Mineralogy of Marbles produced by metamorphism of Listvenites of Upper Proterozoic Anarak Ophiolite (NE of Isfahan province, Iran)

G. Torabi¹, M. Sabzehei², S. Arai³, M. Shirasaka³, H. A. Ahmed⁴

¹- Geology Department of Isfahan University
E-mail: Torabighodrat@yahoo.com
²- Geology Dep., Tarbiat Modarres university
E-mail: Msabzehei@yahoo.com
³- Earth Sci. Dep., Kanazawa University, Kanazawa, Japan
E-mail: Ultrasa@kenroku.kanazawa-u.ac.jp
⁴- Central metallurgical res. and development inst., Cairo, Egypt
E-mail: Ahm2@yahoo.com

(Received: 23/06/2005, received in revised form: 17/10/2005)

Abstract: In the upper Proterozoic Anarak ophiolite, the marbles are present and have excellent exposures in different areas. Their best exposure is in southern slope of Chah-Gorbeh mountain (Chah-Mahdi valley). In the field, marbles have massive and dike like exposures. Petrographic studies and geochemistry of minerals show that marbles consist of carbonate (calcite), garnet (andradite), clinopyroxene (diopside and magnesian-augite), amphibole (tremolite), serpentine, chlorite, epidote, chromian spinel, magnetite and chromian-magnetite, that are alteration products of chromian spinel. Field and microscopic studies show that the marbles have been produced by regional metamorphism of old listvenites at different phases of metamorphism. The protoliths of these metamorphosed listvenites were ultrabasic dikes and intrusions, and mantle peridotites. Presence of serpentine, relic chromian spinel, magnetite and chromian magnetite that have changed to garnet, supports this interpretation. Therefore, the marbles of Anarak ophiolite, are productions of regional metamorphism of old listvenites.

Keywords: Mineralogy, Marble, Ophiolite, Upper Proterozoic, Anarak, Iran.
کانی شناسی مرمرهای حاصل از دگرگونی لیستونیت‌ها در افیولیت‌های پروتوژونیک بالایی اتارک (شمال شرق استان اصفهان، ایران)

قدرت ترابری واژه‌ای سپرده‌ی ۱، شوجی آراپی ۲، میکی شیراساکا ۳، احمدحقی احمد ۴

(دریافت مقاله ۱۲۸۴/۰۷/۲۵، دریافت نسخه نهایی ۱۳۸۴/۰۷/۲۵)

چکیده: درون افیولیت‌های اتارک که سن پروتوژونیک بالایی دارد، مرمرهای خاصی را به‌صورت پراکندگی می‌توانند مشاهده کرد که به پیشترین رخ‌مونت‌ها در دامنه‌های جنوبی کوه جه (درجه مهندسی) دارند. این مرمرهای با مرمرهایی که جزئی از سنگ‌های دگرگونی اتارک هستند متفاوتند. در بررسی‌های صحرایی، این مرمرها را به دو شکل نوده‌ای و دایکی می‌توان ماهیت کرد. نتایج حاصل از بررسی‌های سنگ‌شناسی و زنده‌چیزی کننده نشان می‌دهد که این سنگ‌ها از کانی‌های کربنات (کلسیت) گزارن (اندرادیت)، کلسیت‌پربروکین (دی‌وی‌سی) و اوزیت گنی از مونزیم، افیولیت، سربئینت، کلسیت‌پربروکین (دی‌وی‌سی) و اوزیت گنی از کننده‌ی اتارک می‌باشد. بررسی‌های صحرایی و میکروسکوپی نشان می‌دهد که مرمرهای موجود در افیولیت‌های اتارک در حقیقت لیستونیت‌های قدری هستند که اثر فازهای مختلف دگرگونی ناحیه‌ای تبدیل به مرمر شده‌اند. سنگ‌های این لیستونیت‌ها نیز دایک‌ها و روده‌های فاقد کنزت‌های پوششی هستند. به‌طور کلی در بررسی‌های میکروسکوپی، گواه این مدعاست که این مرمرها در اثر دگرگونی ناحیه‌ای لیستونیت‌ها تشکیل شده‌اند.

واژه‌های کلیدی: کانی شناسی، مرمرهای افیولیت، پروتوژونیک بالایی اتارک، ایران.
مقیم‌های اطراف غرب و شرق در محدوده جغرافیایی ۳۲° و ۳۳° شمالی قرار دارد.

