Mineralogy, geochemistry, structural position and a genetic model for listvenite in east of Iran

M. H. Zarrinkoub¹, S. Amini², A. Aftabi³, M. H. Karimpour⁴

¹- Department of geology, Birjand university
²- Department of geology, Tehran teacher training university
³- Department of geology, Kerman university
⁴- Department of geology, university of Mashhad
E-mail: Iran_mzarinkob@birjand.ac.ir

(Received: 27/06/2005, received in revised form: 09/10/2005)

Abstract: On the basis of mineralogy and geochemistry analysis, the listvenites in east of Iran are divided into three main carbonate, silica-carbonate and silica groups. Magnesite, dolomite, huntite and hydromagnesite are the major minerals in carbonate type. Silica listvenites contain mainly quartz, chalcedony and opal. Silica - carbonate listvenites contain minerals of carbonate and silica listvenites. The common structures in listvenites are vein and brecciaed type and the main textures are open space filling and colloidal. Mass balance consideration in listvenites and their host serpentinized ultramafic show that all the elements are loosed in ultramafic, are gained in listvenites. Nehbandan fault activity in east of Iran, produces suitable conduits for penetrating the meteoric water into deep levels, increase its temperature and solubility and then alteration the ultramafic unit of colored mélange during its path. Hydrothermal fluid flow-up through shear zones and wash the rocks during the path, and then under suitable condition of Eh and pH at the surface or low level open spaces of the earth, deposit its load as different types of listvenites.

Keyword: Silica listvenite, Silica – carbonate listvenite, Carbonate listvenite, East of Iran.
کانون شناسی، زمین شیمی، موقعیت ساختاری و ارائه مدل
ژنیکی برای لیستونیت‌های خاور ایران

محمدرضا زرین کوب، صدرالدین امینی، علی‌جان آفتابی،
محمدحسین کریم‌پور

چکیده: لیستونیت‌های خاور ایران از نظر کانونی شناسی و زمین‌شیمی در سه گروه کریتی، سپیلیسی و سپیلیسی - کریتی قرار می‌گیرند. ویلسون، هونتهت، هونتهتائی، و هیدرومنزیت کانون‌های اصلی گروه کریتی‌ها هستند. لیستونیت‌های سپیلیسی منشأ از کورت، کلید، آبی، شکاف‌های شدید و لیستونیت‌های سپیلیسی - کریتی‌ها هر دو گروه کریتی‌ها و سپیلیسی‌های توده ساختار معمولی لیستونیت‌ها، ریز، گرم و بریشی، به غلبی برش‌گونه فضا خالی و هستند. ساختار مقاوم‌سازی لیستونیت‌ها، ریز گرم و بریشی، به غلبی برش‌گونه فضا خالی و هستند. ساختار مقاوم‌سازی لیستونیت‌ها، ریز گرم و بریشی، به غلبی برش‌گونه فضا خالی و هستند. ساختار مقاوم‌سازی لیستونیت‌ها، ریز گرم و بریشی، به غلبی برش‌گونه فضا خالی و هستند.

کلیدواژه‌های کلیدی: لیستونیت سپیلیسی، لیستونیت سپیلیسی - کریتی، لیستونیت کریتی، خاور ایران
کابی شناسی، زمین شیمی، موقعیت ساختمانی و ارازه...

مقدمه

از زمانی که برای اولین بار جزئی از واقعه لیستونیون استفاده کرد بیش از ۱۵۰ سال می‌گذرد. در این اثبات این واقع توسط محققین مختلف با مفاهیم مختلف مورد استفاده قرار گرفت. و سنگهای مویای و خواص که‌پذیرایی گوناگونی برای آن معرفی شده‌اند. گرچه بیشتر زمین شناسان روی روش لیستونیون‌ها کار می‌دهند [۱۶] اما در سالهای اخیر لیستونیون‌ها موضوع تحقیق سپری‌ای از زمین شناسان نقاط دیگر دنیا از جمله ایران نیز پویانده [۱۷۳ تا ۲۱۸].

