Petrology, mineral chemistry and petrogenesis of metapelites of Tanbour metamorphic complex, east of Sirjan (Kerman province)

A. Moradian, S. Peighambari, H. Ahmadi Pour

Department of Geology, Shahid Bahonar University of Kerman, Kerman, Iran.
E-mail: peighambary80@yahoo.com

(Received: 9/06/2005, received in revised form: 22/09/2005)

Abstract: Tanbour metamorphic complex east of Sirjan is composed of metasediments and metabasic rocks. Petrofabric study of this complex shows two metamorphic and two deformational phases. Chemical studies of index minerals indicate that second phase of metamorphism occurred with a degree up to lower amphibolite facies. Mineral assemblage of first phase are biotite, muscovite and garnet while staurolite appears in peak of second phase of metamorphism. Mineral chemistry studies indicate that second phase of metamorphism occurred up to staurolite zone. Temperatures and pressures about 550-590 °C and 7-8/48 kb were also estimated using geothermobarometry. The data suggest that these metamorphic rocks underwent a medium P metamorphic event.

Keywords: South of Iran, Sanandaj – Sirjan belt, Tanbour.
سنگشناسی، شیمی کانی‌ها و سنگ‌زایی متاپلیت‌های مجموعه تنبور واقع در شرق سیرجان (استان کرمان)

عباس مرادیان، سیما پیغمبری، حمید احمدی‌پور

پیش زمین شناسی، دانشگاه شهید باهنر کرمان
پیام الکترونیکی: peighambary80@yahoo.com

(دریافت مقاله ۹۹/۱۹، دریافت نسخه نهایی ۱۳۹۴/۶/۲۱)\(^\text{چکیده: مجموعه دگرگونی تنبور شرق سیرجان در استان کرمان از نظر سنگ‌شناسی شامل}

تناويبد از سنگ‌های رسوبی و دگرگون شده است. در این های دگرگونی سنگ‌های متاپلیتی منطقه مورد مطالعه حاکی از دو فاز دگرگون و دو فاز دگر شکل است. مجموعه کانی‌های تشکیل شده در فاز نخست شامل بیوت، مسکویت و گارنت و ... می‌شود در حالیکه در فاز دوم دگرگونی، بیدایش استارولیت همراه با کانی‌های بالا در حد نهایی دگرگونی می‌باشد. مطالعات شیمی کانی‌های دگرگون نشان می‌دهد که فاصله دو فاز دگرگونی نسبت به فاز نخست در درجه بالاتری قرار داشته و احتمالاً تا اوایل رخ‌سازه آمیپلیت پیش رفته است. دما و فشارهایی در حدود ۵۰۰ تا ۶۵۰ درجه سانتی‌گراد و ۷ تا ۸۴ کیلوبار از محاسبات زمین دما-فشاری در پراورد شد. این اطلاعات می‌توانند حاکی از این باشد که سنگ‌های دگرگون در یک رژیم دما فشار متوسط (باروپن) تشکیل شده‌اند.

واسه‌های کلیدی: جنوب ایران، زون سنندج - سیرجان، تنبور
منطقه مورد مطالعه شامل مجموعه تنبور در ۲۵ کیلومتری شرق سیرجان است. این مجموعه از لحاظ زمین‌شناسی در جنوب شرقی کمرنگ دگرگونی سندج - سیرجان قرار دارد (شکل ۱). این مجموعه از نظر سنجش‌های شامل تناوبی از سنگ‌های ریس، ماری و پاریک دگرگون شده منطبق به پارینه ریستی است. مجموعه کمی شناسی سنجشی هم‌نامه شده در سنگ‌های الیا دگرگونی شامل میکای سفید، کلریت، بیونت، کوارتز، کوارتز + پلاژیوکلاز = استالولیت می‌شود. دگرگونی سنگ‌های ریس، سبب ایجاد ریزساخت‌ها و کانی‌های دگرگون شده است که متصل به حوادث تکتونیکی بی‌پیچیده‌ای با چندین زاویه دگرگشایی و دگرگونی هستند. در این پژوهش با تغییر وزه به شواهد بافت‌شناسی سنگ، شیمی کانی‌ها و زمین دما - فشار سنجی به بررسی سنگ‌نگاری این مناطق می‌پردازیم.

