Petrology, mineral chemistry and petrogenesis of metapelites of Tanbour metamorphic complex, east of Sirjan (Kerman province)

A. Moradian, S. Peighambari, H. Ahmadipour

Department of Geology, Shahid Bahonar University of Kerman, Kerman, Iran.
E-mail: peighambary80@yahoo.com

(Received: 9/06/2005, received in revised form: 22/09/2005)

Abstract: Tanbour metamorphic complex east of Sirjan is composed of metasediments and metabasic rocks. Petrofabric study of this complex shows two metamorphic and two deformational phases. Chemical studies of index minerals indicate that second phase of metamorphism occurred with a degree up to lower amphibolite facies. Mineral assemblage of first phase are biotite, muscovite and garnet while staurolite appears in peak of second phase of metamorphism. Mineral chemistry studies indicate that second phase of metamorphism occurred up to staurolite zone. Temperatures and pressures about 550-590 °C and 7-8/48 kb were also estimated using geothermobarometry. The data suggest that these metamorphic rocks underwent a medium P metamorphic event.

Keywords: South of Iran, Sanandaj – Sirjan belt, Tanbour.
سنگشناسی، شیمی کانی‌ها و سنگ‌زایی متابولیت‌های مجموعه تنور واقع در شرق سیرجان (استان کرمان)
عباس مرادیان، سیما پیغمبری، حمید احمدی پور
بخش زمین‌شناسی، دانشگاه شهید باهنر کرمان
پست الکترونیکی: peighambary80@yahoo.com

چکیده: مجموعه دگرگونی تنور شرق سیرجان در استان کرمان از نظر سنگ‌شناسی شامل تناوبی از سنگ‌های رسوبی و دگرگون شده است. بررسی‌های بافت‌شناسی سنگ‌های متابولیتی منطقه مورد مطالعه حاکی از دو فاز دگرگونی و دو فاز دگر شکل است. مجموعه کانی‌های تشکیل شده در فاز نخست شامل بیوتیت، مسکویت و کارت و ... می‌شود در حالیکه در فاز دوم دگرگونی، بی‌بیان استرالیت همراه با کانی‌های بالا در حد نهایی دگرگونی می‌باشد. مطالعات شیمی کانی‌های دگرگون نشان می‌دهد که فاز دوم دگرگونی سبب به فاز نخست در درجه بالاتری قرار داشته و احتمالاً از واکنش‌های شیمی‌ای می‌باشد. رابطه‌ها و فشار‌هایی در حدود ۰.۵۵ تا ۰.۵ درجه سانتی‌گراد و ۷ تا ۷.۴ کیلوبار از محاسبات زمین دما-فشارسنجی برآورد شد. این اطلاعات می‌توانند حاکی از این باشد که سنگ‌های دگرگون در یک رژیم دما و فشار متوسط (باروسیان) تشکیل‌شده‌اند.

واژه‌های کلیدی: جنوب ایران، زون سنندج - سیرجان، تنور
مقامه
منطقه مورد مطالعه شامل مجموعه نمور در ٢٥ کیلومتری شرق سیرجان است. این مجموعه از لحاظ زمین‌شناسی در جنوب شرقی کمرنگ دگرگونی سننده - سیرجان قرار دارد (شکل ١). این مجموعه از نظر سنگ‌شناسی شامل تناوبی از سنگ‌های رسی، مارنی و باریک دگرگون شده متعلق به پارینه زیستی است. [١] مجموعه کانونی سنگ‌شناسی متاخده شده در سنگ‌های رسی دگرگون شامل میکائی سفید، کلریت، بیونیت، گارنت، کوارتز، بلاژوکلاز، استارولیت می‌شود. دگرگونی سنگ‌های رسی سبب ایجاد ریساختها و کانی‌های دگرگون شده است که مرتبط به حوادث تکتونیک می‌باشد. این اتفاق سنگ‌شناسی سنگ، شیمی کانی‌ها و زمین‌نما - فیلتر انجام پذیره شده و به شواهد سنگ‌شناسی سنگ‌های این مناطق می‌پردازیم.

