Geothermobarometry of granitoids from Torud-Chah shirin area (south Damghan)

G.Ghorbani¹, M. Vossoghi Abedini², H.Ghasemi³

¹- Faculty of earth sciences, Damghan university of sciences, Damghan, Iran.
²- Faculty of earth sciences, Shahid Beheshti university, Tehran, Iran.
³- Department of geology, Faculty of sciences, Shahrood university of technology, Shahrood, Iran.
E-mail: ghasemghorbani@yahoo.com

(Received: 2/5/2004, received in revised form: 4/2/2005)

Abstract: Granitoid bodies of south of Damghan with northeast- southwest trend have intruded into the Eocene volcanic, volcanoclastic and Cretaceous carbonate deposits. Recent studies have revealed that the Al content of hornblende in calc-alkaline granitoids varies linearly with pressure of crystallization, thereby providing a mean of determining depth of pluton emplacement. Based on results of electron microprobe analyses, amphibole minerals present in these bodies, according to Leake are plotted in the field of calcic amphiboles and show Actinolite, Actinolite-Hornblende and Magnesiohornblende composition. Calculated pressures of emplacement, using the Al-content of Hornblende, for these bodies ranging from about 0.51 to 0.98 Kbar (about depth of 1.8 to 3.5 Km). The ultimate equilibration temperatures of minerals were calculated using different thermometers ranging from 613 to 772 °C.

Keywords: Barometry, Thermometry, Granitoids, South Damghan, Electron microprobe.
دما - فشارسنجی، توده‌های گرانیتوئیدی منطقه
طرود - چاه شیرین (جنوب دامغان)

قاسم قربانی، منصور وثوقی عابدینی، حیب الله قاسمی

چکیده: توده‌های گرانیتوئیدی جنوب دامغان، با روند شمال-شرقی-جنوب غربی در نهشت‌های آشنایی و آشنایی‌های انسان و نهشت‌های کرمانی کرمان‌جایگی کرده‌اند. مطالعات اخیر معلوم کرده است که میزان AI هورنبلند در گرانیتوئیدهای کالکوالتاکان بطور خاص با فشار تبلور تغیر می‌کند. لذا وسیله‌ای را برای تعیین عمق چاپگیری پوتوئون فراهم می‌نماید. بر اساس نتایج حاصل از تجزیه ریزگردهای الکترونی، کلیه‌های آمپنیا موجود در این توده‌ها بر اساس تقسیم‌بندی لیک در قلو و کلتیک واقع شده و از نوع اکنیتولیتی-هورنبلند و مگنزیووهورنبلند محسوب می‌شود. فشار چاپگیری این توده‌ها با استفاده از میزان AI هورنبلند در حدود 0.18-0.25 کیلوبار (در عمق قریب 18-25 کیلومتر) تعیین می‌کند. دمای تغییر کانی‌ها، با دمای‌های مختلف محاسبه شده و از ۷۲۳ تا ۷۴۷ درجه سانتی‌گراد تغییر می‌کند.

واژه‌های کلیدی: فشارسنجی، دماسنجی، گرانیتوئید، جنوب دامغان، ریزگردهای الکترونی.
مقدمه

ناحیه طرد - چامشیرین در جنوب شرقی دامغان و در حدود ۱۲۰ کیلومتری آن واقع است.

توده‌های نفوذی متعددی در این ناحیه با سند اسپانیائی ایوانوویچگلوئیایی موسوم به انششانی اولین سنجش‌های آنها را داشته‌اند. این توده‌ها (بهترین دارای بیانیه پوروراکر) از زمان اولیه یا مابعد آن گزارش آن از گزارش آن است که

نیز به سلسله زمین‌گیری کرده‌اند. همچنین وجود باتلاق‌های ریزی و گرافیتری در این سنجش‌ها باید در نظر گرفته شود.