شکل ۱ نشان دهنده زمین‌شناسی منطقه مورد مطالعه و موفقیت آن نسبت به زون سندج - سیرجان (سیردان) ۱۳۷۶ با اندازه نمایی.
روش مطالعه
برای بدست آوردن ترکیب شیمیایی کانی های مختلف و زمین دما - فشار سنجی، کانی ها با ریزکاو الکترونی Jeol JXA 8600 BA شرکت وشایز و 15 کیو و 15 و وشایز الکترونیکی، در دانشگاه مونستر آلمان مورد تجربه شیمیایی قرار گرفتند. نتایج تجربه شیمیایی با استفاده از برنامه MinPet و AX برنامه بررسی قرار گرفت و فعالیت (کاراگ). و تعداد کاتیون های مورد نظر محاسبه شدند. در زیب و میزی های بافتی نسل های مختلف کانی ها و نحوه تشکیل و ترکیب شیمیایی آنها مورد بهت قرار خواهد گرفت.

بحث و بررسی
مطالعه بافت شناسی سنگ های منطقه مورد مطالعه حاکی از عملکرد حاصل دو فاز دیگر شکل و دو فاز دیگر این است در صورتی مؤذن [1] سه فاز دیگر شکل و دو دیگر شکل را در منطقه تیسیر تشخیص داده است. فاز نخست شکل دیگر (D1) که به همراه فاز اول دیگر شکل (M1) پوشید است. سپس ایجاد کلیوز اصلی S1 شده شکل 2 و کانی هایی جوان بوده، مسکنیت، کلریت گاژ دار را در سنگ های این سطح است. دو فاز دیگر شکل (D2) ریگین هایی و بر ری و شیستوژئیت S1 پوشوده است (شکل 3) که با ایجاد ان شیستوژئیت S2 پوشوده است (شکل 4) همکاران محدد، S و کانی هایی از فیل بوده، گردان در استارولیت را تشکیل داده است به نظر می رسد در مراحل انتهای این فاز دیگر شکل در طول افزایش دما گرمای دانه رشد مجدد شد.

شیمی کانی ها و شواهد بافتی تکامل دیگر شکل
کلریت
به طور کلی کلریت نسل پاناسی را در سنگ های منطقه مورد مطالعه از خود نشان می دهد:
- کلریت نسل 1: این نوع کلریت اکثر از شیستوژئیت S1 را در منطقه تیسیر تشکیل داده است و سپس در زمان تشکیل S2، دستخوش تغییر با دیگر شکل شده است.
- کلریت نسل 2: نسل دوم از کلریت‌ها در اثر نفوذ اوریکی ها تشکیل شدند و در آنها نسبت به S2 در یک جهت قرار گرفتند (شکل 4). پس از نمونه‌های کلریت، یک نمونه از کلریت‌های نسل دوم مورد تجربه ريز کاره قرار گرفت (جدول 1). ترکیب شیمیایی این نوع کلریت بر اساس نمو‌های [2، 3] و در حدود 85 درصد قرار گرفت (شکل 5). درصد این نوع Xe 4 این نسبت به 30 درصد C 2 و C 124 اکسیژن است. به منظور تکمیل تشکیل کلریت‌های نسل دوم از دمای آن الی‌میس نهایی در ساختن کلریت که توسط [4] ارائه شده است، استفاده شد. معادله خطی بین مقدار آلومینین و گرمای تشکیل در صورت زیر است:

\[T(C) = -61.9229 + 321.9773 ([Al]) \]
سنجش‌سازی ترکیب شیمیایی یک نمونه کلریت

سنجش‌سازی ترکیب شیمیایی یک نمونه کلریت براساس [4]

شکل ۵ ترکیب شیمیایی یک نمونه کلریت [۳]

شکل ۶ محاسبه دمای تشکیل کلریت براساس [۴]

شکل ۲ فولیامسون (S1) S1 و S2 و نسل‌های مختلف بیونیت (PPL).

شکل ۳ رابطه دوربرگویاره (XPL) S1 و S2 و نسل‌های کلریت نسل ۲ (PPL).