شکل ١ نشان دهنده زمین‌شناسی منطقه مورد مطالعه و موافقت آن نسبت به زون سننده - سیرجان (سیرجان) است.
روش مطالعه

برای بدست آوردن، ترکیب شیمیایی گانیهای مختلف و زمین دما- فشارسنجی، کانی‌ها با ریزکو الکترونی جهت کنترل آن، به روش Jeol JXA 8600 را شرایط و تنظیم کردی و جریان الکتریکی، 15 nA را نسبت به منوستر آلمان مورد نسبت شیمیایی قرار گرفتند. نتایج تجربه شیمیایی با استفاده از برنامه مورد بررسی قرار گرفت و فعالیت (کاراکی) و تعداد کانی‌های مورد نظر محاسبه شدند. در زیر ویژگی‌های بافتنی نسل‌های مختلف کانی‌ها و نحوه تشکیل و ترکیب شیمیایی آنها مورد بحث قرار گرفت.

بحث و بررسی

مطالعه بافت‌شناسی سنگهای منطقه مورد مطالعه حاکی از عملکرد حاصل دو فاز درگه‌ک و دو فاز درگه‌ک است. در صورتی که این سه فاز درگه‌ک و دو درگه‌ک را در منطقه نبود (M1) یک به همراه دیگر دو فاز درگه‌ک (M1) بوده است، سپس ابتدای کلی‌ای اسپتی S1 سه شکل 2 و کانی‌هایی چون بیوتیت، مسکوئت، کلریت، گرانت را در سنگ‌ها بوجود آورده است. دومین فاز درگه‌ک (D2) ریزش‌هایی را بر روی سنگ‌هایی S1 بوجود آورده (شکل 2) که با ادامه آن شیستوژنتی S2 بوجود آمده است. این فاز با درگه‌کیان در شکم (D2) هم‌مانند بوده و کانی‌هایی از فیسی بیوتیت، گرانت ± استاروانیت را تشکیل داده است. به نظر می‌رسد در مراحل انتخابی این فاز درگه‌ک در طول افزایش دما، گرانت توانسته دچار رشد مجدد شود.

شیمی کانی‌ها و شاخصی از تکامل درگه‌ک

کلریت

به طور کلی کلریت 2 نسل بافتنی را در سنگ‌های منطقه مورد مطالعه از خود نشان می‌دهد:

- کلریت نسل 1: این نوع کلریت اکثریت شیستوژنتی S1 را در منطقه توبور تشکیل داده است و سپس در زمان تکامل S2، استاروانیت تغییر با درگه‌کیان شده است.
- کلریت نسل 2: نسل دوم از کلریت‌ها در انرژی اکتیویت تشکیل شده و کلوینی در آنها نسبت به S1 در یک چهت قرار گرفته‌اند (شکل 3). در زمان نمونه‌های کلریت، یک نمونه از کلریت‌های نسل سه مورد نسبیت قرار گرفت (جدول 1). ترکیب شیمیایی این نوع کلریت به اساس نمو‌های (M1)، در محدوده ممیزداتی قرار گرفت (شکل 5). مقادیر Xr3 نسبت به تعداد ان نمونه‌های 16 کسیز و تعداد Si نسبت به تعداد 200، ارزش Xr3 را از 0.14 تا 0.12 و یکی از کشورهای نسل دوم از دمای آلومینیم چهارچه‌ای در ساختار کلریت که بیشتر این نوع کلریت‌ها در سایر نقاط از صورت زیر است:

\[T(C) = -61.9229 + 321.9773 \text{ (AlIV)} \]
مقدار Al(IV) در کلریت مورد نظر برابر با 14.2 است. که بدین ترتیب در حدود 39% می‌آید (شکل ۶). علت تشکیل کلریت‌های این را می‌تواند دو عامل در نظر گرفت: اول تأثیر دما باعث حالت با در دمای بالا رفتنه زمین‌گرمانی به صورت بین‌نیم و دروم تأثیر آب‌نگهبا ترکیب مناسب و در دمای نسبی (بدون با رفتنه دما) [۸].

سنجش‌نامه، شیمی کانی‌های استگنزاپی معیاری های مجموعه...
جدول 1
ناخستین تجزیه شیمیایی یک نمونه از کریست نسل چهارم و محاسبه کانترولی برای ۱۴ اکسیژن.