در مقياس ناحیه‌ای، مقطعه اطراف، با یک امتداد شمال غرب - جنوب شرق در میان گودال بزرگ دشت کویر در شمال و قرب افتادگی قم - حاره‌کر در جنوب قرار گرفته است. این مقطعه از غرب به کوه‌های بندرستان و دم، از جنوب شرق به کویر سباه و از جنوب به کوه‌های شمالی ناحیه، محدود می‌شود. از نظر تقسیمات زمین‌شناسی ایران، مقطعه مرد مطالعه در بخش‌های غربی ایران مرکزی، در حدفاصل گلها، درونه و پیاندک واقع شده است. نوسان دما می‌تواند بین ماه‌های مختلف سال تا ۶۵ درجه می‌رسد. میزان بارش‌های جاری به طور متوسط ۱۰۸ در سال است.

در منطقه اطراف دو گونه ابوبیه وجود دارد [۱] (شکل ۱).

۱- ابوبیه اطراف، که در بخش‌های شمالی شرق اطراف، در دامنه شمالی کوه‌های ناحیه و جنوبی کوه ناحیه قرار دارد و دارای سن پروتروزونیک بالایی است. سنگ‌های این گروه از هم‌سازه به سنگ‌های دگرگونی اطراف (با سن پروتروزونیک بالایی - کامبرین پایینی) هستند.

![مقطعه اطراف](https://example.com/image.png)

شکل ۱: نقشه زمین‌شناسی منطقه اطراف (افتیاس از [۱] با تغییرات انجام شده در مورد سنگ‌های دگرگونی و ابوبیه اطراف) ابوبیه اطراف با رنگ تیز در بخش‌های میانی تصویر و ابوبیه میانی عشایر - روز در بخش‌های شمال غربی دیده می‌شود.
سنگ‌های تشکل دهنده افولیت انارک عبارتند از: پریدونیت‌ها و پریدونیتها
سرپوششی شده - پریدونیتها و دایک‌های زون انگلی - سنگ‌های کومالی -
گابروها - دایک‌های پازیک و اولترابازیک - پترومبینیت‌ها - گزاره‌های بالینی - رودنگیت‌ها، و
خاک‌های اولترابازیک. با وجود سنگ‌های معین از تغییرات واحدهای سنگی افولیت تشکل
شدهاند. تمام واحدهای این مجموعه افولیتی در میان شده و به میزان بسیار کم آغازانه شدند.

کلیات و دانشمندان کاتایه‌ها موجود در مرمرهای با سن افولیت است.

۲- افولیت ملانز عشیان - زوار: که با سن موزونیک و در بخش‌های شمال غربی منطقه انارک
قرار دارد.

سنگ‌های پالاسیه زیرین و سازند که با سن اولوپیک، این سنگ‌های افولیتی را
به صورت دگرگونی پوشاندهاند و در کنار ملانز نشدهاند. در منطقه‌ای از انارک سنگ‌های
که فراوانی دیده می‌شود و بخش‌های مختلف این سنگ‌ها از قلم به دو بخش عبارتند از:
*گروه چهار گره، که از پلین پیشنهاد شده است:
- شیست‌های سیبری، ۲- مرمرهای زیرین، ۳- شیست‌های زیرین، ۴- مرمرهای فوقانی،
- شیست‌های فوقانی.

* واحد مرمر لاک.

* واحد یکپار.

* واحد مرغاب.

سنی Pierre برخوردگان افولیت انارک با عضو شیست سیبر (پلین‌ترین عضو گرده)
شده‌است [۲۱]. بررسی برخوردگان افولیت انارک با عضو شیست سیبر (پلین‌ترین عضو گرده)
چه گرده از سنگ‌های درگرفتگی انارک) نشان می‌دهد که:
اضافه فلای توجهی از تالک شیست‌ها و شیست‌های گرده از تالک در بخش‌های زیرین
شیست‌های سیبری وجود دارد. پلین‌ترین به صورت گرده و می‌تواند در نیش‌های سیبری در حیاکی
به‌وجود آمد. در برخی مناطق تجاوت‌های نواری در حذف‌های سنگ‌های
اولترابازیک و سنگ‌های سیبر و در این مورد شرکت‌گری در پلین‌ترین درون اولترابازیک
در سنگ‌های درگرفتگی با یک‌پاره مواری سرخ. در برخوردگان اولترابازیک
با سنگ‌های درگرفتگی نیز تالک شیست تشکل شده است، و اینگونه درون درگرفتگی‌ها
با ریسمیت به‌وجود که شیست‌های اولترابازیک، آنها را دور می‌زنند، همه دلایلی که نشان می‌دهد
افولیت انارک از سنگ‌های درگرفتگی قبیل معروف است و متعلق به پرتوژئیک بالایی است.