۲۴ Kbar

است. چگونگی توده‌های نفوذی در این ناحیه، آنها شامل گرافیتر، میکروگرافیت، میکروکوارتز، میکرومونزونیت، میکرومونزونیت و میکروکوارتز می‌باشد. این مجموعه شامل کانی‌های کوارتز + اکلیل فلدسپار + بلزیولاز + پیروکسن + امفیبول + پیروکس + آبیانیت + تنباتیت + ژیرنک + تونوماین + اکسید Fe-Ti (مگنتینت - ایلامین) تشکیل شده‌اند. سر ماهماهی این سنجش‌ها سابک‌کالتان تا Akaات و از نوع I است. نمونه‌های میدانی هدف اصلی از این بررسی شباهت‌های متفاوت‌ها و تغییرات ترکیبی مشی‌پیان آنها برای محاسبات دما-فشارسنجی توده‌های نفوذی جنوب دامغان است.

روش مطالعه

برای بررسی کانی‌شناسی به منظور تعیین دما - فشار توده‌های نفوذی مورد مطالعه، پس از سنجش‌های و تهیه مقاطع تازه بسته، نمونه‌های از ترکیبات مختلف توده‌ها انتخاب شده و سپس این مقاطع با استفاده از روش‌ها و مکانیزم‌های مختلف تشكل‌دهنده آنها مورد آنالیز قرار گرفته. محاسبه کانی‌ها و فرمول ساختاری کانی - های امفیبول، بلزیولاز، اکلیل فلدسپار و پیروگاس به ترتیب بر اساس ۸، ۸، ۸ و ۶ اکسی‌این اکسی‌کانی است.

ارزیابی عمق و فشار جایگیری توده‌های نفوذی با استفاده از شواهد صحرایی

منظور از جایگیری تشکیل یک پلی‌گونی تا گزارش‌های مورد مطالعه است که در آن فرانک حجم

این اشکال سه‌بعدی می‌شود. این توده‌ها بهترین داده را می‌دهند. یک از روش‌های مورد استفاده از شواهد صحرایی است که متغیر به وسیله آن صحیح و سه‌بعدی از آزمایشگاه‌ها تحت تأثیر کرد [۱]. سنجش‌های اصلی در نوگیری توده‌های نفوذی مورد مطالعه را سنجش‌های انششانی اولین سنجش‌های دامغان، البته در بخش غربی مورد بررسی گردیده و از توده‌ها به داخل ساکاند.
هر دو درجه و فشار جایگیری نفوذی با استفاده از مدل‌های داغ و گردوئی مجازاتی

هم‌اطور که اشاره شد، سنگ‌ها در گردوئی و نفوذی مورد مطالعه را سنگ‌های آتش‌فرشی و کربناتی تشکیل می‌دهند. هالت سنگ‌های موجود در برابر این توده‌ها از گسترده‌ترین برخوردار نیست. پارازنت کلی که از سنگ‌های شناسی ابتدای ترمولیت + کارزنت + ترمولیت اکتیونولیت + آلبیت، پارازنت اصلی موجود در همبستگی سنگ‌های آتش‌فرشی می‌باشد با توده‌های نفوذی هستند.

پارازنت کلی شناسی گارنت + کلیسیت + کارزنت + ترمولیت + کارزنت + تالک + موس رویت نیز با پدیده کراتوبلاستیک در سنگ‌های کربناتی مجزا این توده‌ها وجود دارند. به نظر وی دانلدر [4] این پارازنت‌های کلی شناسی متعلق به درجه شایین گردوئی و نفوذی - ابتدای ترمالیت - دارند. درجه سنگ‌های پارازنت‌های کلی شناسی مطلق با درجه پایین گردوئی و نفوذی آلیت - ابتدای ترمالیت - دارند. درجه سنگ‌های پارازنت‌های کلی شناسی یادبوده‌ی توده‌های نفوذی. درجه سنگ‌های پارازنت‌های کلی شناسی یادبوده‌ی توده‌های نفوذی.

