Mineralogical investigation of hydrothermal alterations in the middle part of Tarom Mountains – Northwest of Iran

A. R. Ganji

Department of Geology, Islamic AZAD University Lahijan Branch
E-mail: ar_ganji2000@yahoo.com

(Received: 23/6/2004, received in revised form: 14/3/2005)

Abstract: The studied area is a part of Tarom Mountains and is located in 40 km north of Zanjan. The area is formed mainly by Tertiary volcano-sedimentary and plutonic rocks, which are mostly altered. Based upon geological setting, the hydrothermal alterations in the area are divided into two groups: (1) Regional alterations consisting of potassic, sericitic and propylitic types. (2) Structurally controlled alterations consisting of three argillic & alunitic types. The mineralogical studies show that, the major minerals characterizing the argillic – alunitic alterations are APS minerals (especially alunite and jarosite) + clay minerals (kaolinite, montmorillonite, illite, mixed–layer illite/smectite) + chlorite + sericite + quartz + gypsum + pyrite, that their quantity, grain size and crystallinity vary in the different alteration types. In order to determine the temperature of argillation, the illite crystallinity factor is used and the results of calculations showed that the formation temperature of illites is about 200 to 240 °C. The results of this study indicate that the argillic-alunitic alterations of studied area considerably resemble high-sulfidation type of the epithermal argillic alterations in the continental arc subduction zones.

Keywords: Hydrothermal alteration, APS minerals, Iillite crystallinity (IC), Tarom Mountains.
بررسی کانی شناختی دگرسانی‌های گرمایی بخش میانی رشته کوههای طارم - شمال غرب ایران

علیرضا گنجی

دانشگاه آزاد اسلامی واحد لاهاجیان گروه زمین شناسی
ار_گانژی2000@yahoo.com

چکیده: محدوده مورد بررسی بخشی از رشته کوههای طارم واقع در 40 کیلومتری شمال شهر زنجان است. این محدوده عمدتاً از سنگهای آنتفسیان روسی و نفوذی ترشحی تشکیل یافته که غالباً دچار دگرسانه‌های گرمایی شده‌اند. به طور کلی دگرسانه‌های گرمایی منطقه مورد مطالعه بر اساس جایگاه زمین‌شناسی در دو گروه اصلی قرار می‌گیرند. (1) دگرسانه‌های گرمایی منطقه‌ای شامل انواع دگرسانه‌های پانسیک، سریسیتیک و پروپتیک‌های 2 دگرسانه‌ای گرمایی تحت کنترل ساختاری شامل سه نوع دگرسانه آرژیلیک و آلوئیتی بررسی شده‌اند.
کانی شناختی نشان داد که مکان‌های گرمایی انواع دگرسانه‌های آرژیلیک ـ آلوئیتی عبارتند از: (کالولینیت، مونتморولیت، بالیت، کانی مخلوط لاپاستیک) گلریت ـ سرپیت + کوارتز ـ زیست ـ زیریت؛ که مقدار کمی دانه‌بندی و درجه تیرو آنها در انواع مختلف گروه از دگرسانه‌ها متفاوت است. برای تعیین دمای دگرسانی آرژیلیک، از فاکتور درجه IC استفاده شد و نتایج محاسبات نشان داد که دمای تشكل ابی بین 30 تا 40 گرادیس است. نتایج حاصل از این تحقیق حاکی از شیای زیاد دگرسانه‌های آرژیلیک ـ آلوئیتی در منطقه دگرسانه‌های مورد مطالعه با دگرسانه‌های آرژیلیک و آلوئیتی توزیع سوپلیدسیون بالا در مناطق فرورانش کوههای قاره‌ای است.