آنچه در این نوشته زیر عنوان لیستونیون معرفی شده، یک مجموعه کربناتی سیلیسیک کربناتی با سیلیسیس این است که در دو رونکی سنگ‌های اولتراژئوسیک و ماوی دیواری شده، در مرز بین این سنگ‌ها و مجموعه شیلی و ماسه سنگی مجارشان (نت‌نشت های رخ‌دار فلیش کرتاسه–پالئوسن)، و یا در دو رونکی نهشت‌های دارای پی‌های اکسیلونیت در خاور ایران، قرار گرفته‌اند. از انجا که لیستونیون‌های سنگ و کانی‌زایی طلا و گروه پلاتین [۲۲ تا ۲۷] جیوه [۲۳۸۳۹. آرسنیک [۲۴۰ و سرب [۲۴۱] علوماً همراه با هم در می‌گیرند، در نتیجه می‌پایست آگاهی روشی از ترکیب کانی‌زایی، عوامل سنگنده و موقعیت ساختمانی لیستونیون‌های هر منطقه بهداشت کرد. در این بررسی لیستونیون‌های بخشی از خاور ایران واقع در محدوده ۱۰۰۰۳۲۷۳۲۳۳ تا ۵۲۱ طول جغرافیایی شمالی و ۵۹ تا ۵۱ طول جغرافیایی شرقی مورد مطالعه قرار گرفته‌اند (شکل ۱).

روش مطالعه

مطالعه این پژوهش، در سه مرحله انجام شده است:

الف) گردآوری و مطالعه پیشنهادی کارهای انجام شده در منطقه، شناسایی و انتخاب رگه‌های لیستونیئی روی نقشه‌های زمین شناسی منطقه (برجند، فاین، گزیک و هرمند).

ب) مطالعات حسابی و بردارش (۲۵۰ نمونه از رگه‌های لیستونیون‌های مختلف مطالعه) ۲۵ مقطع نازک و ۵ مقطع صافی تعداد ۳۰۰ نمونه از لیستونیون‌ها به روش فلوروسانسی برتو (XRF) در دانشگاه شهید بهشتی تهران، و تعداد ۲۵ نمونه در دانشگاه بیرجند به روش XRD مطالعه شده‌اند.

زمین شناسی ناحیه‌ای

منطقه مورد مطالعه بخش یکی از بهترین جوش خرده سیستم بر اشاره می‌دهد که به صورت بین اتکشت وارد بلوک لوت می‌شود(شکل ۱). در این منطقه واحدهای سنگی قطبی از زوراپیک شناخته شده‌است. سنگ‌های رخ‌دار پارک از منطقه مورد مطالعه می‌باشد. شیل و ماسه سنگ‌های زوراپیک، افیلیت‌های مالزی‌کرتاسه فوق‌فی، سنگ‌های تپ و رخ‌دار فلیش کرتاسه و پالئوسن، سنگ‌های انسان‌شناسی ترسیمی که کارکردهای نروژ را کوانتر، مجموعه سنگ‌های افیلیت مانژ در این منطقه شامل هارپاردیت، دویت، پیروپوسنتین، سپتیمنیت، گالیو، دیباژ، اسپیلیت و توده‌ها آذرین اسیدی و سنگ‌های رسوبی از جمله آهک پلازیک و
کانی شناسی و خصوصیات ظاهری لیستونیتهای خاور ایران
با توجه به شواهد صورتی و مطالعات آزمایشگاهی، لیستونیتهای منطقه را می‌توان در سه گروه اصلی لیستونیتهای کربناته، لیستونیتهای سیلیسی و لیستونیتهای سپیلیسی تقسیم کرد. این گروه‌ها از جمله لیستونیتهای کربناته، لیستونیتهای سپیلیسی، کوارتز، اوبان و کلسیسون غلیغ‌سالن و درد و گره لیستونیتهای اولیایی و کلسیسون تقسیم می‌شوند. مجموعه کانی‌های اصلی لیستونیتهای سپیلیسی و کربناته را می‌توان در لیستونیتهای سپیلیسی-کربناته مشاهده کرد.

