Kondo effect with volume change in critical point for isostructural Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound

Mehdi Vaezzadeh1, A. Yazdani2, Majid Vaezzadeh1, A. Kanzeghi3

1- K.N. Toosi university of technology, Tehran Iran,
2- Tarbiat Modarres university, Tehran, Iran
3- Tehran North Azad university, Tehran, Iran
Email:vaezmehi@yahoo.com

(Received: 28/11/2004, received in revised form: 22/9/2005)

Abstract: In this paper, results from X-ray diffraction and the variation of electric resistance versus temperature of Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound are reported. All samples formed in orthorhombic crystalline structure with Pnma space group. In measuring the lattice parameters by X-ray diffraction method, deviation from Vegard’s rule has been seen. This deviation at $x = 0.4$ maximizes. In addition, an abrupt volume change equal to 6% occurs at the critical point $x = 0.4$. For all samples, by increasing the x-parameter, we have seen increasing in the Curie temperature T_c. Magnetic susceptibility $\chi(T)$ is increased versus x-parameter, too. The results of electric resistance measuring in sample with critical value ($x = 0.4$) shows a behavior like Kondo effect which is not observed in other samples. For compounds based on Gd, this undesirable behavior could be related to 4f sublevel which it concentrates free electrons around Gd ion.

Keyword: Kondo effect, Local magnetic moment, Exchange interaction, Conduction electrons, Intermetallic compounds, Vegard’s rule.
تغییر حجم یاخته بسیط بدون تغییر فاز بلوری و پیدايش انر
کوندو در نقطه بحرانی ترکیبات بين فلزی بر پایه عنصر

Gd
مغناطیسي

مهدی واعظ زاده، احمد یزدانی، مجید واعظ زاده. علی کنزه قی

1- تهران دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه تربیت مدرس تهران
3- دانشگاه آزاد تهران. واحد شمال

vaezmehti@yahoo.fr

چکیده: در این مقاله نتایج انداره‌گیری پراش پرتو X و تغییرات مقاومت الکتریکی بر حسب
دمای ترکیبات بين فلزی $\text{Gd}_2\text{Au}_3\text{Al}_5$ گزارش شده است. تمامی نمونه‌ها در آرای $\text{Gd}_2\text{Au}_3\text{Al}_5$
بلوری را استخوان با گروه فضایی Pnma دارای پلارهای X هستند. در انداره‌گیری پارامترهای شبکه با استفاده از
پراش پرتو X, انحراف بین دو مدل پوشیده آینه انداره در $X \equiv X_{\text{r}}$ به میزان 6% در مقدار بحرانی $X_{\text{r}} = 0.04$
رسد همچنین، یک تغییر حجم ناگهانی به میزان 6% در مقدار بحرانی $X_{\text{r}} = 0.04$
برای همه نمونه‌ها، با افزایش پارامتر x شاهد افزایش دمای هسته‌ی T_c هستند. پذیرفتاری
مغناطیسی ($\chi(T)$ نیز بر حسب پارامتر x کاهش می‌یابد. نتایج انداره‌گیری مقاومت الکتریکی در
نمونه با ترکیب بحرانی ($x = 0.04$) رفتار مشابه به کوندو را نشان می‌دهد که در دیگر نمونه‌ها
مشاهده نشد. این رفتار غير منظوره برای ترکیبات هر پایه عنصر Gd را می‌توان به زیر تراز
$4f$ نسبت داد که الکترون‌های آزاد را حول پیون

Gd
جمع می‌کنند.

واژه‌های کلیدی: اثر کوندو، گشتاور مغناطیسی موضعی، برهمکنش تبادلی، الکترون‌های رسانش،
ترکیبات بين فلزی، قانون ویکارد.
مقدمه

اثر کنوندو در سال ۱۹۷۱ توسعه هاسیگاوا و تئویوی در ترکیبات آمورف PdSi به عنوان یک ناخالص‌های Co و Cr, Mn, Fe در آن جایگزین شده بودند مشاهده شد. این اثر هم عبارت است از وجود

کمیتی مقاومت الکتریکی در دامای مشخص، توسط این برای ترکیبات با خاصیت ۲دی دردیده شد. در واقع توجه ویژگی‌های رنگی این اثر مشاهده شده و در ترکیبات با ناخالصی