مقدار (Al(IV)) کلریت مورد ترکیب با ۱.۳۴ تا ۱.۵۲ است. هر یک از ترکیب‌های کلریت از حدود ۱ تا ۱.۳۲ بسته می‌آید (شکل ۴). این ترکیب‌ها تأثیر می‌گیرند، و به این ترتیب در نظر گرفته‌اند: اول بیشتر دما به علت با رفتگی گرافیت زمین گروه‌بندی به صورت استاتیک و دوم تأثیر آب‌کثیر با ترکیب مناسب و در دمای ثابت (بدون بالا رفتن دما) [۵].

شکل ۱ کلریت نسل ۲ (XPL).
جدول 1 نتایج تجزیه شیمیایی یک نمونه از کلریت نسل جهارم و محاسبه کاندیدای 14 اکسیژن

<table>
<thead>
<tr>
<th>عامل</th>
<th>قارچ</th>
<th>فرمول شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td></td>
<td>233.36 Si</td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td>0.12 Ti</td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td>33.15 Al³⁺</td>
</tr>
<tr>
<td>Cr2O3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>19.82 Fe⁺</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>18.11 Mg</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Na2O</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>K2O</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>84.65 total</td>
</tr>
</tbody>
</table>

پیشرفت واکنش‌های پیوسته درگذوش مولول پیوسته، سبب کاهش در نسبت Fe⁵⁺/#Mg می‌شود [۶]. این امر ترتیب در پیوسته‌های ساسل دوم ده سازنده S2 درصد از زون گزارن و سمت اولیه زون استراوتیت کاهش یافته است. موقعیت پیوسته‌های مذکور در نمونه فلکوپیت آناتوم-ایستونت-سیدروفیلیت (شکل ۳) نقل از دید [۱] نشان داده شده است. در این بررسی، Fe²⁺ موجود در پیوسته به عنوان Fe²⁺ در نظر گرفته شده است. مطلق جدول ۲ اکثر نمونه‌ها، دارای مقادیر قابل توجه X_{Ea} و X_{Fb} و مقادیر کمی X_{An} هستند.

مسکویت

همانند پیوسته، نسل از مسکویت در سنگ‌های منطقه‌ای مورد مطالعه قابل شناسایی است. نخستین نسل از آن تشکیل دهنده کلیزاً سبزی S1 هستند. از لحاظ اندام، تقیی شده‌ای S1 پیوسته‌های نسل اولین. این اثر این قابل توجه محدود به طول شکل‌گیری پیوسته‌های نسل اولین شده است. تفاوت این نوع با نسل نخست تنها در اندازه آنهاست، که تا ۰.۵ میلی‌متر طول دارد. مسکویت‌های نسل یک کمتر دیده شده و آثار
سنجش‌سازی، شیمی کانی‌های استگرازی منابع‌های مجموعه‌ای آن را به صورت خمیشه مابین S2 می‌توان دید، برای بررسی شیمیایی، چند نمونه از مسکوپه‌های تشکیل دهنده S2 مورد تجزیه قرار گرفتند (جدول ۳).

شکل ۷ ترکیب شیمیایی بیوتیت‌های تجزیه شد.

جدول ۲ ترکیب شیمیایی بیوتیت و محاسبه کلینه براساس ۱۱ اکسیژن. مقدار FeO۲۳ از طریق محاسبات استاندروتر تعیین شده است.

<table>
<thead>
<tr>
<th>بیوتیت</th>
<th>T1(1)</th>
<th>T1(2)</th>
<th>T1(3)</th>
<th>T1(4)</th>
<th>T4(1)</th>
<th>T4(2)</th>
<th>T4(3)</th>
<th>T4(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>34.5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
</tr>
<tr>
<td>TiO۲</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>Cr۲O۳</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe۲O۳</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FeO</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
<td>21.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>MgO</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
<td>7.24</td>
</tr>
<tr>
<td>CaO</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Na۲O</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>total</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
</tr>
<tr>
<td>Si</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Ti</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Al۶۸</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td>Cr</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>Fe۷</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Na</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>K</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>total</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
</tr>
</tbody>
</table>
جدول 3 نتایج تجزیه شیمیایی 5 نمونه از مسکویت نسل دوم و محاسبه کانون‌های اجزای انتهایی میکای سفید براساس 11 اکسیر.

