Kondo effect with volume change in critical point for isostructural Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound

Mehdi Vaezzadeh1, A. Yazdani2, Majid Vaezzadeh1, A. Kanzeghi3

1- K.N. Toosi university of technology, Tehran Iran,
2- Tarbiat Modarres university, Tehran, Iran
3- Tehran North Azad university, Tehran, Iran
Email:vaezmehi@yahoo.com

(Received: 28/11/2004, received in revised form: 22/9/2005)

Abstract: In this paper, results from X-ray diffraction and the variation of electric resistance versus temperature of Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound are reported. All samples formed in orthorhombic crystalline structure with Pnma space group. In measuring the lattice parameters by X-ray diffraction method, deviation from Vegard’s rule has been seen. This deviation at $x = 0.4$ maximizes. In addition, an abrupt volume change equal to 6% occurs at the critical point $x = 0.4$. For all samples, by increasing the x-parameter, we have seen increasing in the Curie temperature T_c. Magnetic susceptibility $\chi(T)$ is increased versus x-parameter, too. The results of electric resistance measuring in sample with critical value ($x = 0.4$) shows a behavior like Kondo effect which is not observed in other samples. For compounds based on Gd, this undesirable behavior could be related to 4f sublevel which it concentrates free electrons around Gd ion.

Keyword: Kondo effect, Local magnetic moment, Exchange interaction, Conduction electrons, Intermetallic compounds, Vigard’s rule.
تغییر حجم باعث بسیاری بالوری و پیدایش اثر
کشور در نقطه بحرانی ترکیبات بین فلزی بر پایه عنصر
Gd
مغناطیسی
مهدی واعظ زاده، احمد یزدانی، مجید واعظ زاده، علی کنزه قی

چکیده: در این مقاله نتایج اندازه‌گیری پراش پرتو X و تغییرات مقاومت الکتریکی بر حسب
دبای ترکیبات بین فلزی Gd3Au4Al3 با گزینه شده است. نمایش نموده، در اندازه‌گیری پارامترهای شیشه با استفاده از
پراش پرتو X، انحراف از قاعده و گارد دیده می‌شود. این انحراف در X به بیشینه خود می‌رسد. همچنین، یک تغییر حجمی ناگهانی به میزان 6٪ در مقدار بحرانی x = 10 رخ می‌دهد.
برای همه نمونه‌ها، با افزایش پارامتر x شاهد افزایش دمای کوری Tc می‌شده است. بر ذرات
مغناطیسی (T) نیز بر حسب پارامتر x کاهش می‌یابد. نتایج اندازه‌گیری مقاومت الکتریکی در
نمونه با ترکیب بحرانی x = 4 f و فشار شیبه به کنونو را نشان می‌دهد که در دیگر نمونه‌ها
مشاهده نشد. این فشار غیر منظوره برای ترکیبات پرای پایه عنصر Gd را می‌توان به زیر تراز 4f
نسبت داد که الکترولیته آزاد را حول یون Gd جمع می‌کنند.

واژه‌های کلیدی: اثر کنونو، گشتاور مغناطیسی، ترکیبات بین فلزی، ترکیبات بین فلزی، ترکیبات بین فلزی،
مقدمه
ابت کوندو در سال 1971 توسط هاسیگاوا و تیسوی در ترکیبات آماده PdSi که ناخالصی‌های Co و Cr, Mn, Fe در آن جایگزین شده بودند مطالعه شد. این اثر که عبارت است از وجود
کمیت موقتی الکترنیکی در دمای مشخص تختینتی با برای ترکیبات با ناخالصی
20 درجه شد. در واقع توجهی فوریکی اثرش به دلیل این آرای مشاهده نشده و ترکیبات با ناخالصی
مغناطیسی 4f غیر منتظره می‌گردند. اخیراً ماریک و همکارانش [1] در تغییرات منحنی
موقتی الکترنیکی برحس دمای ترکیبات (Precursor) Gd₃PdSi۸ کمیت مشخص را مشاهده کردند.
در توجهی پیدایش مشاهده شد. آنان مکانیسمی همچون اثر پیش‌درآمد مغناطیسی (Effect)
را که در این الکترون‌های آزاد به دو بیشتر می‌شوند را پیشنهاد می‌کند. پیدا
کردن پژوهش‌های این گستردگی بوده است [2] و [3]. بسیاری از پژوهشگران بر این باورند که قواعد نظم
مغناطیسی در این ترکیبات به وسعت الکترون‌هایی است که تحت تأثیر زیرترنیز 4f با برهمکنش
بیانی حال یون Gd قطع‌های آن رسانش با گستردگی موادی می‌شوند [5]. در واقع جفت‌شکل الکترون‌های رسانش با گستردگی
موادی 4f. به ویژه در مورد Gd. می‌تواند توجیهی برای رفتار غیرعادی همچون وجود
همزمان دو فاز مغناطیسی در ترکیبات بیش از فلزی هم ساختار داشته باشد [6]. این مقاله تایب
برداشت شده از نمونه‌های Gd₃Au₃(Al₅)骨骼 که توسط میکروپدیده (XRD) با تأثیر گزارش شده‌اند. مشخصات این سیستم
<i>Gd₃Au₃(Al₅)骨骼</i> از نمونه‌ای تحت (6) (12). این آنچه بیش از همه بر آن تأکید
دارم، ظهور اثر کوندو است که توسط نمونه‌ای x اشکال می‌شود [12]. این نمونه در
نقطه‌ای قرار دارد، که بدون تغییر فاز بلوری، ناگهان تغییر حجم می‌دهد.

