Preparation of different phases of hemihydrate from Alamout natural gypsum and study of effective parameters on setting time.

S. Ghammamy, M. Taheri

Department of Chemistry, Faculty of science, Imam Khomeini International University, Qazvin, Iran. Email: shghamami@ikiu.ac.ir

Abstract: In this research the α and β phases of hemihydrate have been prepared from Alamout natural gypsum and their setting times have been measured. The IR spectroscopy has been used for characterization of α and β phases of hemihydrate from gypsum. The α and β phases of hemihydrate distinguished from each other by X-ray powder diffraction (XRD). The setting times of pure α and β phases and mixtures of them have been measured by Vicat method. The effects of various additives such as accelerators (NaCl, K$_2$SO$_4$, Na$_2$SO$_4$) have been studied on setting time. Among them, potassium sulfate had maximum accelerating effect. Optimum concentration of the additive has been determined. This amount is 3% w/w. Less and more than this amount have inverse effects on setting time.

Keywords: Gypsum, Hemihydrate, Phases, Preparation, Setting time, Additives.
تهیه فازهای مختلف سولفات کلسیم نیم آبی از گچ طبیعی معدن الموت و بررسی پارامترهای مؤثر بر سرعت سفت شدن آنها

شهریار غمامی و مريم طاهری

گروه شیمی - دانشکده علوم پایه - دانشگاه بین المللی امام خمینی - گرگان
بست الکترونیکی
shghamami@ikiu.ac.ir
(دریافت مقاله ۱۲/۲۳/۱۳۸۲ ، دریافت نسخه نهایی ۱۳۸۲/۱۱/۳۰)

چکیده: در این کار پژوهشی فازهای α، β سولفات کلسیم نیم آبی از گچ طبیعی معدن الموت تهیه و شناسایی شدند. برای تشخیص فازهای مختلف نیم آبی از زیست طیف اندیشگر شد. سرعت سفت شدن فازهای به صورت خالص و مخلوط به روش Vicat آزمایش شد. اثر افزودنی های مختلف نظیر کلرید سدیم، سولفات سدیم و سولفات پتاسیم بر سرعت سفت شدن فازهای مخلوط آنها، مورد بررسی قرار گرفت. از میان شتاب دهنده ها، سولفات پتاسیم بیشترین اثر را نشان داد. میزان بهینه غلظت افزودنی شتاب دهنده نیز تعیین شد. این مقدار بهره برای ۳ درصد بوده است. مقادیر کمتر و بیشتر از این مقدار اثر مغناطیس دارد.

واژه‌های کلیدی: زیست، نیم آبی، فازهای، تهیه، زمان سفت شدن، افزودنیها.
تهیه فازهای مختلف سولفات کلسیم نیوآیه...

مقدمه

زیبیس معدنی با سولفات کلسیم دوآبه پراکندگی و سیبی دارد و از نظر تجاری مهم است. سالانه حدود 55 میلیون تن زیبیس در جهان صرف می‌شود که نیمی از آن برای تبدیل به سولفات کلسیم نیمآباد به کار رفته و فقط مقدار کمی از آن برای کمال شده به اندریز تبدیل می‌شود. دو نوع مختلف زیبیس وجود دارد، نوع معدنی یا طبیعی و نوع مصنوعی. نوع طبیعی آن در سیبیار از نواحی جهان نظیر امریکای شمالی، فرانسه، روسیه، انگلستان، اسپانیا، ایتالیا، ایران، و آلمان یافت می‌شود. [1] و نوع مصنوعی از واکنش‌های مختلف در صنعت به دست می‌آید. با آگرزی از زیبیس در شرایط خاص، می‌توان دو فاز α و β نیمآباد را از آن نیمه کرد. فازهای نیمآباد کاربردهای فراوانی در دندان پزشکی، شکسته‌بندی و ... دارد. فاز α پایدارتر از β است و جهت کمتری دارد. [2] [3] فازهای α و β را می‌توان با پراش بودن پرتو ایکس از یکدیگر تشخیص داد [12]. برای تشخیص دو فاز نیمآباد از زیبیس می‌توان از طیف‌سنجی IR استفاده کرد [13]. برای کاهش زمان سفت‌شدن، می‌توان از فازهای مختلف یا مورد استفاده قرار داد [13]. در این پژوهش فازهای α و β سولفات کلسیم نیمآباد از زیبیس (گچ طبیعی معدنی الموت) تهیه و شناسایی شدند و اثر افزودنی‌های مختلف بر زمان سفت‌شدن آنها مورد مطالعه قرار گرفت.