واژه‌های کلیدی: دگرسانه گرمایی، کانی شناختی گروه APS، درجه تیرو، ابی بین، رشته کوههای طارم.
مقدمه
گستره مورد مطالعه در شمال غرب ایران و در فاصله تقريبي مستقيمي 400 كيلومتری شمال شرقي زنجان در حد فاصل طول يار جغرافیايی ۲۲°۰۰ً۰۰ً تا ۲۲°۴۸ً۱۸ً و عرض يار جغرافیايی ۳۷°۰۰ً۰۰ً تا ۳۵°۴۰ً۲۴ً شمالي قرار دارد. اين محدوده، مستطيل شرقی-غربی به مساحت تقريبي 470 كيلومتر مربع را شامل می‌شود که جزئی از پخشي مياني رشته کوهيي يار طارم می‌باشد (شکل 1). هدف از اين مطالعه بررسی كانيي يار، نمایيي و تغييرات تركيب كانييها در انواع درگرسانه‌يي يار موجود در منطقه به موهبد درگرسانه‌يي آزیليتي-آلونيي بوده و با استناد به نتایج به دست آمده، ِریاب شیبی يار و گوناگوني تشكيل اين درگرسانه‌ييا مورد بررسی قرار مي‌گيرد.

شکل 1 موقعیت جغرافیایی و نقشه تفکیک پهنه‌های درگاسانی محدوده مورد مطالعه.
روش بررسی

در این بررسی پس از انجام عملیات صحرایی و نشانه‌شناسی، تماس مستقیم داغ‌های رقیم سنجنده TM به منابع داده‌های رقیم سنجنده. در میزان مداومت دگرگاسی صورت گرفته و از نمونه‌های پرداخت شده تعداد ۱۰۰ نمونه مقطع نازک برای مطالعه با میکروسکوپ پلازران تهیه شد. همچنین به منظور شناخت دقيق تر ترکیب کانی‌شناسی بی‌پهنه‌ای دگرگاسی، به ویژه انواع آرزیلیتی - آلونیتی و شناسایی انواع کانی‌های رسی و کانی‌های گرده (XRD) و کاتیت آب بانتی (SEM) تعداد ۱۰ نمونه به روش برخی برتو X مورد بررسی و مطالعه قرار گرفتند. کلیه آزمایش‌ها در مجتمع آزمایشگاه دانشگاه آزاد اسلامی واحد علم و تحقیقات تهران به انجام رسید. در این راستا به منظور تهیه نمونه‌های مورد نیاز، تعداد ۱۴ نمونه شاخ و منبع به انواع دگرگاسی‌های آرزیلیتی - آلونیتی آماده شده و عمل برکانده شد. در آب مقطر به استفاده از محلول هگراتات‌سیانیدی صورت گرفت. همچنین به دلیل خاصیت اسیدی برخی نمونه‌های آلونیتی، از محلول آمونیاک ۱ مولار نیز استفاده شد. پس از پرکانده‌سازی نمونه‌ها و نهایت تهیه نمونه‌های متغیری شده، روش برخی برتو X مورد مطالعه قرار گرفتند:

۱) نمونه خشک شده در هوای دمای ۲۷۵،۵ درجه سانتی‌گراد (xpl)
۲) نمونه گرم شده تا دمای ۵۰ درجه سانتی‌گراد (xpl)
۳) نمونه عمل آوری شده با اتانول گلیکول (xpl)
۴) نمونه عمل آوری شده با استیل کاربنیک.

اول استفاده شده در همبستی با میکروسکوپی تور. (نشر)

شکل ۲ نمونه خشک یا آبسیدی شده در همبستی با میکروسکوپی تور (نشر)
زمن‌شناسی

منطقه مورد مطالعه، قسمتی از بخش مرکزی زون طارم را شامل می‌شود که به‌صورت 90% سطح آن‌ها استفاده آتشفشانی رسوی و نفوذی ترسیم شکل می‌دهد. پی‌سنگ این تشکیلات به‌اختلال قرب به‌ویژه شامل سازندگی‌های با سیالوژیکی فوق‌العاده و کراتسا است که در بخش‌های سیالوژیکی پخش‌های شدیدان [1].