<table>
<thead>
<tr>
<th>فرمول ساختمانی</th>
<th>کریست</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>اجمالی</td>
<td>86.6%</td>
<td></td>
</tr>
</tbody>
</table>

پیشرفت واکنش‌های پیوسته دگرگونی مولکول بیوتیت سبب کاهش در نسبت Fe²⁺/Mg می‌شود. این ترکیب در بیوتیت‌های نسل دوم بعنوان سازنده S2 درصد از زون کانترول‌های نسل اول رون استوریت کاهش یافته‌است. محیط بیوتیت‌های مذکور در نسوزدها و الکترولت‌های اسیدوفیلیت (S2) مقاورد است. در همان‌دستگاهی می‌تواند در بیوتیت به عنوان Fe²⁺ این بروز در بیوتیت باعث افزایش X_{Fe} و X_{F} و مقاورد کمتری X_{Mg} و مقاوردی کمتری S2 هستند.

همدانه بیوتیت دو نسل از مکانیک در سطح‌های منطقه مورد مطالعه قابل شناسایی است. نخستین نسل از آنها تشکیل دهنده کلوژ اسلویتی S1 هستند. از ناحیه اندامه، تقیقاً مشاهده بیوتیت‌های نسل اول رون. ظهور این کانترول محدود به در طول شکل‌گیری S1 نیز مشاهده شده‌اند. گوارگی S2 را تشکیل داده این تفاوت این نوع با نسل نخست تنهای در اندازه آنهاست. که با تهای ۱/۵ میلی‌متر طول ماند. بیوتیت‌های نسل یک کمتر دیده شده و آنار

روابط بافتی و ساختاری نشان از دو نسل بیوتیت دارند که ترکیب شیمیایی آنها در جدول ۲ ارائه شده است:

- بیوتیت ۱، تشکیل دهنده بی‌گویگی S1 شیست‌های سنگول به‌دسته (شکل ۲ و تا ۲/۰)
- میلی‌متر این بیوتیت‌های این مرحله بر اثر دوگوشکی D2 دچار چین خوردن شده و تبلور آنها یا می‌توان همزمان با یافتن دگرگونی M1 دانست. مقادیر Fe²⁺/Mg در آنها در حدود ۱/۴ تا ۱/۴ می‌باشد که بیشتر از نوع D2 ایجاد شده‌اند (شکل ۳).

- بیوتیت‌های ۲، به همراه با مکانیک فولیپاسیون S2 را تشکیل داده و در طول دوگوشکی Fe²⁺/Mg چیزهای موجود در نمونه استوریت‌های دارای مقاورد کمتری S2 هستند.

Downloaded from ijcm.ir at 3:51 +0330 on Monday November 25th 2019
آن را به صورت خمیده مابین S2 می‌توان دید. برای بررسی‌های شیمیایی، چند نمونه از مسکویته‌ها تشکیل دهنده S2 مورد تجزیه قرار گرفتند (جدول ۳).

جدول ۲ ترکیب شیمیایی بیوتین و محاسبه کاپویا براساس ۱۱ آسی‌زن. مقدار Fe2O3 از طریق محاسبات استاتیستیکی تعیین شده است.

<table>
<thead>
<tr>
<th>بیوتین</th>
<th>T1(1)</th>
<th>T1(2)</th>
<th>T1(3)</th>
<th>T1(4)</th>
<th>T4(1)</th>
<th>T4(2)</th>
<th>T4(3)</th>
<th>T4(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
</tr>
<tr>
<td>TiO2</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
<td>18,0</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>FeO</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
<td>41,4</td>
</tr>
<tr>
<td>MnO</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>MgO</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
<td>7,4</td>
</tr>
<tr>
<td>CaO</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Na2O</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>K2O</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
</tr>
<tr>
<td>total</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
</tr>
<tr>
<td>Si</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Ti</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Al(III)</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Al(IV)</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Cr</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Mn</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Mg</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Ca</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Na</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>K</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>total</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
<td>78,4</td>
</tr>
</tbody>
</table>
جدول 3 نتایج تجزیه شیمیایی نمونه‌های مسکویت نسل دوم و محاسبه کانون‌ها و اجزای انتهایی میکا سفید براساس 11 اکسید.