رنگ لیستونیتهای سفید، خاکستری متمایل به سبز تا زرد متداول به فوهاهای نوگر، بکر و کهکشان است. لیستونیتهای سیلیسی که در منطقه از نوع کربناته‌ای کانی‌های آنها شامل منیزیت، هیدرومینزیت (پیشرنگ گروه‌هایی) هونتهایی و دولومیت‌های هستند. این امر باعث شده است تا اکرانه به صورت یک قطع معمول از رنگ‌گاه‌های منیزیتی، هیدرومینزیتی و هونتهایی درآید. منیزیت به صورت گره‌های مخفی‌پوش رنگ عموماً سفید و قهوه‌ای به لحاظ ظاهر. کلیه فوهاهای دیده می‌شود. دولومیتهایی که در رنگ کرم تا سبز و رشد شعاعی دانسته شدند. هیدرومینزیتی و هونتهایی بیشتر به شکل کلولهایی و رنگ ریزی‌های درون پهن‌های رنگی سرپانشیتهایی از لیستونیتهای سیلیسی-کربناته حضور دارد. نتایج XRD و مطالعات میکروسکوپی نشان می‌دهد که لیستونیتهای سیلیسی-کربناته علاوه بر کانی‌های اصلی کربناته، شیل‌های سرپانشیتهایی از جمله سیدریت، آنکریت، گلسیت به همراه با بافت‌هایی از سیلیسیوم و پیروکسن، تالک، سرپانشیتهای حاوی جزیی کانی‌های کرم اسپیلیت، پیریت، رستورپرت، کالکوپرت، مالاکیت و گلیت‌ها در کلسیسون لیستونیتهای سپیلیسی-کربناته در منطقه از نظر فاصله در درجه دوم اهمیت قرار دارند. این لیستونیتهای دارای رنگ‌های مختلف و در زرد تا قهوه‌ای گاهی است. سیلیسی-کربناته اصلی در این رنگ‌ها دولومیتی و منیزیت است، و وجود سپیلیت، آنکریت و لیستونیتهای درون گره‌ها نیز وجود دارد. سپیلیت به سرپانشیتهای زرد رنگ سفید به‌طور متداول بکر و کهکشان است. بلور (کلسیسون) و آمورفان. در مواردی که فاصله بین کانی‌ها به‌طور کامل کمتر از یک سانتی‌متر باشد، به‌طور کلی لیستونیتهای درون گره‌ها دوست‌دارند و کلاسیک دولومیتی و سپیلیس با هم‌دستی در تنابان. کانی‌های فرعی متداول عبارتند از کلسیس، کرم اسپیلیت، پیریت، کالکوپرت، تالک و سپیلیت.
لیستونیت‌های سیلیسی که کانی اصلی آنها سیلیس است از نظر فراوانی در درجه سوم اهمیت قرار دارند. رنگ آنها سفید شیری، زرد متمایل به قهوهای تا متمایل به سیاه تغییر می‌کند. لیستونیت‌های سیلیسی به صورت زیبایی و گاهی به صورت ورق‌های روی لیستونیت‌های سیلیسی کربناتی در شیوه محقق شوند. کانی‌های مهم در آنها شامل کوارتز محیطی بلور (کلسیدون) و اوبال است. ولی کانی‌های کربناتی و قلیزی به صورت فرعی وجود دارند. کانی‌های قلیزی متدیوپیت، عبارتند از کالکوپیرت، ارسنپیریت، کالکوژیت، کولیت، پیروت و کرم اسپینال که برای داشتن عناصری همچون طلا و گروه پلاتین آمادگی دارند. ۲۴ و ۲۸ بر اساس شواهد صحرا و مطالبات میکروسکوپی می‌توان یک مدل پارازنتیکی برای کانی‌های سازندگی لیستونیت‌های منطقه ارائه کرد (جدول ۱).
جدول ۱ مدل پارازنیکی کاندیدای مندی اول در لیستونیت‌های خار ایران

<table>
<thead>
<tr>
<th>نوع لیستونیت</th>
<th>مرحله کاندیدای نامی از انگشتی پایانی</th>
<th>مرحله کاندیدای نامی از انگشتی پایانی</th>
<th>مرحله کاندیدای نامی از انگشتی پایانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاراکتر</td>
<td>کالدنشین</td>
<td>کالدنشین</td>
<td>کالدنشین</td>
</tr>
<tr>
<td>اول</td>
<td>اول</td>
<td>اول</td>
<td>اول</td>
</tr>
<tr>
<td>کلاکت</td>
<td>کلاکت</td>
<td>کلاکت</td>
<td>کلاکت</td>
</tr>
<tr>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
</tr>
<tr>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
</tr>
<tr>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
</tr>
<tr>
<td>کاراکتر</td>
<td>کاراکتر</td>
<td>کاراکتر</td>
<td>کاراکتر</td>
</tr>
<tr>
<td>اول</td>
<td>اول</td>
<td>اول</td>
<td>اول</td>
</tr>
<tr>
<td>کلینیک</td>
<td>کلینیک</td>
<td>کلینیک</td>
<td>کلینیک</td>
</tr>
<tr>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
</tr>
<tr>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
</tr>
<tr>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
</tr>
<tr>
<td>کاراکتر</td>
<td>کاراکتر</td>
<td>کاراکتر</td>
<td>کاراکتر</td>
</tr>
<tr>
<td>اول</td>
<td>اول</td>
<td>اول</td>
<td>اول</td>
</tr>
<tr>
<td>کلاکت</td>
<td>کلاکت</td>
<td>کلاکت</td>
<td>کلاکت</td>
</tr>
<tr>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
<td>پرست</td>
</tr>
<tr>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
<td>سریال</td>
</tr>
<tr>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
<td>دوم</td>
</tr>
</tbody>
</table>
ساخت و بافت لیستونیت‌ها