قدمتی ترین و اولین سنگی رخ‌نمونه‌ای در منطقه، توقف و توقف‌های معادل سازند، جریان با سن اختام‌یافته انسان، می‌باشد. این واحدهای انسانی تغییرات رخ‌شناسی است، بطوری که در بعضی موارد قابل مرتفع بوده و در موارد دیگر تغییرات در این سنگ‌های خاصی درون واحدهای اصلی تغییر کرده‌است. این‌انجام عمومی این تغییرات شفاف‌گیری گردیده که ویژگی آن‌ها در نقاط مختلف به‌عنوان عامل ساختارهای زمین‌شناسی متفاوت است. به‌عنوان نمونه، درگستری آژیرلتی‌های اولیوئیتی‌های از این واحدهای انسانی در واحدهای آشوری تپه‌های سازندگی که همانند توقف‌ها متحمل نشان‌برداری پروپنیلیتی و سرسختی شده‌اند.

بالاترین بخش از ساختارهای انسان در منطقه به‌صورت سازندگی آندزنتی‌های تراکنشی، تراکنشی آندزنتی‌های تراکنشی و دگرسانه‌های آتشفشانی در تمامی‌های جنوبی و جنوب غرب منطقه مطالعه رخ‌شناسی داشته و ارتباطات این‌انجام‌ها را تشکیل می‌دهد. رخ‌شناسی خشک و ارتفاع‌های کوهی، این سنگ‌ها را از دیگر سنگ‌های آتشفشانی انسان منظم‌تر می‌سازد.

خساره‌های سازندگی در منطقه مورد مطالعه به‌صورت ازدیده بوده و این رسوبی در این زمان تشکیل شده است. به علت نفوذ پس از عملکرد گذر فشارشی پرینگ در زمان الیگوس زیرین، این منطقه به‌صورت قبل از سیالوژیکی شرط و البرز غربی، دسته‌شوندی نفوذ‌های طبیعی در آن واحدهای طبیعی و مختل با تراکم عمومی حاد و اسیدی بوده است [1].

علاوه بر تشکیل توده‌های نفوذی، گام‌های ماگماتیک سنگ‌های این سنگ‌های از طریق گسل‌ها و شکستگی‌های عمیق به مناطق نیمه عمیق و حتی نیمه عمیق و خروجی آنها، از قبیل دایک‌ها و سیل‌های میکروگراندیت‌های ترولیتی با بافت برخی و نیز خروجی‌های تراکنشی ناشی از جریان اثر نفوذی که در ناحیه الیگوس و الیگوس زیرین را قطع کرده و مثل موارد مشابه در سیالوژیکی شرط و البرز غربی هر چند به‌لحاظ تراکمی ناگهانی‌های سه‌سته، ولی هم‌اندازه‌ای مواد مربوط به عملکرد از دست‌های الیگوس زیرین داشته، به علت دیگر تشکیل این توده‌های نفوذی متغیر بوده و به‌صورت کرونودورینت، کورنت سینترا، آلکالی گراندیت، میکرو گراندیت و گراندیت تورمالین‌دار (در حاشیه توده‌ها) است. اپی‌ویژن‌های کوچک از جنس توده‌های گراندیت‌های اصلی تیز بطور پراکنده در داخل توده‌ها و توده‌های واحدی قدمتی تر دیده
می‌شود که همچنین آنا متحمل دگرگونی درجه پایینی تا رخساره آلپت، ابدوت هورنفیس شده است.

جواننین واحد در محدوده مورد مطالعه رساههای کوانتزیری شامل رساههای تراس‌های قدیمی رود خانه‌ای، تراس‌های جوان رود خانه‌ای، زمین‌های کشاورزی و رساههای آب‌رسان هستند که به دلیل ریخت‌شناسی خاص که رودخانه قزل اوزن در آن محل تشكل شده و منحصربه‌شمار در مناطق سطحی هستند.

de葛ساني‌های گرمایي

de葛ساني‌های گرمایي منطقه مورد مطالعه بر اساس جایگاه زمین شناسی در دو گروه مختلف مورد بررسی قرار می‌گیرند:

1- de葛sاني‌های گرمایي منطقه‌ای، شامل انواع de葛sاني‌های پاتاسیک، سرسینتیک و پروبیلیتیک، که این انواع de葛sاني‌ها در ارتباط با نفوذ توده‌هاي گرانیتونیدی بوده و به‌صورت موردی در واحد‌های سنگ‌شناسی مختلف منطقه و در مجاورت این توده‌هاي نفوذی گسترش دارند. به‌طور گذشته از de葛sاني پروبیلیتیک می‌توان قابل توجهی از منطقه را در بر گرفته (شکل 1). محدوده سایر انواع de葛sاني به دلیل پیچیدگی منطقه و کوچک بودن مقياس نقص مشخص نشده‌اند.