مغناطیسی تأثیر در هر نوع همانندی را به دشنه کردن. مقاومت الکتریکی بر حسب دمای ترکیبات ری، Gd۲PdSi۳ کمیتی مشخصی را مشاهده کرده‌اند. (Precursor effect) در توجه به پیش‌داری شده شده، آنان محقق آزمایشات همچنین اثر پیش داده همگانی مغناطیسی پیام پیام‌دار و در دنیای دنیای الکتریکی

(۱) می‌تواند تحقیق برای این دانشجویان. در این مقاله نتایج

برداشت شده از نمونه‌های Gd۲Au₂Al۱۶ با تأثیری بر گردش‌های Gd۲Au₂Al۱۶. همچنین نتایج

مهم‌ماند با دمای مغناطیسی در ترکیبات بین‌ریز هم ساختار باشد. (۲) در این مقاله نتایج

(۲) بیش از همه بر آن تأکید داریم، ظهور اثر اثر کنوندو است که تنا بر نمونه X = اشکال می‌شود (۱۲). این نمونه در

نقطه‌ای قرار دارد، که بدون تغییر فاز بلوری، ناگهان تغییر حجم می‌دهد.

روش تهیه نمونه‌ها و اندازه‌گیری‌ها

نمونه‌ها به روش ذوب در کوره قوس گاز استاندارد که در فضا از گاز آرگون وجود دارد. تهیه

شده‌اند. اندازه‌گیری پارامترهای شیبکه به روش XRD صورت پذیرفته است. در حالتی که

پارامترهای شیبکه شما تحت تأثیر فرآیند بهتر می‌باشد، می‌توانیم به این تحقیق

به مدت ۹۶ ساعت بوده است. اندازه‌گیری پذیرفتاری مغناطیسی نمونه‌ها از یک دستگاه

انجام گرفت. این اندازه‌گیری مغناطشی در مغناطش سینگولاریتی آتوماکس (V.S.M) با یک دامای ۱۰۰ ۱۰۰ تا ۲۰ کلوین و میدان‌های مغناطیسی تا ۲۰ kOe است. اندازه‌گیری مقاومت الکتریکی با استفاده از یک دستگاه و پس از ایجاد اتصالات الکتریکی توسط رئین نقره‌ای انجام

شده است.

بحث و برداشت

تغییرات تنشی شیبکه بر حسب X در شکل ۱ ارائه شده است. برای X این ترکیبات که قابل و

۱این ترکیبات با آشکار است. پیام X این ترکیبات که قابل و

Pmna بعد از فرآیند یک تردید صورت گرفته است، با انجام یک روش گره‌پردازی با گروه فضایی

می‌دهد که به‌طور تمام نمونه‌ها دارای انجام برای این پروژه به‌کارگردانی با

Downloaded from ijcm.ir at 12:39 +0330 on Thursday November 14th 2019
گانشالی Al انتظار می‌رود که پارامترهای شبکه به طور خطي تغییر کند. اما نتایج نشان دهنده انتقال از این قاعده هستند. در واقع گانشالی عنصر Al موجب افزایش تراکم الکترون‌های آزاد است. جالب اینکه حجم باخته یکه با ناشانند عنصر آلومینیوم، افزایش می‌یابد، و این در حالت است که شعاع یونی طلا از شعاع یونی آلومینیوم برگردد است. با توجه به این نتایج کاهش حجم باخته یکه انتظار می‌رودم. ولی در عمل عکس آن را مشاهده کردیم. در شکل 1 تغییرات نسبی حجم باخته یکه بر حسب پارامتر x رسم شده است. جداله شکل نشان می‌دهد نمونه‌ها به دو گروه حجمی تقسیم می‌شوند و شاهد تغییر حجم در نقطه محاسباتی $x=0.45$ هستند. که به طور ناگهانی به مقدار 3 درصد رخ می‌دهد. این تغییر حجم ناگهانی را می‌توان با توجه به هم ساخته بودن نمونه‌ها به تغییر شکل سطح فرمی در فضای شبکه وارون نسبت داد. بهینه ترتیب که بردار فرمی به طور ناگهانی کاهش می‌یابد (چون افزایش حجم در فضای حقیقی را به‌دست می‌دهد) به کاهش بردار فرمی در فضای وارون نسبت داد. در جنین حالی در دمای پایینتر از دمای کنوندو سطح مدارهای شکل گرفته (بر کنوندو) در شبکه وارون به صورت سطحی مجزا از یکدیگر خواهد بود و در نتیجه به همکنش باکسان شدید الکترون‌های وضعی (بر کنوندو) و الکترون‌های رسانش را می‌توان انتظار داشت که موجب پدیدار شدن اثر کنوندو در نمونه می‌شود [16]?