لبیستونیت‌های منطقة موره مطالعه بیشتر با ساختار رگبرگی (شکل ۳) با عرض کمتر از یک سانتی‌متر تا یک دهانه و طول چند سانتی‌متر تا چند کیلومتر در درون پهنه‌های بریزی و به ندرت به صورت ورق‌آمیز (شکل ۱) یا گلوله‌ای دیده می‌شوند. در مواردی که محلول‌های لیستونیت ساز در مناطق غربی درون هرکرده و به یک سد غیرقابل نفوذ برخورد می‌نمایند، گسترش جانی است و به صورت ورق‌آمیز توزیع می‌شوند. ریخت‌شناسی سطحی لیستونیت‌ها مخصوصاً در انواع کربناتی و سبزی‌های منحصر به فرد بوده و یکی از نکات جالب توجه برای جدای کردن لیستونیت‌ها از سایر ساختارهای رگبرگی و یا لاشه‌ای موجود در منطقه (مثل سکل آهکی و رویدیده‌ی آت) لیستونیت‌های کربناتی و سبزی‌های کربناتی با ریخت برجسته، سطحی کاملاً زیر و ناحیه پوستی لوله و مخصوصاً زبان‌های کلی کربناتی اصلی دولومیت باشد بیشتر دیده می‌شوند. حضور پیکرک‌های کروی ناشی از نهشت اپزال به صورت نواری (شکل ۴) ناشی نهشت سیلیسی و کربناتی و یا رشد شعاعی بلورهای دولومیت و به صورت گل رزی (شکل ۵) در قطعات خرد شده در پهنه‌های بریزی، و

یافته‌های در نوع لیستونیت‌های سبزی‌های کربناتی متناظر است. در انواع سبزی‌های سبزی‌های کربناتی ساخت و بافت پرکندگی فضای خالی، قشرگون و کلوئیدی سبزی به صورت نهشت قلوایی گرایشی است.

یافته‌های غلبان در لیستونیت‌ها. بافت پرکندگی فضای خالی (به صورت رگبرگی و قشرگون)،

نوایی کوکاد، اسفولوتیس، شعاعی، گل‌ریزی، کلوئیدی، گلوله‌ای و بریزی هستند. بافت‌های پرکندگی فضای خالی و کوکاد می‌توانند تأیید کنندگی نهشت شد آنها رشدی به سطح زمین باشد (۳۲). به اعتقاد سپیسون (۳۳) بافت‌های کوکاد و قشرگون تا عمق ها را پانزده کیلومتر نیز می‌توانند تشکیل شوند. همیشه بافت‌های کوکاد و قشرگون با برف کلوئیدی، نهشت شدن آنها را در نزدیکی سطح تابید می‌کند.

سنگهای میزان و چگونگی ساختاری لیستونیت‌ها

منتقازین سنگ میزان لیستونیت‌ها در خاور ایران بارون‌اند از بریدونیت‌های سرپانشی شهه بریز و هوازه. علاوه بر بریدونیت‌های سرپانشی شده، مز بریز خورد سنگهای مافیک و اوایل‌افولوئیتی مرز بریز خورد نهشت‌های رخساره فلیس و بریدونیت‌های سرپانشی شده، مرز یا سنگهای خروجی حاصل از مدل‌های آذرین پساز جایگزین قطعه لیتوسفر اقیانوسی (۴۵) و پهن‌های بریز درون نهشت‌های مولاسی که روی بریدونیت‌های سرپانشی به گرفته‌اند (۲۵). میزان انواع لیستونیت‌ها در شرق ایران هستند.
شکل ۲ لیستونیت کربناته (Serp) در مزرعه انگزی (Lv) و سربانتنیت (An) به صورت رگه‌ای (رومنجان).

شکل ۳ لیستونیت سیلیسی (Serp) به صورت یک ورقه در بروز سربانتنیت (Lv) (جنوب قلاته سلیمان).
شکل ۲: نشست سیلیس آموز روز، قطعات لیستونیت کربناته و ایجاد پیکرندی کروی در لیستونیت‌های سیلیسی گربناته (رق).

شکل ۵: بافت فشرده و غل رژ در لیستونیت‌های سیلیسی گربناته (جنوب مود).

لیستونیت‌های منطقه مورد مطالعه، عموماً در درون یا نزدیک پیچه‌های سیلیسی اصلی با سرشاره‌های این گل‌ها با پیچه‌های برشی حاصل از عملکرد این سیستم‌های گسل قرار دارند. منطقه مورد مطالعه بین دو سیستم گسل راستا لغ راستگرد هریود با روند کلی شمالی-جنوبی در خروج و گسل راست‌الزی راستگرد نه‌بندان (شکل ۱) با روند کلی شمالی-جنوبی که در یکه شمالی روند تقیبی خاری - باختی می‌باشد، قرار گرفته است. رگ‌های لیستونیتی از روندهای ساخته‌ای حاکم بر منطقه یعنی روند شمالی-جنوبی، شمال باختی - جنوب خاوری و خاوری-باختی پیروی می‌کنند.