<table>
<thead>
<tr>
<th>مسکویت</th>
<th>T1 (1)</th>
<th>T1 (2)</th>
<th>T4 (1)</th>
<th>T4 (2)</th>
<th>T4 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>48.6</td>
<td>48.1</td>
<td>48.7</td>
<td>48.7</td>
<td>48.1</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.3</td>
<td>12.1</td>
<td>12.9</td>
<td>12.9</td>
<td>12.3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>3.0</td>
<td>3.1</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>K2O</td>
<td>4.2</td>
<td>4.3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Si</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Al</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Xmax</td>
<td>4.2</td>
<td>4.3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Xmin</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Xref</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Xvol</td>
<td>47.7</td>
<td>47.5</td>
<td>47.6</td>
<td>47.6</td>
<td>47.7</td>
</tr>
</tbody>
</table>

در مثلث مسکویت-پاراگونیت-سلادولنیت [8]، أكثر نمونه‌ها در محدوده پاراگونیت و مسکویت قرار می‌گیرند (شكل 8). میکای سفید در سنگ‌های ددرگون محلول جامدی بین مسکویت و سلادولنیت است. تغییرات تركیبی مسکویت با دما با رخساره‌های ددرگونی در شکل 9 آورده شده است [9]. به طوریکه مشاهده می‌شود، تركیب شیمیایی مسکویت‌های نسل دوم (سازنده 2) از زون آلمندین تا زون استارولویت تغییر می‌کند. کسر مولی پاراگونیت با بالارفتن درجه ددرگونی، افزایش یافته که این را در مورد نمونه‌های منطقه تنبور می‌توان به خوبی ملاحظه کرد. به این ترتیب که مسکویت‌های نسل دوم از زون گارانت به سمت اولیز زون استارولویت، حاوی کسر مولی بالاتری از پاراگونیت.

شکل 8 طبقه‌بندی مسکویت‌ها در مثلث مسکویت-پاراگونیت-سلادلونیت به عنوان درجات مختلف ددرگونی [8].
گارنات

گارنات یکی از مهم‌ترین پورفلوبلاست‌ها در منطقه مورد مطالعه است. روابط برگورگی داخلی (Al₂O₃) و برگورگی زمینه (Si) برای تعیین سن نسبی رشد کانالی نسبت به برگورگی به کار می‌روند. نتایج مطالعه روابط بانفی گارنات و ارتباط آن با دگرشکلی و دگرگونی بسیار مهم و مفید خواهد بود. در پیلیت‌ها و شیست‌های منطقه، پورفلوبلاست‌های گارنات به فرآیند حضور دارند که در اینجا به ترتیب زمانی به شرح چگونگی تبلور آنها می‌پردازیم:

- رشد مرحله ۱ گارنات: گارنات‌های این مرحله از رشد (G1)، در ایسکریتاغوی ورودی مستقیم تا کمی خمیده هستند (شکل ۱۰). شدت بیا بسته بودن ریز‌چین‌های موجود در ورودی داخل پورفلوبلاست، نسبت به زمینه و سپرای مدیر کنترل شلیکی مراحل اولیه از مراحل انتهایی دگرشکلی است (شکل ۱۰). این سیاره را به خوبی می‌توان در گارنات مرحله ۱ مشاهده کرد. چنان‌که مشخص است، اگری ورودی به صورت چین‌های بسیار بازی است که می‌توان آنها را به مراحل اولیه D1 نسبت داد. در این نسل از گارنات مقدار X_Mg=0.04-0.05 و X_Mn=0.11-0.12 درصد است.

- رشد مرحله ۲ گارنات: در این مرحله یک رشد نانویی در اطراف هسته‌های مرکزی (گارنات G1) مشاهده می‌شود و در ایسکریتاغوی ورودی در انتهای کارترین ابتدا بیا توجه به نتوانید اندوربی ویل مانند آنها در گارنات، به نظر می‌رسد که بنیانان نسبت به دو مدل فازی دگرشکلی‌ایند که بنیان (شکل ۱۱) در آن سپرایه ۳۳۳-۳۴۱ و X_Mg=0.۱۲-۰.۱۳ و X_Mn=۰.۷۰-۰.۷۱ درصد است. قطع شدگی در اندوربی ویل مانند ریز کوارتز در هسته مرکزی گارنات نسبت به ورودی‌ها نسبت در درشت کوارتز در حاشیه دیده شده مستقیم یک نسل از گارنات‌های شیمیایی در گارنات‌هسته، به نمودارهای اسدرازتین و X_Mn از هسته به سمت حاشیه کم
شده و مقدار آلماندن و پروره افزایش می یابد. وجود منطقه بندی شیمیایی غالباً ناشی از رشد در طی افزایش دما است.