فرمول ساختاری و رده‌بنیان آمفیبول‌ها

بلورهای آمفیبول در سنگ‌های مورد مطالعه، اغلب به صورت نیمه‌شکل یا خود شکل و با داشتن در میانه می‌خورند. در مقاطع عرضی مشخص می‌شوند. لیک در هم‌ارو که در موقعیت با رنگ و رنگی آمفیبول‌ها به دست افتاده است. غازدار شیمیایی به مقدار Fe - Mg - Mn کلیپس کارزنت را به جای کربنات که در قلمرو آمفیبول‌های محتوی، کلیس کارزنت را به جای کربنات که در قلمرو آمفیبول‌های محتوی واقع می‌شود. کلیس کارزنت را به جای کربنات که در قلمرو آمفیبول‌های محتوی.

\[\sum (Ca + Na) B \geq 1 + \gamma Na B \leq 1.5 \]

در این قلمرو جهان گروه مشخص شده‌اند [5 و 6].

1- Winkler
2- Leake et al
دما- فشارسنجی توده‌های گرانیتونی‌هایی از جمله طرود - چا شیرین

b- $\text{(Na+K)} \geq 0.5$ و $\text{Ti} \geq 0.5$

c- $\text{(Na+K)} \leq 0.5$ و $\text{Ca A} < 0.5$

d- $\text{(Na+K)} \leq 0.5$ و $\text{Ca A} \leq 0.5$

آمیفیوبول‌های مورد مطالعه در این تحقیق در گروه a قرار می‌گیرند و از نوع اکتینولیت، اکتینولیت- هورنلبند و مگزیوهورنلبند هستند (شکل 1- ب). آمیفیوبول‌های کلسیک شاخه توده‌های نفوذی نوع ۱ هستند [۶] ترکیب شیمیایی آمیفیوبول‌های ترکیب‌دهنده توده‌های نفوذی منطقه مورد مطالعه در جدول ۱ ارائه شده است.

![Diagram](chart.png)

شکل ۱ نامگذاری آمیفیوبول‌ها بر اساس روش لیک [۵]. (الف) آمیفیوبول‌های توده‌های نفوذی مورد مطالعه در گروه کلسیک قرار می‌گیرند. (ب) ترکیب آمیفیوبول‌ها از نوع اکتینولیت، هورنلبند اکتینولیت و مگزیوهورنلبند هستند. پارامترهای این دیاگرام شامل $\text{Ti} \geq 0.5$ و $\text{(Na+K)} \geq 1.5$ و $\text{Ca A} \geq 0.5$ است.
جدول ۱: ترکیب شیمیایی کاتیون‌های آمفیپول موجود در توده‌های نفودی منطقه چالو (G) و گندی (Gl).

| جدول ۱: ترکیب شیمیایی کاتیون‌های آمفیپول موجود در توده‌های نفودی منطقه چالو (G) و گندی (Gl) | جدول ۱: ترکیب شیمیایی کاتیون‌های آمفیپول موجود در توده‌های نفودی منطقه چالو (G) و گندی (Gl) |
فشارسنجی با استفاده از آلومینیوم هورنبلند