فرایندهای درگیر لیستونیت شدن هم‌بافتی لیستونیت‌ها با پریدونیت‌های سیلیسی شده و با سنگه‌یا که به نحوی در ارتباط با مجموعه سنگ‌های اولتراافیک سیلیسیک شده مربوط به مجموعه‌های افیولیتی‌های‌هستند از یک طرف و قرارگیری آنها در پیچه‌های برشی از طرف دیگر می‌توان آن است که لیستونیت‌های به عنوان نه‌بنده‌های دبیزی در اثر فراوندهای گرمایی که بر مجموعه افیولیت ملایی و مخصوصاً روی بخش اولتراافیکی اثر گذشته آبیاری شده‌اند. عناصر شسته شده تحت شرایط خاصی از CO۲، pH و فشار مول‌های pH به عنوان گرمایی در درون زون‌های پر شده متمرکز شده و رگ‌های لیستونیتی CO۲ با pH بالا (حدود 8 تا 10 و فشار مول‌های pH نیز بالاست) ایجاد گردیده‌اند. در شرایطی که pH کربنات (لیستونیت گربناته) و در شرایطی که pH باین است (کمتر از 6) سیلیس
زرنگه کوب، امینی، افتخاری، کریم پور

(لیستونسی سیلیسی) نهشته می‌شود [۱۲، ۱۳، ۴۵ و ۴۷]. در شرایطی که تنابلیز نواحی سیلیسی و کربناتی را برای گروه لیستونسی شاهد هستیم، بانگر مراحل مختلف نهشته با متفاوت است.

قرارگیری مناطق مورد مطالعه در منطقه ساختاری سیستان و علی‌کریم سبست گلدنه‌دان با ساز و کار گالب راستا لغ راست برگرد، موجب معاون مناسبی برای نفوذ آب‌های سطحی به درون مجموعه ای تولید ملانز و رخند دگرسانی از جمله لیستونسی شدن شده مطالعه ایزونتوپ های تاک و عکس‌نزن در منیژه‌های مربوط به خاور برجند این ایده را تایید می‌کند. بر اساس آب‌های بارشی و CO2 غلابمانش، این برای داشته‌است [۴۸] قائم، بودن شبکه گسل‌ها در منطقه مورد مطالعه [۴۹، ۵۰]. شرایط مناسب برای نفوذ آب‌های سطحی به اعماق و گرم شدن آنها و افزایش قابلیت حل‌یابی آب‌ها و بروز دگرگویی در فراهم کرده است. فعالیت‌های آذرین مربوط به بعد از جایگزینی پلیت ملانز محور ایران (فعالیت‌های ترشی‌رو - کوارتری) نیز در ام راه گرم‌شدن آب‌های سطحی فروردین فنچ محلی را باید کرده است. آب‌های گرم گرم صنفر از سنتی‌های مسر (که بیشتر آنها از سنتی‌های افرم‌پذیرین تشکیل شده‌اند) و شستشوی آنها، از طریق پهن‌های گالب، به سمت بالا حرکت می‌کرده و به صورت یک محلول گرمایی غنی از عناصر قابل حل به درون معرض زمین‌های مزارع محلولی تکنولوژی و شکستگی‌های هیدرولوژی کنترل از فشار آب‌ها، در مواردی که اینکه آب‌گیری از محل اولیه در مکان مخلوط مناسبی برای نهشته شدن مواد همراه آب‌گیری رو به جاگذارشته‌اند. معاون حل‌یابی از فعالیت‌های تکنولوژی و شکستگی‌های هیدرولوژی کنترل از فشار آب‌‌ها، می‌تواند اینکه بهترین دور می‌کند محلول مناسبی برای نهشته‌اند مواد همراه آب‌گیری از محل اولیه در مکان مخلوط مناسبی برای نهشته‌اند مواد همراه و به بدنی و بی‌خانمان ایجاد نهشته‌های رگی‌ناپذیری لیستونسیی می‌شود. در مواردی که شکستگی‌های هیدرولوژیی در اثر سطح غیر قابل نفوذ سد شده باشد، آب‌گیری گرمایی مذکور زیر این سطح به دو در زونه‌های جانی آنها نهشته می‌شوند و حالت ورقایی به خود می‌گیرند (شکل ۳).