وجود ترکیب شیمیایی گارنت مرکزی و حاشیه حاکی از آن است که درجه دگرگونی فاز دوم دگرگونی از فاز نخست بیشتر است. ترکیب شیمیایی افته‌ای غنی از گارنت توسط می‌داند. جدول ۴ ترکیب شیمیایی نسل‌های مختلف گارنت را نشان می‌دهد.

![عکس گارنت و تصویر میکروسکوپی]

جدول ۴ ترکیب شیمیایی انواع مختلف گارنت. تعداد کانونی به‌راساس ۱۲ اکسید محاسبه شده‌اند.

<table>
<thead>
<tr>
<th>مواد معدنی</th>
<th>G1</th>
<th>G2</th>
<th>G1</th>
<th>G2</th>
<th>G2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>37.8</td>
<td>34.6</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.1</td>
<td>0.12</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Al2O3</td>
<td>21.2</td>
<td>21.3</td>
<td>21.4</td>
<td>21.3</td>
<td>21.4</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FeO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Na2O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K2O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
<td>100.1</td>
</tr>
<tr>
<td>Si</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td>Ti</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Al</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Cr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe3</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Fe2</td>
<td>1.58</td>
<td>1.58</td>
<td>1.58</td>
<td>1.58</td>
<td>1.58</td>
</tr>
<tr>
<td>Mn</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Mg</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Ca</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Na</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
</tr>
<tr>
<td>Prp</td>
<td>5.23</td>
<td>5.23</td>
<td>5.23</td>
<td>5.23</td>
<td>5.23</td>
</tr>
</tbody>
</table>

شکل ۱۰ گارنت نسل (PPL) (PPL)

شکل ۱۱ گارنت نسل (PPL)

جدول ۴ ترکیب شیمیایی انواع مختلف گارنت. تعداد کانونی به‌راساس ۱۲ اکسید محاسبه شده‌اند.

مقدار Fe2O3 بر اساس محاسبات عمر سنجی به دست آمده‌اند.
استارولیت

در قسمتی از گزارندهای شیمی‌کیمی‌شناختی استارولیت مجموعه‌های تیتان سیاه‌سفید و آبی با (کمتر از 25%) بافت تعیین می‌شود. توجه به خصوصیات میکروسکوپی، نشان می‌دهد که ارتباط آنها با دارک‌شکلی واضح نیست ولی با توجه به طرح قرارگیری آنها نسبت به S2، استارولیت را به احتمال قوی می‌توان هم‌زمان با S2 در نظر گرفت (شکل 12).

شکل 12 استارولیت که احتمالاً هم‌زمان با S2 هستند.
پلاژیوکلاز
طول پلاژیوکلازها معمولاً تا ۲ میلیمتر است، ماکل الیتی به ندرت در آنها دیده می‌شود، زیرا
در رخداری شیل‌سیز و حتی اولاب آلی‌پلویت، فلدسپارهای خصوصی، الیتی، بدون ماکل
هستند و با افزایش دما، ماکل در آنها به وجود می‌آید [۱۱ و ۱۲]. بررسی ترکیب شیمیایی
۲ نمونه از فلدسپارهای گارنت- میکانیسم‌ها نشان می‌دهد که فلدسپار عموماً از ژنرالگوکلاز

محاسبات زمین دما- فشار سنگی
برای تعیین شرایط دگرگونی که منطقه را تحت تأثیر قرار داده است، از شبکه سنگ‌زایی و
معادلات مختلف زمین دما- فشار سنگی استفاده شده است. طبق شبکه سنگ‌زایی رسم شده
براساس کانال ها و منحنی‌های تعادلی و اکتشاف ها فشار و دمایی حدود 5-۴ کیلوپاس و
۵۰۰ درجه سانتیگراد بست آمد (شکل ۱۳).