روش تهیه نمونه‌ها و اندازه‌گیری‌ها
نمونه‌ها به روش ذوب در کوره قوسی به استانداردی که در فضایی که گاز آرگون وجود دارد، تهیه
شدند. اندازه‌گیری پارامترهای شکل به روش XRD صورت داده شد. در حالی که
پارامترهای شکل‌های سه‌بعدی تحت تأثیر فرنیند برخی بودند، دامی پیش در این تحقیق
بهمت 96 ساعت بوده است. اندازه‌گیری پذیرفتاری مغناطیسی نمونه‌ها به دسته‌گاه
<i>Gd₃Au₃(Al₅)骨骼</i> در تأثیر انتشارات (V.S.M) انجام گرفت. این سیستم قادر به اندازه‌گیری مغناطیسی
بازه دمایی 10 تا 300 کلوین و میدان‌های مغناطیسی تا 20 kOe است. اندازه‌گیری مقادیر
الکترنیکی با استفاده از جی‌جی رستنی و پس از ایجاد اتصالات الکتریکی توسط زیرین نقره‌ای انجام
شد است.

بحث و برداشت
تغییرات شکل‌های شکلک به‌جنس x در شکل ۱ آراط شده است. برای X این ترکیبات که قبل و
Pnma بعد از فرنیند پیش در صورت گرفته است، ساختار بلوری راحت‌گوش به گروه فضایی
می‌دهد. به‌طور صرفاً نمونه‌های دارای ساختار بلوری یکسان هستند. با پایه قاعدتاً ویگارد، با
جانشینی Al انظار می‌رود که پارامترهای شبکه به طور خیلی تغییر کند. اما نتایج نشان دهنده انحراف از این قاعده هستند. در واقع جانشینی عنصر Al به‌جای Au سرفاً به خاطر افزایش تراکم الکترون‌های آزاد است. جلب انرژی حجم بیان‌کننده به جا نشانه عنصر Al و موارد آن‌ها، افزایش می‌یابد، و این در حالی است که شعاع پویا طلا از شعاع پویا Al کمتر است. این توجه به این نکته که حجم بیان‌کننده کاهش انظار می‌بیند، ولی در عمل عکس آنها مشاهده نمی‌کند. در شکل ۲ تغییرات نسبی حجم بیان‌کننده بر حسب پارامتر X رسم شده است. جنبه شکل نشان می‌دهد نمونه‌ها به دو گروه حجمی تقسیم می‌شوند و شاهد تغییر حجمی در نقطه سخت ۴ هستند. که به طور ناگهانی به مقدار ۴ درصد رخ می‌دهد. این تغییر حجم ناگهانی را می‌توان با توجه به هم ساختار بودن نمونه‌ها، به تغییر شکل سطح فرمی در فضای شیبکه‌ای وارون نسبت داد. بدین ترتیب که بردار فرمی به طور ناگهانی کاهش می‌یابد (جوان افزایش حجم در فضای حیات) را شاهید می‌توان آن را به کاهش بردار فرمی در فضای برون نسبت داد. در جنبین حالتی در دمای پایین تر از دمای کوندو سطح مدارهای شکل گرفته (بر اثر کوندو) در شبکه وارون به صورت سطوحی مجزا از یکدیگر خواهد بود و در نتیجه برهمکنش ناکامران بین الکترون‌های موضعی (بر اثر کوندو) و الکترون‌های رسانش را می‌توان انظار داشت که موجب پدیدار شدن اثر کوندو در نمونه می‌شود [۱۶].