نتایج حاصل از تجزیه‌های شیمیایی لیستونسی‌ها و تصویر میانگین ترکیبی از لیستونسی‌های کربناتی، سیلیسی و سیلیس- کربناتی در جدول ۲ آمده است. از آنجا که سطح میزان غلاب لیستونسی‌ها، پیداکننده‌های سربانتیکه شده هستند، نتایج حاصل از تجزیه‌های شیمیایی آنها (۲۰ نمونه) به همراه میانگین ترکیب هزارپروتئین‌های بوستن اقیانوسی در جدول ۲ و در شده‌اند. میانگین نتایج حاصل از تجزیه‌های شیمیایی پیداکننده‌های سربانتیکه شده منطقه مورد مطالعه به میانگین ترکیب هزارپروتئین‌های کف اقیانوسی مقایسه شده و نتایج حاصل به صورت نمودار‌های گرافیکی (کاهیدگی نواحی داده شده است (شکل ۴) برای محاسبه و ضرر کاهیدگی به آفزودگی از کار هندرسون [۱۳] استفاده شد و به صورت زیر عمل شد:
کانی شناسی، زمین شیمی، موقعیت‌سنجشی و آرایه... 373

۲۰۰ × سنگ تازه / سنگ دگرسان شده - سنگ تازه - درصد کاهیدی یا آفزودگی

علائم درصد بدست آمده با توجه به مقایسه میانگین ترکیب شیمیایی سنگ تازه و سنگ دگرسان شده انتخاب می‌شود. از درصد کاهیدی یا آفزودگی (بدون توجه به علائم) لگاریتم گرفته و علائم مثبت با منفی مربوط به این عدد را جلوی آن قرار داده و اعداد حاصل را روی نمودار کاهیدی - آفزودگی نمایش داده. (شکل ۱۰) نمودارهای کاهیدی - آفزودگی سنگ‌های غالب میزان لیستوئیدها و سنگ‌های الترمایک سری‌بانی شده، نشان می‌دهد که این سنگ‌ها از نظر سیلیسیوم، منزیم، آهن و... کاهیده شده‌اند. مطابق این تحقیقات کایزی شناسی و تجزیه‌های شیمیایی لیستوئیدها نشان می‌دهد که عناصر کاهیده شده از سنگ‌های درون‌سنجی است. در سنگ‌های درون‌سنجی شده را کاهش داده است. از این تجزیه‌ها نتایج زیر قابل به دست می‌آید.

بضایه شیمیایی و سطح در انتقال لیستوئید کراتینی و سیلیسیم - کراتینی و سیلیسیم در انتقال سیلیسیم قابل ملاحظه که این امر را می‌توان مربوط به فرآیند سیرانی‌سازی شدن بارودنی‌ها دانست. فرآیند سیرانی‌سازی بارودنی‌ها دو بار در یک دسته (الف) ایجاد سیرانی‌سازی که نسبت به سنگ اولیه خود سیکتر و دارای تخلخل بیشتر است و در نتیجه شرایط نسبتی را بازی چرخ ایجاد که مرک کروم می‌کند. (ب) ماده نهایی مقداری از منزیم، سیلیسیم و کلسیم سنگ اولیه که در ساختار سیرانی‌سازی‌های جای نگرفته‌اند و در نتیجه شرایط مناسب برای غنی شدن محلول‌های گرمابی در حال چرخش در سیرانی‌سازی‌ها را از عناصر منزیم و کلسیم و تا حدودی سیلیسیم فراهم می‌کند. سیلیسیم از سیرانی‌سازی‌های برخ‌پایین‌تر دارند (۱۴۴) عناصر کاهیده شده از سنگ‌های سیرانی‌سازی شده در لیستوئیدها قابل یگرده‌ی هستند. با یکنواخت مقدار L.O.I. در لیستوئیدها، امری عادی است زیرا کانی‌های ساندرا لیستوئیدها بیشتر حاوی H2O یا CO2 می‌باشد (مثل منزیسیت، هیدرو منزیسیت، دولومیت، اوآلی و...).

مقادیر K2O و Na2O مقدار K2O و Na2O در لیستوئیدها خیلی کم است و این نشان می‌آورد که سنگ بستر لیستوئید شده (برودنی‌های سیرانی‌سازی شده) از سیلیس و پتاسium به‌طور اصلی. در بسیاری از سیرانی‌سازی‌ها خیلی کم است زیرا کانی‌های حاوی آلمینوم در درون بارودنی‌های سیرانی‌سازی شده (کرم اسپینل و کلینوپروکس) در مقابل مقاوم سیلیسیوم هستند و از طرف دیگر در لیستوئیدها با pH ۵ تا ۸ عنصری کامل غیر محطرک و غیر محلول بوده و با فاکتور فیزیکی انتخابی در حال چرخش تمیز شده‌اند.