<table>
<thead>
<tr>
<th>ماده</th>
<th>T1 (1)</th>
<th>T1 (2)</th>
<th>T4 (1)</th>
<th>T4 (2)</th>
<th>T4 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>68.3</td>
<td>68.1</td>
<td>72.0</td>
<td>70.5</td>
<td>70.6</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>FeO</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>K2O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>total</td>
<td>99.6</td>
<td>99.6</td>
<td>99.8</td>
<td>99.8</td>
<td>99.8</td>
</tr>
</tbody>
</table>

در مثلث مسکویت-باراگونیت-سلادونیت [8]، اکثر نمونه‌ها در محدوده باراگونیت و مسکویت قرار می‌گیرند (شکل 8). میکای سفید در سنگ‌های درگون محلول جامدی بین مسکویت و سلادونیت است. تغییرات ترکیبی مسکویت با دما با رخساردهای درگونی در شکل 9 ارده شده است [9]. به طوریکه میانگین می‌شود، ترکیب شیمیایی مسکویتهای نسل دوم (سایزده 2) از زون آلمند تا زون استارولیت تغییر می‌کند. کسر مولی باراگونیت با بالا رفتن درجه درگونی افزایش یافته که این را در مورد نمونه‌های منطقه تنبور می‌توان به خوبی ملاحظه کرد. به این ترتیب که مسکویتهای نسل دوم از زون گارنت به سمت اولین زون استارولیت، حاوی کسر مولی بالاتری از باراگونیت‌اند.

شکل 8 طبقه‌بندی مسکویت‌ها در مثلث مسکویت-باراگونیت-سلادونیت به علت درجات مختلف درگونی [8].
گارنت یکی از مهمترین پورفیروبلاست‌ها در منطقه مورد مطالعه است. روابط بروگوارگی داخلی (Si) و بروگوارگی زمینه (Se)، به ترتیب سن نسبی رشد کانال‌ها نسبت به بروگوارگی به کار می‌رود. این روابط بافتی گارنت و ارتباط آن با دگرگشایی و دگرگونی بسیار مهم و مفید خواهد بود. در فیلتراها و شیب‌های منطقه، پورفیروبلاست‌های گارنت به فرآیند حضور دارند که در انجا به ترتیب زمینی به شرح چکشگی تبیور آنان می‌یاد.

۱) رشد مرحله ۱ گارنت: گارنت‌های این مرحله از رشد (G1)، دارای یکسری الگوهای ورودی مستقیم با کمی خمیده هستند (شکل ۱۰). بخش بزرگ بیشتر ورزیچه‌های موجود در ورودی داخل پورفیروبلاست، نسبت به زمینه و سیلیای موی برای تشکیل مرحله اولیه از مرحله انتهایی دگرگشکی است. این موارد رابه خوی می‌توان در گارنت مرحله ۱ مشاهده کرد. پس از این مرحله، الگوهای ورودی با صورت چین‌های بسیار پای این می‌توان آنها را به مرحله اولیه D1 نسبت داد. در این نسل از گارنت مقدار X_{Fe}=0.60-0.64، X_{Mg}=0.30-0.50 و X_{Mn}=0.10-0.12 درصد است.

۲) رشد مرحله ۲ گارنت: در این مرحله یک رشد نتانو در اطراف هسته مرکزی (گارنت G1) مشاهده می‌شود و دارای ورودی‌های درشت کوارتز است. با توجه به تفاوت اندام ورودی‌های واحدها، حالت S منطقه آن در گارنت به نظر می‌رسد که همگنی متفاوت با دومین فاز دگرگشکی اند. این موارد انتخاب (شکل ۱۱) در آن مقدار X_{Fe} = 0.33 و X_{Mg} = 0.40 درصد است. قطع شدگی این اندام ورودی‌های دامنه رنگ کوارتز در هسته مرکزی گارنت نسبت به ورودی‌های نسبتاً درشت تر کوارتز در حاشیه خود می‌تواند دلیلی بر مرحله بعدی رشد باشد. بررسی نتایج ریزگردها، نشان دهنده منطقه بندی شیمیایی در گارنت‌های به تختی درصد ارسیتالین و X_{Mg} از هسته به سمت حاشیه کم
شبه و مقدار آلمندن و پروپ افزایش می‌یابد. وجود منطقه بندی شیمیایی غالب‌ا ناشی از ردش در طی افزایش دما است.