روش کار

سولفات کلسیم نیمآباد با گرم دادن به زیبیس حاصل از معدن الموت تهیه شده‌اند. فاز α به دو روش بخار یخ (انوکاتیو) و گرم‌دهی مستقیم تهیه شد [14]. ویل فاز β تنها به روش گرما دهی مستقیم به دست آمد. واکنش‌های تهیه‌شده با صورت زیرند:

الف) فاز α یک در شرایط کنترل شده و مشخص با دمای معین، از زیبیس، کل آب تبلور را گرفته و سپس به آن آب اضافه شود، نوع α نیمآباد به دست می‌آید:

\[\text{a) CaSO}_4.2\text{H}_2\text{O} \rightarrow \text{CaSO}_4 + 2\text{H}_2\text{O} \]

\[\text{b) CaSO}_4 + 0.5\text{H}_2\text{O} \rightarrow \text{CaSO}_4.0.5\text{H}_2\text{O} \]

ب) فاز β برای تهیه نوع β با کنترل شرایط و مقدار گرمای 1.5 مول آب از زیبیس گرفته می‌شود، به این ترتیب که:

\[\text{CaSO}_4.2\text{H}_2\text{O} \rightarrow \text{CaSO}_4.0.5\text{H}_2\text{O} + 1.5\text{H}_2\text{O} \]

تشخیص تشکیل سولفات کلسیم نیمآباد از زیبیس با استفاده از روش‌سنجی ارائه شده FTIR Bomem (Que.,Canada) MB 100 سری مورد استفاده جهت این امر 100 میلی‌متری بوده است. برای جداسازی و تشخیص دو فاز α و β از یکدیگر از پراش بودن پرتو series با استفاده Philips Diffractometre PW 1840 (XRD)X
اطلاعاتی استفاده شد. انداره و ریخت بلورها با میکروسکوپ الکترونی با مشخصات SEM S-360/Stereo scan 360 Cambridge Instruments

بحث و برداشت

برای تشخیص فازهای نیمهآبادار از زیپس می‌توان از خاکستر IR استفاده کرد. در خاکستر IR ترکیب سولفات سلیم و دیگر فازهای آن نوارها مربوط به آنون سولفات و آب درون مولکولی دیده می‌شود که همین امر مبنای تشخیص و مطالعه فازهای مختلف این ترکیب است. این امر ناشی از نوع برهم‌کنش‌های متفاوت آب در زیپس و فازهای α و β است. در طرفه IR مربوط به ارتعاش خماسی آب که در ناحیه 1100 cm\(^{-1}\) قرار دارد مورد مطالعه قرار گرفت. شانه ظاهر شده در طرفه IR β و وجودی دارد ولی در زیپس مشاهده نمی‌شود.

شکل 1: این امر مبنای تشخیص تشکیل دو فاز α و β از زیپس است. لازم به بودن اثر IR نمی‌تواند در فاز α و β وارد یکدیگر تشکیل داده شود. برای هر دو فاز دارای فرمول Xmolkولی کسی‌سانی نیستند و نمی‌توانند آب دارند. این امر با کمک پراش پودری پتروپ
X
کامل انجام است. فازهای α و β در شرایط متفاوت از زیپس رویته می‌شوند. لذا فازهای X

IR

بلوری آنها با یکدیگر تفاوت دارند. در واقع، ساختار بلوری فاز α شکاف‌گوشی و برای β تکمیل است. این امر با بررسی الگوی پراش به ویژه در گستره 50 < θ < 70 حاصل می‌شود.

چنانکه در شکل 2 دیده می‌شود اگر پراش فاز β دارای شکاف‌گوشی بیشتری نسبت به فاز α است که از پایین تا بالا تقارن پاک‌شده که حکایت می‌کند. تشخیص این دو نوع از یکدیگر با روش‌های دیگر ممکن است ولی با پراش پتروپاکت آزمایشگرهای بود [1214] چگال‌های این نوع α β تهیه شده نیز اندازه‌گیری شدند. چگالی نوع α پراش 1.21 g.m\(^{-1}\) و 2.36 g.m\(^{-1}\) به دست آمد.
شکل ۱ نوار مربوط به اتماس خصیت آب در ناحیه 1100 cm^{-1} در نمود. فاز α و β و زیبای ظاهر شده در 1065 cm^{-1} که با علامت γ مشخص شده است، در هر دو فاز α و β وجود دارد ولی در زیبی مشاهده نمی‌شود.