فاز گرمایی در حال چرخش در سنگ‌های سیرانی‌سازی شده و مسئول فرآیند لیستوئید شدن دارای دمای نسبتا بالا بوده و قادر است عناصر کم‌رایه مثل طلای نقره و نقره را از بستر اولیه شسته و در به‌نهایت لیستوئید با گذاریده، براساس اندورادی به شکل شده روز...
دردشت
لیستونیهای خاور ایران را براساس کلیه‌های سازنده و تجزیه‌های شیمیایی می‌توان در سه گروه اصلی لیستونیهای کربناتی، سیلیسی - کربناتی، و کربناتی تقسیم کرد. هر یک از این گروه‌ها اصلی لیستونیهای خود می‌تواند با توجه به کالیه‌ای اصلی سازنده خود به زیرشاخه‌ای تقسیم شود. نیز نیز، تتاریت، دوپاژیت، هستونیت و هیدرومالیت کالیه‌ای اصلی و کربناتی، سربانتین، تالک، بریت، کالکوپیریت، لیموپیریت، کروم - اسپینل و مالاکیت کالیه‌ای اصلی گروه کربناتی، و

جدول ۲: میزان ترکیب شیمیایی لیستونیهای ۲۰ درصد مورد مطالعه [۶۹].

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>درصد میلی‌گنی لیستونیهای سیلیسی - کربناتی</th>
<th>درصد میلی‌گنی لیستونیهای کربناتی</th>
<th>درصد میلی‌گنی لیستونیهای کربناتی</th>
<th>درصد میلی‌گنی لیستونیهای کربناتی</th>
<th>درصد میلی‌گنی لیستونیهای کربناتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>2۴.۹</td>
<td>۲۸.۱</td>
<td>۲۴.۳</td>
<td>۲۶.۷</td>
<td>۲۲.۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۲۸.۵</td>
<td>۶۴.۲</td>
<td>۵۵.۵</td>
<td>۵۵.۵</td>
<td>۵۵.۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
</tr>
<tr>
<td>K₂O</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
</tr>
</tbody>
</table>

* بسته کلیه این

جدول ۳: میزان ترکیب شیمیایی پرتوپتی های سربانتینی شده در منطقه مورد مطالعه و محاسبات

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>درصد میلی‌گنی پرتوپتی های سربانتینی</th>
<th>دارای اکسید</th>
<th>دارای کالیه‌ای</th>
<th>دارای کالیه‌ای</th>
<th>دارای کالیه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۲۴.۹</td>
<td>۲۸.۱</td>
<td>۲۵.۷</td>
<td>۲۶.۷</td>
<td>۲۲.۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
<td>۰.۳</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۲۸.۵</td>
<td>۶۴.۲</td>
<td>۵۵.۵</td>
<td>۵۵.۵</td>
<td>۵۵.۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
<td>۲۲۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
<td>۱۹۸</td>
</tr>
<tr>
<td>K₂O</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
<td>۱۱۳</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
<td>۴۴.۷</td>
</tr>
</tbody>
</table>

* نیازمند گام اتمی
نمودار کاهشی‌گذی افزودگی ببریدونت‌های سیلیسی، شده در منطقه مورد مطالعه در مقایسه با میانگین ترکیب هارپوزیت‌های لیتوسفر اقیانوسی

![نمودار کاهشی‌گذی افزودگی ببریدونت‌های سیلیسی، شده در منطقه مورد مطالعه در مقایسه با میانگین ترکیب هارپوزیت‌های لیتوسفر اقیانوسی](image)

شکل ۶: نمودار کاهشی‌گذی افزودگی ببریدونت‌های سیلیسی، شده در منطقه مورد مطالعه در مقایسه با میانگین ترکیب هارپوزیت‌های لیتوسفر اقیانوسی.