تأکن، بررسی‌های سیستمیکی توصیف در منطقه انجام گرفته است. [۲۷]

در شکل ۲ رابطه چین‌شناختی سنگ‌های افولیت انارک با یک‌پاره و با سنگ‌های درگرفتگی
انارک نشان داده شده است.
روش کار

به منظور بررسی کانی شناسی و زئوپپتیم کانی‌های موجود در مرمرهای الافولیت شمال اطراف از دستگاه میکروپوپ و مطالعات سنجش شده. انتخاب شده است پنجم 4 نمونه برای بررسی زئوپپتیم کانی‌ها با استفاده از دستگاه کانسارا که از این مقطع نازک از سطح شیشه‌ای نموده شده‌اند. این نمونه‌ها را از دستگاهی که با استفاده از دستگاه میکروپوپ و مورد بررسی قرار گرفتند از دستگاه جنوبی کوه جنوبی (در جهت مهید) انتخاب شدند. در آلایندر کانی‌ها با استفاده از دستگاه JXA-8800 (WDS) مدل JEOL میکروپوپ الکترونی از میکروپوپ لیستونیت‌ها

از آنجاک بر ایده سنجش‌های این مجموعه الافولیت حداقل 600 میلیون سال می‌گذرد و در این زمان طولانی، فازهای مختلف زمین‌ساختی و درگرانی را تجربه کرده‌اند. لذا رخداد فازهای مختلف لیستونیت شدن، سربانتلیت شدن، و رودیت‌کینی شدن قبل انتظار است. در الافولیت لیستونیت‌ها از این نمونه‌ها در این زمان قابل استنباط است. فاز دوم لیستونیت شدن همراه با نمک‌کلیک بریدنی‌های است و در محل سختی شکستگی‌های داخلی دیده می‌شود. جوان‌ترین فاز لیستونیت شدن نیز در اثر اکتشافات تامسون است. لیستونیت‌ها از درکرانی کریسانی و سپسیس شدن) الافولیتی به دست می‌آیند. در هر دو فاز ممکن است تهیه بیربیری‌ها که لیستونیت‌های غنی از کوارتز هستند، رخ دهد. بسیار خوبی دارد (شکل 3). بیشتر رمیده لیستونیت‌های غنی از کوارتز. با
همه این توصیفات حتی در نمونه دستی نیز تشخیص اسپیتل در این نوع از لیستونیت‌ها به راحتی ممکن است. در مورد لیستونیت‌های اسارنی لیستونیت‌هایی که دام دارند رنگ‌هایی لیستونیت، باید بی‌گفت که محل وجود این لیستونیت‌ها از محل گسل‌های منطقه نیز ممکن است. در منطقه مورد مطالعه این نوع از لیستونیت‌ها در شمال کوه تربش (سیزی، مالکه، کن مس، عبدالله)، و جاده شهره فرآورده. بخشی از مقدار این لیستونیت‌ها نیز در شمال مزرعه عبده‌الهی دیده می‌شود.

لیستونیت‌های فاز اول را نیز در درون شیست‌های سیزی و در محل پونگان افیلیت اسارک با سنگ‌های دوگان در دامنه‌های جنوبی گل که مقیمی خود را می‌توان دید. فرآیند آتش‌شکنی اندزینی انسنی نش اید باور ممکن به ترکیب لیستونیت‌های فاز سوم منطقه داشته است و آن را می‌توان موتور گیرمانی تشکیل لیستونیت‌ها در نظر گرفت.

از آنجا که لیستونیت‌ها سنگ‌هایی هستند که از جهت مقدار طلا در آنها مورد توجه قرار دارند (101 بررسی مقادیری از مورد تعدادی از نمونه‌های لیستونیتی انگلش شد. نتایج بررسی‌های نشان می‌دهد که مقدار طلا در لیستونیت‌های این افیلیت قابل توجه است، باید این افزایش است. که این لیستونیت‌ها این مجموعه سنگی از جنوبی اقتصادی مورد بررسی قرار گیرند.