وجود تركیب شیمیایی گزاره مرکزی و حاشیه حاکی از ان است که درجه دگرگونی فاز دوم دگرگونی از فاز نخست بیشتر است. تركیب شیمیایی افهای غنی از گازنت توسط مسئول [12] تعیین شده و آنها را مربوط به زون گازنت می‌دانند. جدول 4 تركیب شیمیایی نسل‌های مختلف گازنت را نشان می‌دهد.

![G1 سیلیکا G1 تیتانیوم G2 آلیاژ G1 Cr2O3 Fe2O3 FeO Al2O3 CaO Na2O K2O Total]

![G1 سیلیکا G1 تیتانیوم G2 آلیاژ G1 Fe2O3 Fe3 Mn Mg Ca Na K Pp]

جدول 4 تركیب شیمیایی انواع مختلف گازنت. تعداد كاتونها بر اساس 12 اکسیون محاسبه شده‌اند.

مقدار Fe2O3 بر اساس محاسبات عصاربنی به دست آمدهان.
استارولیت

در قسمتی از گل‌های میکا شیست‌های مجموعه نیروی، تعدادی استارولیت (کمتر از 15%) بافت می‌شود. توجه به خصوصیات میکروسکوپی، نشان می‌دهد که ارتباط آنها با گردهکمی و پوشش نیست ولی با توجه به طرز قرارگیری آنها نسبت به S2 استارولیت را به احتمال قوی می‌توان هم‌هستی با S2 در نظر گرفت (شکل 12).

شکل 12 استارولیت که احتمالاً هم‌هستی با S2 شکل گرفته‌است (PPL)
پلازموکلاژ
طول پلازموکلاژ‌ها معمولاً تا ۲ میلیمتر است. ماکل آلیپتی به ندرت در آنها دیده می‌شود، زیرا
در رخشارة شیست سیز و حتی اولاب آمپیولیت، فلدسپارها خصوصاً آلیپت، بدون ماکل
هستند و با افزایش دما، ماکل در آنها به وجود می‌آید [11 و 12]. بررسی ترکیب شیمیایی
نمونه از فلدسپارهای گرانت- میکاکست‌ها نشان می‌دهد که فلدسپار عموماً از جنس الیگوکلاژ
(Al2O3-29) هستند (جدول ۵).

محاسبات زمین دما- فشارسنجی
برای تعیین شرایط دگرگونی که منطقه را تحت تأثیر قرار داده است، از شبکه سنگزایی و
معادلات مختلف زمین دما- فشارسنجی استفاده شده است. طبق شبکه سنگزایی رسم شده
براساس کاتیون‌ها و منحیه‌های تعادلی و اکتش‌ها فشار و دما و حدود ۵-۲ کیلوبار و
۵۰-۱۵۰ درجه سانتی‌گراد بسته آمد (شکل ۱۲).

جدول ۵ نتایج تجزیه شیمیایی ۲ نمونه از فلدسپارهای منطقه و محاسبه کاتیون‌ها و اجزای انتها در
بر مبنای ۸ آکسیژن.