در مواردی که کانی اصلی را لیستونت‌های کربناتی منیزیت با هواتی تشكل می‌دهد، اگر را به عنوان پتانسیل‌های معدنی تلقی می‌کنند. لیستونت‌های کربناتی را می‌توان به زیرگروه‌های منیزیت، هواتی، هپترومنیزیت، دولومیتی و منیزیت دولومیتی تقسیم کرد. لیستونت‌های سیلیسی را می‌توان در هب‌های اپیکالکس و کلسسونیت قرار داد. لیستونت‌های سیلیسی بهترین گروه کلسسونیت، کلسسونیت و آب‌های همسایه کالک‌های فری سیلیسی، پتیت، پیتریت، سیلوتین، تاکس، کالک‌زیت، هماتیت، لیسومیت، کوالیت، طلا و گرم - اسپینل هستند. لیستونت‌های سیلیسی - کربناتی کانی هر دو گروه کربناتی و سیلیسی را دربردارند. با توجه به پایداری سیلیس در pH باین (کمتر از ۹) و افزایش قابلیت حل‌الداد آن pH در بین ۵ تا ۹ [۱۵] می‌توان نتیجه گرفت که محلول‌های گرمی‌های گروه‌های لیستونت‌های سیلیسی نخست‌داری pH بالا بوده و در شرایط که pH کاهش یافت، املاح سیلیسی خود را در فضاهایی با زمین‌ساختی بجا گذاشته‌اند، اما برای نهست لیستونت‌های کربناتی شرایط بر عکس به‌وجود است که کربناتهای کلسسونیت و منیزیم در pH بالا محلول و در pH بین ۵ و ۹ pH غیرقابل حل‌الداد هستند [۱۵]. در چنین حالتی در لیستونت‌های سیلیسی - کربناتی فاراگی سیلیسی و کربناتی هرامود لیستونت‌های الکس‌پسر باین (کمتر از pH برابر ۹) آن‌ها در شرایط در دسترس قرار نمی‌گیرد. لیستونت‌های شناختی از نظر شیمیایی متصل به سیلیس و هراتی ای و رنگ نوع سیلیسی از زرد تا قهوه‌ای متمایل به سبب افزایش pH می‌گردد. رنگ سیلیسی در لیستونت‌های فری‌های لیستونت‌های میان‌های ناشی از حضور گرم در این است. رنگ سیلیسی در لیستونت‌های سیلیسی را می‌توان ناشی از اسیدسازی کالک‌های فازی در شرایط سطحی دانست.
لیستوئن‌ها به صورت رگه‌هایی با عرض در حد سانتی‌متر تا چند صد متر و طول چند
کیلومتر در رونه‌ای بریش یا به صورت ورق‌هایی در زیر سطح غیر قابل نشان دهنده‌ای
سنگ میزان لیستوئن‌ها در درجه اول سنگ‌های اولترامافیک سرپانشیزه مجموعه افولوئی و
در درجه دوم سنگ‌های مافیک مربوط به توالی افولوئی هستند. مرز بین سنگ‌های اولترامافیک
و مافیک سرپانشیزه سنگ‌های رسوبی تپی رخساره فلش و کنگلومرات نتوان به دارای پی
سنگ افولوئی است. مکان‌های مناسبی برای نهیش شدن لیستوئنی بوده است که یکانگ آن
است که کلیه مواد سازنده لیستوئن‌ها از اولترامافیک‌های سرپانشیزه شده سرچشمه فرگنه. 
نمونه‌های آپتا، کاهیده و افولوئی ستون‌های سرپانشیزه در مقاپس با
بریدن‌های کف اکباتن نیز این موضوع را تایید می‌کند. فعالیت بدنی و نسبت به گله
راسنامه راستگرد در خاور منطقه (گسل هربو) و در باخت منطقه مورد مطالعه (گسل
نی‌نی‌دز) باغ شده که این منطقه به صورت یک پهن بریش و سطح‌های
کوچک و بزرگ فراوانی در آن ایجاد شود. این شکستگی‌های مانی مناسبی برای نمایه آبیات
سطحی به درون بخش‌های بریدن‌هایی گرم شدن و افزایش قابلیت حلالیت آنها، و ایجاد یک
چرخه آب گرم در این سنگ‌ها، سرپانشیزه شدن و در نهایت لیستوئنی شدن شده است.
و گردانن زمان گرم‌مایی، گرم‌مایی ناشی از اصطکاک در پهن‌های بریش و فعال‌های آذرین
ترشیری گون‌ترازی، شرایط مناسبی برای گرم کردن آبیات نفوذی، چرخه‌ای از آبیات گرم و
لیستوئنی شدن را در منطقه مورد مطالعه را فراهم کرده است. گسترش زیاد مجموعه افولوئی
باتش‌های ایران و بروز شکستگی‌های فراوان به‌وسیله سیستم گسل نی‌نی‌دز، شرایط مناسبی را
پایه‌گذاری کننده کمیابی و ایجاد توسط محلول‌های گرم‌مایی فراهم کرده و می‌توان به
وجود مانند ولایات با ارژش، عناصری همجون طلا نقره، جیوه، آنتیمبیوم و در لیستوئنی‌ها ایجاد

مراجع

bergen Kaspischen Meere, V. 2: Reise nach dem nördlichen Ural und dem Altai.
Berkun C. W. Eichhoff (Verlag der Sanderschen Buchhandlung), (1837) xxxplus
641 p. and plates I – VII.
question", Trudi CNLGR (1936) No. 38.
65, 12 Part 2 (1952) 1246-1247
12 part 2 (1954) 1339.
[5] Bok I. I., "Listwiten, their special features, varieties and conditions of
Institute Geology in Akad, Nauk Azerbaidzhanskoj SSR, Baku,
(1965) 142.