Act. Hornblende

<table>
<thead>
<tr>
<th>Sample</th>
<th>3G-1</th>
<th>3G-2</th>
<th>2G-1</th>
<th>2G-2</th>
<th>2G-3</th>
<th>2G-4</th>
<th>2G-5</th>
<th>2G-6</th>
<th>2G-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
<td>51.61</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
<td>7.44</td>
</tr>
<tr>
<td>FeO</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
<td>10.16</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Si</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Si</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
<td>7.75</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Mg</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>Cr</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Mn</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Ca</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Na</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>A</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>K</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Sum cat.</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
<td>15.20</td>
</tr>
</tbody>
</table>
آمفیبولها قابل استفاده‌ترین کانی‌ها در دما - فشارسنجی در سنگ‌های آذرین کالکوانال هستند، زیرا تقریباً در تمام نمونه‌های کالکوانال کرون‌های از ترکیبات بازیکس، حد واسط یا اسیدی تشکیل می‌شوند و در محدوده وسیعی از P-T از 1-23 Kbar در دماهای 450 تا 1150 درجه سانتی‌گراد پایدارند [5 و 6]. بسیاری از دما - فشارسنجی‌ها از این میزان آمیختگی هورنبلند هستند. زیرا میزان آمیختگی هورنبلند در ارتباط مستقیم با عمق چاپ‌گیری پلیتون‌هاست [7] و از این رو وسیله‌ای برای تعیین سطح چاپ‌گیری پلیتون‌هاست. فرمول‌های زیادی بر این اساس توسط مشخص‌کننده آن‌ها است. اشتهای [8] معادله زیر را با استفاده از کل حاشیه‌های هورنبلند برای تعیین فشار ارائه کردند:

$$ P \ (\pm 0.5 \text{ Kbar}) = 0.98 + 0.47 \text{ Al}^{0.01} $$

این ارزیابی پروینی گابنی بین 0.8 تا 98.0 کیلوبار (عمق 2 تا 315 کیلومتر) و نمونه‌ها به سایه‌ای گرازیتی و از ترکیبات را نشان می‌دهد. آمفیبولهای توده‌ای یا آمیختگی از نوع اکتینولیت بودند در محاسبات استفاده شدند. جانکه مشاهده می‌شود بر این فشار باید این فرمول و شواهای صحیری مطابق نسبتای خوبی با یکدیگر دارند.

دماسنجی آمفیبول - پلازموکلاژ

علاوه بر فشار، عوامل دما، فوگاسیته‌های اکسیژن، ترکیب سنگ‌کل و فازهای هم‌مرست بر میزان هورنبلند تأثیر داشته و مقدار آن را تعیین می‌کند [6]. پلودی و هلد [6] دماسنجی‌ها بر اساس تبادل $ ^4 \text{Si} ^3 \text{Al} $ در سنگ‌های اشباع از سیلیس را به‌وسیله کرده‌اند.

3-Schmidt
4-Whole rock
5-Blundy and Holland

6- علامت □ جای خالی را در موقعیت A نشان می‌دهد.
Non-ideality

8- Darken’s Quadratic Formation
9- Vyhnal et al.
10- Lindsley

$T = \frac{253 P + 654.9}{K}$

$K = (Si - 4/8 - Si)_{\text{Plag}}$
شکل ۲: تعیین دمای تعادل بین کانی‌های هرمیست کلینوبیروکس و آمفیول با استفاده از ضریب توزیع اهن و میزان اقتباس از مراجع ۱۱. دمای تعادل این کانی‌ها نشان‌دهنده دمای ۲۵۰ درجه سانتی‌گراد می‌باشد.