<table>
<thead>
<tr>
<th>پلازموکلاژ</th>
<th>OT1 (1)</th>
<th>OT1 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>۱۳.۵۸</td>
<td>۱۳.۵۸</td>
</tr>
<tr>
<td>TiO2</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۴۴.۳۲</td>
<td>۴۴.۳۲</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۹۳</td>
<td>۵.۹۳</td>
</tr>
<tr>
<td>Na2O</td>
<td>۷۷.۴۱</td>
<td>۷۷.۴۱</td>
</tr>
<tr>
<td>K2O</td>
<td>۲.۷۹</td>
<td>۲.۷۹</td>
</tr>
<tr>
<td>total</td>
<td>۱۰۰.۱۹</td>
<td>۱۰۰.۱۹</td>
</tr>
<tr>
<td>Si</td>
<td>۲۷.۴۲</td>
<td>۲۷.۴۲</td>
</tr>
<tr>
<td>Ti</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Al</td>
<td>۱.۴۶۷</td>
<td>۱.۴۶۷</td>
</tr>
<tr>
<td>Cr</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Fe۱</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Fe۲</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Mg</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Ca</td>
<td>۰.۴۷۱</td>
<td>۰.۴۷۱</td>
</tr>
<tr>
<td>Na</td>
<td>۰.۴۷۱</td>
<td>۰.۴۷۱</td>
</tr>
<tr>
<td>K</td>
<td>۰.۱۸۷</td>
<td>۰.۱۸۷</td>
</tr>
<tr>
<td>total</td>
<td>۳.۶۸۷</td>
<td>۳.۶۸۷</td>
</tr>
</tbody>
</table>

مرادیان، پیغمبری، احمدی‌پور
شکل 13. شیمی آلی هاستگریزایی متابولیت‌های مجموعه.

<table>
<thead>
<tr>
<th>XSD</th>
<th>۰،۲۰</th>
<th>۰،۳۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSN</td>
<td>۰۹۹۷</td>
<td>۰،۳۴</td>
</tr>
</tbody>
</table>

سنگ‌زایی

به علت عدم وجود داده‌های دمای فشار-سنگ‌زایی برای مرحله نخست دگرگونی، نمی‌توان دما و فشاری را باعث آن به دست آورد. بنابراین می‌توان در مورد دو عمل دگرگونی اظهار نظر کرد.

گرادیان زمین گرمایی تقبری در این مرحله بر اساس نمودار میان‌بردار [۱۶] است. (شکل ۱۴) شواهد زیر دال بر نوع فشار متوسط (باروویه) برای سنگ‌های دگرگون منطقه است:

- فراوانی گارانت در متابولیتهای و متابولیتهای
- حضور استارولیته در متابولیتهای
- گرادیان زمین گرمایی ۲۰ C/Km در زمان پیشرفت دگرگونی.
شکل 14 ميانگين گراديان زمينگري در منطقه مختلف دگرگوني [16]. (1- فشار بالا يا نوع گلوفان
2- پارويين يا فشار متوسط 3- دگرگوني نوع فشار بالين)

برداشت
مجمعه دگرگوني تنوب كه جزئي از زون سندج-سيرجان است اغلب شامل متابليت ها و
متابليتهای آن است. بررسی های بافت شناسی سنگ و شيمی كانيهای سنگهای متابليتی حاکی از
رخداد و مرحله دگرگونی در سطح و دو فاز دگرگونی در سنگهای منطقه است. با توجه به مطالعات
زمین دما- فشارسنگی می توان عنوان کرد که دو مين فاز دگرگونی پيشروند در منطقه از نوع
فشار متوسط بوده تا حد رخسارهای شیست سبز و آمیفیتلیت پيش رفته است. اين و نبا
به موقعیت منطقه نسبت به زون سندج-سيرجان می توان نتیجه گرفت كه اين منطقه در
طول فاز كوهزيابي کمرين پيشين تحت تأثير فشار گرفته است. با توجه به عدم مشاهده
دگرگوني هاي فشار بالا و مطلوب فوق می توان منطقه قوس را به دگرگونی های مذكور نسبت
داد.
تشکر و قدردانی
از راهنمایی‌های سازنده آقای دکتر مؤذن و از همکاری آقای دکتر Brendt از دانشگاه مونستر.

البته برای تجزیه نفته‌ای کانی‌ها تشکر و قدردانی می‌نماید.

مراجع
[2] مؤذن م، "پژوهشی (سکغشناسی) مجموعه دکترگونی کوه تنور با نگرش ویژه به ارتباط این کانی با گروه عطاردی از کاولنت"، پایان‌نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان، دانشکده علوم، 1371.

[5] ساکی ع، موذن م، تالابی س، صوری س، "میزان شیمی‌های در کناران کلرپتی‌های یک از کانی‌ها در سنگ‌های متالیتی جنوب غرب ماهنشان"، دوازدهمین کنفرانس بین‌المللی سیلیس و کانی‌شناسی ایران (1382)، 234-241.