2- de葛sاني‌های گرمایي تحت کنترل ساختاری، شامل انواع de葛sاني‌های آرژینیک و آلونتیک که در آنها مجموعه کانی‌های مختلف در پنه‌های گسل تشکیل شده‌اند. این نوع de葛sاني‌ها بر اساس شدت de葛sاني و ترکیب کانی شناختی بالا بمرتبه به سه گروه Al2، Al3 و Al4 تفکیک شده‌اند که محدوده‌ها آنها در نقشه تشکیل شده‌اند (شکل 1) مشخص شده است. این de葛sاني‌ها تا در واحد توف و تویف‌های انسان قرار دارند.

کانی شناختی میکروسکوپی de葛sاني‌های گرمایي منطقه‌ای (de葛sاني پروبیلیتیک)

این نوع de葛sاني باعث می‌شود در گازهای آنزیمی، انرژی و تراکم انرژی واحدهای مجاور توده‌ها نفوذی گرانیتونیدی منطقه دیده می‌شود و بیشترین وسعت را بین سایر انواع de葛sاني در منطقه احاطه کرده است (شکل 1). به‌طور قابل توجهی از توده‌هاي گرانیتونیدی در سایر واحد گازهای آنزیمی انسان منطقه که در مجاورت جبهه جنوبی توده‌ها گرانیتونیدی قرار دارند، دچار آن نوع de葛sاني شده‌اند.

کانی‌های عمده قابل تشخیص در این زون de葛sاني عبارتند از: اپیدوت، کریت، زونزیت و کلینسپاتیزیت (حامل سوسورینیتراسیون پلاژیوکلاراگی)، کلسیت و زنولیت (به‌صورت پرکندگی حفره‌ها و فضاهای خالی) (شکل‌های 3 و 4) و به مقدار جزئی اکسیده‌های آهن، سرژیت و کانی‌های رسی برخی از نمونه‌های دگرسان‌شده حاصل این مجموعه کانیها را می‌توان در سه شکل 3 و 4 مشاهده کرد.
کاتی شناختی میکروسکوپی دگرگانهای گرمایی تحت کنترل ساختاری
این دگرگانهای در استان نواری به طول تقریبی ۳۰ کیلومتر و عرض منجر از جنوب تا شمال، حداقل ۲ کیلومتر در امتداد زون گسل امتداد گزش احتمال‌مند و امتداد عمومی آنها به تغییرات از این گسل شرقی - غربی است. جنگله‌ای در شکل ۱ مشاهده می‌شود پنهانی مربوط به این نوع دگرگانهای دقتاً مرتبط با مناطق گسل بوده و مشاهدات صحراوي نشان می‌دهد که دگرگانهای مذکور در مجاورت بلافاصله سطوح گسل رخ داده و در یک واحده سنجشانسی خاص به تدریج یک دور شدن آن سطح گسل از شدت دگرگانه‌ا کاسته می‌شود. این نوع جایگزین و ارتباط مکانی محصوله‌ای دگرگانه با زون گسل باعث شده که تناول این نوع دگرگانهای را با عنوان "دگرگانهای گرمایی تحت کنترل ساختاری" نامگذاری کند. زیرا یپ تردید کانال‌های عبور ایجاد شده تحت تأثیر این گسل خوری و مکرر، مجازی مناسبی برای جرخه محول‌های گرمایی در سنجش گسل تولید شده و نهایتاً سبب تغییرات دگرگانی شده‌اند. به لحاظ نوع دگرگانه، به‌نهایت دگرگانه عمده‌اً مشتمل بر دو نوع آزیلیپسی و آلیتی‌سی استهند که به مهندسی مکانی و زنجیری ابتدایی هم‌دیگر تحت یک عنوان دگرگانه آلیتی‌سیاسپور مورد بررسی قرار می‌گیرند. همان‌طور که بیش از این نوع گسترش یافته و میزان مورد مطالعه به نوع دگرگانه آلیتی‌سیاسپور با عنوان آلیتی (4) و آلیتی (5) تفاوت و مشخص شده‌اند (شکل ۱) که نسبتاً آنها را می‌توان مطالعه دگرگانه‌ای آزیلیپسی بیانفرت، منوسط و می‌توان در نظر گرفت.