![شکل ۱ تغییر پارامتر شبکه با X (از افراش) تراکم الکترون‌های رسانش کاهش می‌یابد.](image1)

![شکل ۲ تغییر نسبی بیان‌کننده بر حسب پارامتر X در ترکیب Gd۳Au۵Al۵X](image2)
این نکته که تأثیر الکترون‌های رسانش در رفتار فرومغناطیسی به‌نیا به تعداد الکترون‌ها بلکه به‌شیوه‌ای که تراز رسانش بستگی دارد، توسط رویی و همکارانش [15] در مطالعه بیش از همه به شکل تراز رسانش بستگی دارد. از طرفی دیگر، مطالعه تغییرات پدیفراگری فرومغناطیسی نمونه‌ها، شاهد می‌باشد که کاهش ضریب امکاناتی، موجب کاهش χ و افزایش Tc می‌شود [16]. کاهش پدیفراگری تا حدی کننده روند رشد حضور فاز پادفرومغناطیسی و افزایش دما کوری به‌بُاکار بیان‌دار خود فاز فرومغناطیسی باعث وقوع همزمان دو فاز فرومغناطیسی و پادفرومغناطیسی (با به‌عبارتی دیگر حضور فاز سپرپارامغناطیسی در نمونه‌ها) است. شتاب ذکر اینکه در دمای بالاتر از دمای کوندو، اعمال یک میدان غناطیسی قوی باعث از میان رفتار فاز فرومغناطیسی می‌شود [16]. در دمای کوندو، با دیگر دو فاز فرومغناطیسی شکل می‌گیرد که این امر را می‌توان به تشكل اثر کوندو نسبت داد [16].

نتایج اندیشه‌گیری تجربی مقاومت بر حسب دما در شکل 3 آورده شده‌اند. در این شکل می‌توان به وضوح افزایش ناگهانی مقاومت را در دمای TC دید، جالب‌النگه ما هنی‌ای نمونه 400K به‌جای نقطه بحرانی شاهد پدیده پدیده کوندو هستیم و دیگر نمونه‌ها این رفتار را نشان ندادند (مثال شکل 4). دیگر نکته معمولاً، رابطه بین پرهم‌کنش تبادلی رKKKY درون بونی و اثر کوندو است. اثر کوندو در محلی که تبادل پرهم‌کنش تبادلی کمی بهره‌مند است، ظاهر می‌شود [16]. Jij تابعی از فاصله جدایی بینونی‌ها مغناطیسی است که در RKKKY به عوامل مقابل است:

\[J_j = \frac{2^3 F(2k_j |R_i - R_j|)}{E_j} \]

که در آن، برای جفت بینونی‌های مختلف در مرجع [16] محاسبه شده است. در نمودار تغییرات Jj بر حسب [Ri-Rj] در دیده می‌شود که با تغییر حجم باعث یک بیش‌تر تغییراتی شده در این مقاومت‌ها است. در مطالعه دیگری که برای محصول ساختن اثرات تبادلی RKKKY به آن نمونه‌ها را صورت بوده در آورده، که اثر کوندو در دو مرحله مجزا خود را نشان می‌دهد، و اگر اثرات حاصل از RKKKY بر اثر کوندو غلبه کند، دیگر اثر کوندو را نمی‌توان در [16] اکنون با توجه به مطالب بالا می‌توان گفت که اثر کوندو تنها به خاطر حضور تراز مجازی صورت نمی‌گیرد، بلکه این اثر به شکل سطح فرمی بستگی مستقیم دارد [16] و این سطح فرمی در کوچک‌ترین حالت خود است و تراز اثرات قابلی جذب از آن را دارد. این ترازها که از نظر اثرات به حد اشباع نرسیده‌اند، می‌توانند عمده بیشتر اثر کوندو دانست.

باشد و بدين ترتيب مي توان آن را اعمال يپدايش اثر کوندو دانست.