شکل 1 تغییر پارامتر شبکه با x (af-ایزیش Al تراکم الکترون‌های رسانش کاهش می‌یابد)

شکل 2 تغییر حجم نسبی باخته یکه $\text{Gd}_2\text{Au}_x\text{Al}_{1-x}$ در ترکیب x بر حسب پارامتر x.
این نکته که تأثیر الکترون‌های رسانش در رفتار فرمغناطیسی‌ها به تعداد الکترون‌ها بیشتر از همه به شکل تراس رسانش بستگی دارد، و توسط روبروی و همکارانش [15] در مطالعه
سیستم GdCu–GdPt به عنوان نتیجه‌ای مهم مورد تأکید قرار گرفته است. از طرفی دیگر در مطالعه تغییرات پذیرفته‌ای منفی نمونه‌ها، شاهد می‌باشد که کاهش پالپارتر X، موجب کاهش \(x \) و افزایش \(T_x \) می‌شود [16]. کاهش پذیرفته‌ای ناگذاری می‌تواند فاز پاداتفرمغناطیسی و اف‌افمای کربنی باگری یادار شدن فاز فرمغناطیسی بعنی وجود همزمانی دو فاز فرمغناطیسی و پاداتفرمغناطیسی (با به‌عنوان دیگر حضور فاز سوپرپارامگناطیسی در نمونه‌ها) است. شاخص ذکر است که در دمای بالاتر از دمای کوندو، اعمال میدان مغناطیسی قبیل باعث افزایش فاز فرمغناطیسی می‌شود [16]. در دمای کوندو، با دمای افزایش فرمغناطیسی شکل می‌گیرد که این امر را می‌توان به تفلل ای کرد که
نسبت داد [16].

نتایج انداده‌گیری تحریک مقاومت برحس دما در شکل 2 آورده شده‌اند. در این شکل می-
توان به وضوح افزایش ناگهانی مقاومت را در دمای \(T_x \) (دمای کوندو) مشاهده کرد. جالب اینکه \(T_x \) نموداری به‌دست آمده ما نشان دهنده نمونه 4 \(x = 0.01 \) از نظر نقطه بازگشتی شاهد پیادایی پدیده کوندو هستند و دیگر نمونه‌ها این رفتار را نشان ندادند (مثال شکل 4). دیگر نکته مهم، رقابت میان برهمکنش
تابالی‌ای RKKY درون بونی و اثر کوندو است. اثر کوندو در محلی که ثابت برحسب کشت تابالی
کمینه است، ظاهر می‌شود [16]. \(J_{ij} \) تابعی از فاصله جدایی پونه‌های فرمغناطیسی است که در
به صورت مقابل است:

\[
J_{ij} \approx \frac{x^2 F(2k_f |R_i - R_j|)}{E_f}
\]

که در آن، \(F(w) = \frac{1}{w^2} (w \cos w - \sin w) ; w = 2k_f |R_i - R_j| \)

برای جفت پونه‌های مختلف در مرجع [14] محاسبه شده است. در نمودار تغییرات \(J_{ij} \) حسب \(x \) کمینه در \(x = 0.4 \) دیده می‌شود که با تغییر حجم باخته یکه مشاهده شده در این
مقاسه مطابقت دارد. در مطالعه دیگری که برای محدود ساختن اثر تابالی رKKY که در این
نمونه‌ها را به صورت پویاد در آورده‌ایم که اثر کوندو در دو مرحله جزیر خود را نشان می‌دهد و

ارگ انرژی حاصل از RKKY بر اثر کوندو غیر که دیگر اثر کوندو را نمی‌دانند [16]

اکنون باتوجه به مطلب با این می‌توان گفت که اثر کوندو نشانه مجاری

صاروت نمی‌گیرد، بلکه این اثر به مطلوب، ذکر ترس روز جدید مورد نظر را برای
سپاراک هم‌بندی که در چارچوب نمونه‌ها قابلیت جذب انرژی را دارد. این
ترابع‌ها که از نظر انرژی به حد اشاعات بررسی می‌تواند عامل بکارگر درک‌دانه رسانش
باشند و بدین ترتیب می‌توان آن‌ها را عامل پیادایی اثر کوندو دانست.
مراجع