جدول ۵ نتایج تجزیه شیمیایی ۲ نمونه از فلدسپارهای منطقه و محاسبه کانی‌ونها و اجزای انتها
بر مبنای ۸ آسیب.

<table>
<thead>
<tr>
<th>ماده</th>
<th>سیلیس</th>
<th>تیلیت</th>
<th>آلیس</th>
<th>گریس</th>
<th>آریس</th>
<th>کربنات</th>
<th>ناتاریت</th>
<th>کلسیم</th>
<th>نیکل</th>
<th>مگنیسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT1 (1)</td>
<td>۶۱.۶۸</td>
<td>۳۲.۵۵</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
</tr>
<tr>
<td>OT1 (2)</td>
<td>۶۱.۶۸</td>
<td>۳۲.۵۵</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
<td>۴۴.۵۳</td>
</tr>
</tbody>
</table>

مردانیان، پیغمبری، احمدی پور

سنگ‌زایی

به علت عدم وجود داده‌های دمای فشار سنگی برای مرحله نخست دگرگونی، نمی‌توان دما و فشار را برای آن به دست آورد. تنها می‌توان در مورد دومین فاز دگرگونی اظهار نظر کرد.

گرادیان زمینی گرمایی تقیبی در این مرحله بر اساس نمودار مایروبی [16] است. 20 C/Km این شواد زیر دال بر نوع فشار متوسط (بارووین) برای سنگ‌های دگرگون منطقه است:

- فراوانی گاردن در منابع‌ها و منابع‌های منطقه
- حضور استانداردی در منابع‌ها
- گرادیان زمینی گرمایی 20 C/Km در زمان پیشرفت دگرگونی.
شکل ۱۴ میانگین گرادیان زمین‌گرمایی در مناطق مختلف دگرگونی [۱۶]. ۱- فشار بالا یا نوع گلوکوفان
۲- فشار متوسط ۳- دگرگونی نوع فشار بالا (پالتین) برداشت
مجموعه دگرگونی تنبور که جزئی از زون سندج-سیرجان است، اغلب شامل متابیت‌های و متابیت‌های سیرجان است. بررسی‌های بافت‌شناسی سنگ و شیمی کلیه سگ‌های متابیتی حاکی از مبودن دو مرحله دگرگنوی و دو فاز دگرگنوی در سگ‌های منطقه است. با توجه به مطالعات زمین دما- فشارسنجی می‌توان عنوان کرد که دو میزان فاز دگرگنوی پیچیده در منطقه از نوع فشار متوسط بوده و تا حد رخساره‌های شیست سیز و آمپولیت بیش رفته است. این نتایج به موفقیت منطقه نسبت به زون سندج-سیرجان می‌توان نتیجه گرفت که این منطقه در طول فاز کوه‌سازی کم‌پیشین تحت تأثیر قرار گرفته اینست. با توجه به عدم مشاهده دگرگونی های فشار بالا و مطالب فوق می‌توان منطقه قوس را به دگرگونی های متفکر نسبت داد.
نشانش آذری: در راهنماهایی سازنده آقای دکتر توهینی و از همکاری آقای دکتر Brendt از دانشگاه مونستر

آمانت برای تجزیه نقطه‌ای کانی‌ها نشکن و قدردانی می‌نماید.

مراجع

[1] سپهای م، "پژوهش یافته‌های ناشناخته در سطح سیبزایی و ترویج روش‌های بهره‌مندی از کانی‌ها در کارشناسی ارشد، دانشگاه شهید باهنر کرمان، دانشگاه اسلامی کشور (۱۳۷۶).

[2] موزن م، "پژوهش در پژوهشگری مجموعه دروگونی مونه تپور با تگی و پرچم برای بهره‌مندی از گروه‌های پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان، دانشگاه اسلامی کشور (۱۳۷۹).

[5] ساکی ع، موسی م، تالاری س، صوری س، "میزان تغییرات نتیجه‌گیری در تکامل کلریت‌های پس از تفریکشن در سنگ‌های تنبلیتی جنوب عرب ماهنشان"، پژوهش‌های کنفدراسیون بلورشناسی و کانی‌شناسی ایران (۱۳۸۲)، ۲۴۲-۲۴۶.