شکل 2 (A) دایک اولتراواسیک لیستونیتی در غرب دره چا به‌طور کلی که در اثر دوگانی تبدیل به م مرمر شده‌است. سنگ درگیری‌های این ممرما، در هیدروتیوت‌های سرپنتینی شده گوشته است (نگاه به شمال).

(B) فراوانی لیستونیت در منطقه چتر به، در این منطقه در اثر یکیده لیستونیتی شدن، باید با توجه به شکل (A) غرب)

ترابی، سیروی، آرای، شیرآساکا، احمد

384
کانی شناسی مonym‌های حاصل از دگرگونی لیستونیته‌ها در...

مرم‌ها

در بخش‌های مختلف افولیتون اثرات حجم قابل توجهی از مرم‌ها را به صورت توده‌ای و یا دایکی شکل می‌توانند به وجود بیشترین رخ‌خوران در دامنه‌های جنوبی کوه‌های چاه‌گیر (دره‌های مهدی) دادن (شکل 3). این مرم‌ها از یکدیگر جدا و هر مرم‌هایی که جزئی از دگرگونی اثرات با توجه متفاوتند. بررسی‌های صحرا برای نشان می‌دهد که این مرم‌ها در حفیظتی از لیستونیته‌های قدم‌دار که طی دگرگونی ناحیه تبدیل به مرم شده‌اند، و آنها را در نقاط مختلف افولیتون اثرات به صورت پراکندگی می‌توانند. در بخش‌هایی از این مرم‌ها، بقایای سنگ‌های اولیه را که تبدیل به لیستونیته شده بود می‌توانند مشاهده کرد. در تمامی بخش‌های این مجموعه افولیتون، سنگ در بالگردنه این مرم‌ها، بر روی دو اسپینل-اسیبیل که به سریانتی شده گوشته، هستند.

بررسی‌های میکروسکوپی نشان می‌دهد که کانی‌های اصلی این سنگ‌ها که می‌توانند کریت (کلسیت) به دایک و کانی‌های فرسی که ریزدانه‌اند، نیز کلیپروبروس، گرانیت، آمپیول، سربانتیت، اپیدوت، کریت، اسپینل کریت مغناطیسی و مغناطیسی هستند (شکل 4). مغناطیسی هستند (شکل 4). مغناطیسی و مغناطیسی هستند (شکل 4). مغناطیسی و مغناطیسی هستند (شکل 4).

محصول دگرگونی اسپینل‌ها در خط‌های با اطرافی که تبدیل شده‌اند.

نتایج تجزیه‌های الکترون میکروسکوپی کانی‌های موجود در مرم‌های افولیتون اثرات به همراه محاسبه ضرایب ساختمانی آنها و درصد اعضای نهایی در مردم کلینیپروبروس، و در جدول 1 شماره 1 تا 3 ارائه شده است. در تحقیع‌های به آهن III و سیاه‌بین فرمول ساختاری FeO* CrO 3>2 نشان داده شده، که این سنگ‌ها در این ارائه هر یک از 100 دانه زایدای دازل است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% فاصله زیادی دارد این است که عصر آهن با غلظت، به صورت FeO* کریت دارای 100% FTMafic (v. 2.0)
استفاده شد. استفاده از این زئوترومتر برای نمونه شماره ۳۵۳ که دارای کلینوپیروکسنس و گارنت است، در گستره فشار ۱تا ۱۰ کیلوپا担، دماهای برابر ۳۲۳ تا ۳۵۸ درجه سانتی‌گراد را نشان می‌دهد.

شکل ۴ (A) و (B) تصاویر ممره‌های حاصل از دگرگونی لیستونیت‌های افولیت اتارک با کانی‌های کلسیت، آمفیبوی (ترمولیت)، و مگنتیت. (C) گارنت (اندرادیت)، دیوپسید، مگنتیت، و کلسیت در ممره‌های افولیت اتارک. (D) همان تصویر قبل در نور عادی.
کانی اشناسی مرمره‌های حاصل از دگرگونی ليستونیت‌ها در...