مطالعات میکروسکوپی نشان داد که نمونه‌های مربوط به دگرگانه نوع ۱ غلیظ طوری دگرگانی شده‌اند که باقی کانال‌های اولیه سنگ مادر در آن نوع تقریباً غیرقابل تشخیص است و فلزسیاتی سی ساخته شده‌اند. نا آنکه که اثر از شکل اولیه شده‌اند. در نمونه‌های دگرگانه نوع ۱ طوری دگرگانی شده‌اند که باقی اولیه سنگ مادر در آنها حفظ شده و نیز کانال‌های اولیه سنگ شکل و ماهیت اولیه خود را محفظاً نگه داشته‌اند (شکل ۶). در نمونه‌های دگرگانه نوع ۲ ساخته شده و ترکیب کانال‌های اولیه سنگ مادر محفظاً باقی مانده است و برخی کانال‌ها (مثل فلزسیاتی) به طور جزئی دگرگانی شده‌اند (شکل ۷).
درگسمان نوع Al₃ با پارازنت کانیتهای رسی بهویژه کاتولون + کانیتهای گروه آلومینیم - فسفات - سولفات (APS + کوارتز + زبس + انددیت + پروفلیت + آکسیدها و هیدروکسیدهای آهن + پیریت‌های اکسیده شانخته می‌شوند (شکل‌های A و B). فرمول عمومی کانیتهای گروه آلومینیم - فسفات - سولفات به صورت $\text{AB}_3(\text{XO}_4)_2(\text{OH})_6$ است که در AB, P, S : X و Zn, Cu, Fe, Al : B, Sr, Br, Pb, Cu, U, Na, K : A آن گروه کانیتها تحت سری‌های همبستگی 1. آلیت - جاروسیت قرار می‌گیرند که به‌طور گسترده‌ای در شرایط هیپبروزن و سوربروز ترکیب می‌شوند [2].

پهن‌های درگسمان نوع Al₃ با پارازنت کانیتهای رسی بهویژه کاتولون + سربیسیت + کوارتز + کلسیت + اکسیدها و هیدروکسیدهای آهن + مقادیر سیار کمی کانیتهای گروه APS مشخص می‌شوند (شکل C). با این‌نوع پارازنت کانیتهای در پهن‌های Al₃ نیز به همین ترتیب است با این تفاوت که مقادیر این کانیتها بسیار کاهش یافته و شدت درگسمان سنگ‌های مادر ضعیف است به طوری که کانیتهای اولیه سنگ نیز در آنها قابل تشخیص است (مثل فلدسپات‌ها و پلاژیوکلازا). نهایتاً دگرانش شده از نوع سربیسیت.

![شکل 5: آلیت و جاروسیت در تفکر استدی آلیت (شکل D).](xp1)

![شکل 7: پلاژیوکلازا نیمه آلیت و تمام آلیت (شکل E).](xp1)

1- Isostructural
کانی‌شناسی و بررسی کانی‌شناسی دگرسنجی‌های گرمایی

(XRD) بررسی‌های الگوهای پراش پراتو X به‌دست آمده از ۵۴ نمونه مورد آنالیز نشان می‌دهد مجموعه کانی‌های زیر در غروه آزیلیزاسیون وجود دارند:

- گروه آلت: آلیت + جاروسیت + سارپاب + گروه طبیعی + کانی‌های رسی شامل: کانولین.
- گروه مونوموربالینت: ایلیت، کانی مخلوط لایه ایلیت/اسمکتیت و کلریت + کوارتز + زیپس + گونیت + پریت.
گروه Alt_2: موسکوویت (سربیسیت) + کوارتز + پتاسیم فلسپار + کاتیپهای رستی شامل کاتولینیت (استمکتین و کانی مخلوط لاپ ایلیت/استمکتین)