شکل ۲ اکتشافات پرسی همکاران از فازهای α و β در گستره ۴۹ تا ۶۰ درجه. شماره فایل‌های برای α و β به ترتیب ۴۵۳-۴۱ و ۲۲۴-۴۱ است.

اندازه‌گیری زمان سفت‌شدن فازهای نیمه‌آباد

فازهای α و β سولفات کلسیم نیمه‌آباد در مجاورت آب، ضمن افزایش گرمای (گرمای آباد شدن) اپ جذب کرده و به سولفات کلسیم دو آب اپ تنظیم می‌شوند. مدت زمان تبیین شدن به سولفات کلسیم دو آب به زمان α سافت‌شدن β می‌شود. طول زمان سفت‌شدن β در آب آبیده نسبت به فاز α سفت‌شدن به توجه به اختلاف طول زمان سفت‌شدن در این دو نوع می‌توان به تهیه مخلوط‌هایی با درصد‌های مختلف از α و β طول زمان سفت‌شدن را به دلخواه تغییر داد. همچنین افزودن چربی مواد دیگر نیز طول زمان سفت‌شدن را تغییر می‌دهد.

اندازه‌گیری طول زمان سفت‌شدن به دستگاه Vicat نهایت سختی نسبت به زمان سافت‌شدن مخلوط‌هایی با درصد‌های مختلف از α و β اندام‌گیری شد. سپس، نمک کلرید سدیم به عنوان شتاب‌دهنده فرابند سفت‌شدن افزوده شد. در مراحل بعد با تغییر درصد نمک کلرید سدیم مقدار
بهینه‌سازی ماده افزودنی به‌دست آمد. در ادامه درصد بهینه‌سازی ماده افزودنی به‌دست آمد. برای نمک‌های سولفات سدیم و سولفات پتاسیم نیز یک درصد میزان اثر شباهت دهنده‌گی آنها به‌دست آمد (شکل ۳). شکل ۴ تغییرات میکروسکوپی فاز‌های α و β را با نمودارهای مختلف نشان می‌دهد. فاز α با داشتن بلورهای درشت‌تر نشان‌دهنده خروج تدریجی و آرام‌تر آب مولکولی از ساختار ترکیب دوایه است. بر عکس، تغییرات فاز β تغییرات دما به شدت و خروج سریع آب مولکولی را اشکال می‌سازد که سبب تشکیل سطوح ورقه‌ای شده است.

شکل ۲ نمودارهای زمان‌های سفت‌شدن (بر حسب ثانیه) مخلوط نسبت های مختلفی از فاز‌های α و β بدون افزودنی (ب) با ۱/۵٪ سدیم کربنات (پ) با ۱/۵٪ کربنات سدیم (ه) با ۱/۵٪ سولفات سدیم (ج) با ۳٪ سولفات پتاسیم.
به این ترتیب، مجموعه نتایج نشان می‌دهند که:

1- در بخش نخست، بررسی طیف‌های XRD و IR تهیه فازهای α و β را از زریس مورد تأیید قرار داد. طول زمان سفت‌شدن فاز β به میزان قابل ملاحظه‌ای کمتر از فاز α بدست آمد.

2- با بررسی اثر شتابدهندگی درصدگاهی متفاوت کلرید سدیم به مخلوط‌های α و β میزان بهینه ۳/۰ مشخص شد.

3- با اعمال میزان بهینه سه نمک کلریدسیدیم، سولفاتسیدیم و سولفاتپتاسیم، بیشترین میزان اثر شتابدهندگی در نمک سولفات پتاسیم مشاهده گردید.

4- تصاویر میکروسکوپی وجود بلورهای متفاوت را در خیک از فازهای نشان می‌دهند که نشان دهنده وابستگی شکل و ساختار بلورهای تشکیل شده به شرایط تهیه است.

