینده - شمشک تأمین شده است. این ابزار فراپین و باکنش‌های دوپی و هرودودورینیت CM$_3$ در سیال بالا بوده است.

7) واقع در فراپینی دگرگونی پیشرونه، نقش گرنت و ناشناخته CM$_3$ در سیال بالا بوده است.

8) اینی های زوویانیت و هیدروگروسولر حکایت از فناوری CM$_3$ در سیال بالا بوده است.

9) با پایدار و باکنش‌های دگرگونی انجام پایه در شکل گیری پارازن متفاوت است. یک ابزار از سیال بالا بوده است.

10) آکرمانت و کلینیت بخرج دولومیت و ولستونیت بخش از ماده و که این و باکنش در حالت بخش

11) از 600 درجه سانتی‌گراد و 24 کیلوبار به ورق پوسته است (نمودار 1)

12) عدم پافت موئی سیلیت در این پارازن نشان از احتمال زیر دارد.
1- حرارت برای پدیدا‌وردن مونوئی سیلیت احتمالاً کافی نیسته است.
2- مسئولیت مورد نیاز برای تشکیل مونوئی سیلیت (مطابق واکنش 1) در دسترس نیسته و تمام
منیزیم موجود صرف تشکیل اکرمانتی شده است.
3- فقدان نمونه‌های کافی در مشاهدات حضور اکتیو و شناسایی کامل
پارازنه‌ها.
در مرحله دگرگونی پسروده در ارتباط با نتایج و خروج CO2 از طریق دردزا و شکاف‌های
سنگ میزان، غلظت CO2 رو به کاهش گذاشته است و در ضمن هجوم آب از بخش‌های
داخلی بانولای نز نیز به سرعت شدن CO2 شده است. در این میان، واکنش‌های پسروده
موجب تشکیل کانی‌های وویوئینیت و یکدهورپسولار شده است (نمودار 2) [14] در این
شرایط کانی شاخه حصار بالا (ملیت) در دمای هجدود 500 تا 600 درجه سانتی‌گراد و
فشار بخار آب 4 تا 6 کیلوبار ناپایدار شده و فرآورده‌های دگرگان شده را فراهم نموده است.

نمودار 1 منحیه تشکیل
ویولستیت، اکرمانتی و مونوئی سیلیت
در سمسم (CMS(CO2). در انتقال از [13].)

نمودار 2 منحیه تشکیل
وویوئینیت در مرتبط با پل خاص و
عواری از اکتیو برای ترکیب
Ca30Al2MgSi6(OH)20H2O
(اقتباس از [14].)
قدرنامه
آنالیز میکروبیوبیوگرافی کانی‌های وولاستونیت‌ها در بخش زمین‌شناسی دانشگاه اکلاهما سیتی آمریکا (G. Morgan) انجام گرفته است که بدلیل از آنچه که جورج مورگان (C. Gilbert) به هزینه آنها را تأمین کرده‌اند قدردانی می‌شود. از داوران محترم مجله که جهت اصلاح این مقاله نکات علمی چندی را تذکر دادند نیز سپاسگزاری می‌شود.

مراجع
[8] Nioei M.H., Dehagheh M. Durm-e Zamin Shanasi-e Iran, Sazeman Zamin Shanasi-e Iran (1355) 110.