(E) گارنت، کلریت، سربانتین و کریت در مرمره‌ای افولیت اتارک که همان تصویر قبل در نور عادی، به باقی مانده اسپینل‌های گرمدار اولیه در بخش داخلی گارنت توجه کرده. وجود سربانتین و اسپینل گرمدار پیانگ به دست اماده‌ی این مرمره‌ای دگرگونی دایک‌های اولتراژیک و پریدوتیت‌های ليستونیتی است.
جدول ۱ سمینگین نتایج آنالیز کانی‌های موجود در مرمرهای افیولیت انارک.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock</th>
<th>Mineral Type</th>
<th>FeO %</th>
<th>Cr2O3 %</th>
<th>CaO %</th>
<th>Na2O %</th>
<th>K2O %</th>
<th>MgO %</th>
<th>Al2O3 %</th>
<th>TiO2 %</th>
<th>SiO2 %</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵۳</td>
<td>Massive (Marble)</td>
<td>A</td>
<td>11.0</td>
<td>1.3</td>
<td>3.9</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>11.0</td>
<td>1.3</td>
<td>3.9</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>11.0</td>
<td>1.3</td>
<td>3.9</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>11.0</td>
<td>1.3</td>
<td>3.9</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td>۳۷۰</td>
<td>Dike (Marble)</td>
<td>B</td>
<td>12.0</td>
<td>2.0</td>
<td>4.6</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>12.0</td>
<td>2.0</td>
<td>4.6</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>12.0</td>
<td>2.0</td>
<td>4.6</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>12.0</td>
<td>2.0</td>
<td>4.6</td>
<td>0.03</td>
<td>1.4</td>
<td>0.09</td>
<td>18.0</td>
<td>15.8</td>
<td>54.36</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A: CPX, B: Calcite, C: Garnet, D: Amphibole E: Cpx F: Spinel, G: Cr-magnetite.

جدول ۲ فرمول ساختنی محاسبه شده کانی‌های موجود در مرمرهای افیولیت انارک.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock</th>
<th>Mineral Type</th>
<th>Oxyg.</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ni</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵۳</td>
<td>Massive (Marble)</td>
<td>A</td>
<td>5.0</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>5.0</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>5.0</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>5.0</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td>۳۷۰</td>
<td>Dike (Marble)</td>
<td>B</td>
<td>6.0</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>6.0</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>6.0</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>6.0</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.06</td>
<td>0.09</td>
<td>0.06</td>
<td>1.00</td>
</tr>
</tbody>
</table>

A: CPX, B: Calcite, C: Garnet, D: Amphibole E: Cpx F: Spinel, G: Cr-magnetite.

جدول ۳ درصد مولکولی اعضای نهایی محلول‌های جامد در مورد گازنت‌ها و پیروگس‌های موجود در مرمرهای افیولیت انارک.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Garnet</th>
<th>Andradite</th>
<th>Grossular</th>
<th>Uvarovite</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵۳</td>
<td>94.82</td>
<td>4.43</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>۳۷۰</td>
<td>94.87</td>
<td>4.49</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

برداشت

وجود سربانتین، اسپینل‌های کریتیار، مگنتیت و مگنتیتهای کریتیار حاصل از اسپینل‌های کریتیار اولیه که از انxzط بطور بیشتر به گذرانند تبدیل شده‌اند، و نیز پریسی‌های صحراپی‌نشان می‌باشد که سنگ اولیه این مرمرها که در حفیظت لیستونیت‌های دگرگونی شده‌اند، دیگرها و توده‌های نفوذی اولتراپیک و پریسی‌های گوشته‌به‌دیده و این مرمرها در اثر دگرگونی ناحیه‌ای لیستونیت‌ها تشکیل شده‌اند.

مراجع

[۱] نژادی ق. پترولوژی افیولیت‌های منطقه انارک (شمال شرق استان اصفهان) با تأکید بر مطالعه سنگ‌های اولتراپیک‌های ای‌افیولیت‌های شمال‌شرقی ایران، شهاب‌السلطان، ج ۱، شماره ۱۷۹، تیر ۱۳۷۷.
[5] V/O Technoexport, "Geological maps of Anarak (1/250,000), Anarak (1/100,000), Ashin (1/100,000), Nakhlaq (1/100,000), & Sorkhshad (1/100,000)", No. G7; Sheet: 6756; Sheet: 6656; Sheet: 6757; Sheet: 6657, respectively, Geological Survey of Iran (1984).