گروه Alt_1: کوارتز + پتاسیم فلسپار + موسکوویت (سربیسیت) + آلیت + پریت + گلریت از این میان نمونه‌های مربوط به گروه‌های Alt_1 و Alt_2 با دقت بیشتر مطالعه قرار گرفته و تغییرات کمی کاتیپهای مختلف نسبت به تغییر دانه‌بدی در آنها بررسی گردیده و مشخص شد که با افزایش قطر دانه میزان کاتیپهای کوارتز، آلیت، جاروسیت و سایر کاتیپهای APS و نیز کاتیپهای کاتولینیت و موسکوویت بالا می‌روید. بررسی با کاوش قطر دانه، میزان کاتیپهای رستی شامل مونومورولوئیت، ایلیت، کلات الک و رسپی مخلوط لاپ ایلیت/استمکتین بالا می‌روید. همچنین بررسی قله‌های اصلی (200) کاتیپهای رسی نشان می‌دهد که درجه تبلور کاتولینیت بهبود نمی‌یابد از مونومورولوئیت و هر دو بیشتر از ایلیت/استمکتین هستند.

تعیین دماهای دوگانه آرژیلیزاسیون با استفاده از درجه تبلور ایلیت:

درجه تبلور ایلیت با IC^2 است در اندازه‌گیری عرض نصف ارتفاع قله 10^{-1} الیت در فراکسیون >10 گزارش می‌شود و واحد آن ΔIC است. [3]

جهت تعیین دماهای دوگانه آرژیلیزاسیون نسبت مولکول مولفه قله در اثر سطح加热 به دست آمده از سپسته‌های زمین‌گرایی فعال در نیوژن تهیه کردند. سپس از دیدگاه زمین‌گرایی فعال، مکانیزم بهبود سیر مقدار برای مولهول از نتایج کانی‌های از این دیدگاه بهبودیک تشکیل کانی‌های رسی است. همچنین با افزایش طبیعی برای برنی و استفاده از سه در شرایط قابل اندازه‌گیری هستند. نماینده یک کانی بهبود در حوضه‌های زمین‌گرایی فعال است که در دمایی $>160^\circ C$ وجود می‌یابد.

نتایج درجه تبلور به دست آمده یک در این مطالعه IC است. برای این کار مقادیر قله‌های IC به دست آمده از روش قله‌های CIS استفاده شانه‌ای که این مقایسه

استندارد شاخص تبلور یا OIC است. برای این کار مقادیر قله‌های IC به دست آمده از روش قله‌های CIS استفاده شانه‌ای که این مقایسه

$IC_{\text{CIS}} = 1319800 \times IC_{\text{measured}} - 4999999$.

از آنجا که دما عامل اصلی کانداه‌دانه درجه تبلور ایلیت است و این مقادیر که ان IC به دست آمده از مونومورولوئیت $	ext{CIS}$ با استفاده از هم‌بودن CIS در قله‌های رسی یا با استفاده از کاتیپهای رسی IC که با استفاده از میزان دمای شکل ایلیت، به انتهای این کار که از روش سه گانه

2. Illite Crystallinity
3. Crystallinity index standard
پراش پرتوی ۱ میکرون به نمونه‌های دگرسانه‌ای AlSi1010 ایلیت بودن، مقادیر FWHM (عرض نصف ارتفاع قله) محاسبه شده و سپس با استفاده از فرمول نامبرده مقادیر محاسبه شده که نتایج بهصورت جدول ۱ است.

با پیاده کردن موضعی IC محاسبه شده روي تمودهای جی و پردون (شکل ۱۴)، مشخص شد که تمام تشکیل کانی ایلیت در دگرسانه‌ای آرزیلیپاسیون آلومینیوم مطالعه بین ۲۰۰ تا ۴۰۰ °C ایست. این دما قابل مقایسه با دمای تشکیل دگرسانه‌ای آرزیلیپاسیون ایبی ترمال از نوع سولفیداسیون با (T = ۲۶۰ - ۲۹۰ °C) در مناطق فورانش قوسهای قارمای [۵] است.