برای تعیین دمای تعادل بین کانی‌های فلدسپار موجود در An-Ab-Or نمودار سیستم توده‌های تقویتی مورد مطالعه. همدمایاً بر حسب درجه سانتی‌گرادکار بر فشار یک کیلوبار هستند. به جز هدمآی ۹۰۰ درجه سانتی‌گراد که بر فشار نیم کیلوبار است، نمونه‌ها مورد مطالعه دماهای کمتر از ۷۵۰ درجه سانتی‌گراد را نشان می‌دهند. برداشت
مدخلات سنگشناسی نشان دهنده مجموعه کالی شناسی کوارتز، آلکالی فلدسپار، پلاژیوکلزا،
بوتیت، آمفیبول، پپروکس، آپاتیت، نیترات، زربنین، تورمالین، اکسیده، و نیترات (مگنتین و
ايلمنینت) برای توده‌های نفوذی منطقه طورود-چاه شیرین است.
بر مبنای تجزیه کانی‌های تشکیل دهنده این سنگ‌ها با دستگاه ریزگرماها الکترونی، کالی‌های
آمفیبول موجود در این توده‌ها از نوع آکتیونیت، اکتیونیت-پپروکس و مگنیوپپروکس تعیین شدند.
توده‌های گرانیتونیدی جنب دامغان در نهضتهای کریستالی و سنگ‌های آنفاشاشی
اتوسن جای گرفته‌اند. سنگ‌های نفوذی متانشده به احتمال باید، به‌یک یا دو نسبت داده می‌شود
و بر پایه ضخامت سنگ‌های درون‌گیر، عمق تشکیل آنها در حدود 2 تا 3.5 کیلومتر (فشار حفظ
5/4، 1 کیلومتر) است. سنگ‌های پپروکس نفوذی در حد رخساره آلپ-ایپودوت
هورنفلس در گروگان شده‌اند که از توجه به پارتارزی کالی‌های شناسی موجود در این سنگ‌ها، فشار
کمتر از 2 کیلومتر و دمای حفظ 383 درجه سانتی‌گراد بعضاً شرایط تشکیل برای
انها از‌این‌هاش است. این نتایج همگنی قابل قبولی با نتایج حاصل از دما - فشارسنجی با
استفاده از ترکیب شیمیایی کالی‌ها دارد. به گونه‌ای که فشار جایگزینی توده‌ها با استفاده از
میزان A1 مربوط به حاشیه هورنفلدها در حدود 5/4، 2 تا 3.5 کیلومتر است و بر پایه
دماستن‌های آمفیبول-پلاژیوکلزا، آمفیبول-پپروکس و پلاژیوکلزا دمای تعادل این
کالی‌ها در حدود 372 درجه سانتی‌گراد برآورد شده است.
فشار جایگزینی توده‌های نفوذی بر اساس میزان A1 حاشیه‌هورنفلد، برای توده گرانیتون
گندی بین 51 تا 98 کیلومتر (عمق جایگزینی 2 تا 3.5 کیلومتر) و برای توده
کوارتزمون‌زودریتی جالی بین 51 تا 98 کیلومتر (حدود عمق 1/4، 2.5 کیلومتر) را به‌دست
می‌دهد. با توجه به اینکه آمفیبول‌های توده باعث نوع آکتیونیت‌های می‌شود، لذا در محاسبات
فرمول‌های مربوط به تعیین فشار بر اساس A1 هورنفلد استفاده نشده‌اند. ولی با توجه به
ترکیب شیمیایی و کالی‌های شناسی، موشکی و دامای آن نسبت به توده‌های گندی و دما، این توده
نیز باستی این عمق 1/4 تا 3.5 کیلومتری جایگزین شده است.
دماهای پایین‌تر باعث آمده‌ی به توجه آن امکان تغییر تأخیری بین زوج کالی‌ها و به تعامل
مجدد کالی‌ها در حین سرد شدن سبد سولیداس ارتباط داده‌اند. دماهای بیشتری بهدست
آمده‌ی نیز، با دمای زمان نیترات آنها تعیین شده است.
قدیدانی و تشکر
از آقای دکتر قلمیش عضو سازمان زمین‌شناسی کشور به خاطر راهنمایی‌های ارزشمند و مفیدشان و همچنین در اختیار گذاشتن مقالات، صمیمانه تشکر و قدردانی می‌شود.

مراجع

[2] قلمیش، ج.، پژوهشی سنگ های تفویض منطقه اروپا-آسیا و ساز و کار یاکینی، انتشارات پارس شرکت، تهران، 1381، صفحه 269.

[3] هوشمندزاده، ع.، تحقیق پیگیری‌های زمین‌شناسی ناحیه شرود (ار ترکمنستان تا عهد خاموش)، گزارش شماره 55 سازمان زیست‌شناسی کشور، صفحه 138، 1371.

[4] هوشمندزاده، ع.، تحقیق سنگ‌های دکتر کری، انتشارات شرکت، صفحه 408.