جدول ۱ مقادیر FWHM و قله (۰۰۲) ایلیت در نمونه‌های مربوط به دگرسانه‌ای AlSi1010

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>عرض نصف ارتفاع قله ۱۰۰ Å</th>
<th>IC_CIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>۰.۹۲</td>
<td>۰.۶۶۶</td>
</tr>
<tr>
<td>A-2</td>
<td>۰.۸۹</td>
<td>۰.۵۸۹</td>
</tr>
<tr>
<td>A-3</td>
<td>۰.۷۱</td>
<td>۰.۶۵۴</td>
</tr>
</tbody>
</table>

شکل ۱۴ موضعی دمای تشکیل کانی ایلیت در دگرسانه‌ای آرزیلیپاسیون مطالعه براساس IC_T=۲۶۰ - ۲۹۰ °C جی و پردون (۲۰۰۰)

بحث و برداشت

- در این دگرسانه‌ای نسبت مستقیمی بین افزایش سپسیس (کوارتز) با افزایش قطر هاری وجود دارد.
- کانه‌های گروه آلومینیم-فسفات-سولفات (APS) به ویژه در نمونه‌های دارای کالولینیت در شرایط فراوان حضور کانه‌های اسکمتیک - ایلیت - کوارتز همراد با هم و نیز وجود میان‌های الیوهای ایلیت و گروه APS ساختار منطقه مورد مطالعه را می‌توان تشکیل فیلیسیلات‌های قابل انقباض Á 10 اسکمتیک در نظر گرفت.

- نقطه آغاز دگرسایش‌های آرژیلیاسیون تحت کنترل ساختاری منطقه توانمندی شده است. شکل گیری کانه‌های گروه اسکمتیک همچنین حین تشکیل اسکمتیک شارها غالباً ترکیب خیلی قلیایی ضعیف دارند.

- حضور کانه‌های گروه APS دیده بر اسیدیتر شدن شاره‌های گرامی است. منشاً فسفر این کانه‌ها، کانه فرعی آرژیلیت موجود در سنگ ماده اولیه آنهاست. سولفات که اهمیت فراوانی دارد، در تشکیل کانه‌های APS دارد، در اثر تجزیه پتایت اولیه موجود در سنگ ماده مهیاً می‌شود. از منطقه حضور کانه‌های گروه APS در کنار کالولینیت و کوارتز را می‌توان با زون دگررسانی آرژیلیک بیان نمود که از شارها بسیار اسیدی به وجود می‌آید میزان دانست.

- در نهایت در مورد دگررسانی آرژیلیاسیون (آرژیلیت - آلونیت) منطقه مورد مطالعه می‌توان چنین اظهار داشت که با افزایش کانه‌های گروه آلومینیم-فسفات-سولفات، تغییرات زیب را می‌توان می‌توان نتیجه‌گیری کرد:

1. کاهش PH سیالات گرامی.
2. افزایش سیستم و محتوا کانی‌سازی.
3. کاهش خطر دارایی کانولینیت و کوارتز.
4. کاهش مقدار کانه‌های گروه اسکمتیک.
5. افزایش اصلی‌ترین سیستم کانه‌های گروه اسکمتیک و بالعکس افزایش مقدار کانی ایلیت.
6. افزایش شدت دگررسانی (از آرژیلیک متوسط تا افزایش نسبی).
7. تغییرات دمای سیستم دگررسانی در دامنه ۲۳۰ تا ۲۴۰ براساس فاکتور درجه تبلور کانی ایلیت.

مراجع

[4] گنجی ع.، "کنترلهای فیزیکوchemیابی دگرسنشایی گرمایی و کانی‌زایی‌های اسرب، روی و طلا در بخش میانی رشته‌کوه‌های طارم - شمال غرب ایران" دانشگاه اسلامی واحد علوم و تحقیقات تهران، رساله دکتری (۱۳۸۰) صفحه ۴۴۵.
