Ground magnetic survey over an aeromagnetic anomaly in the Dahaneh Siah copper deposit and KC5 exploration prospect (Bardaskan)

M. R. Haidarian Shahri, M. H. Karimpour, A. Malekzadeh

The Geology department, Ferdowsi University of Mashhad
E-mail: hshahri@ferdowsi.um.ac.ir

Abstract: KC5 copper exploration prospect is located 80 Km to the northwest of Bardaskan and 4 Km to the Northeast of Dahaneh Siah copper mine in Khorasan Razavi. KC5 and Dahaneh Siah areas belong to Sabzevar geological Zone. Copper mineralization is observable mainly as secondary minerals such as Malachite and Chlorite which fills joints and fractures in a faulty contact at the boundary of the volcanic and Oriyan sedimentary (carbonaceous and tuff) rocks. High intensity ellipsoidal aeromagnetic anomaly overlies the boundary between the volcanic and carbonaceous rocks which follows old abandoned copper mines and extends to the KC5 prospect and Dahaneh Siyah area. Studies indicate the presence of magnetite up to maximum 5% in the volcanic rocks. Magnetic susceptibilities of the volcanic rocks in the KC5 west, KC5 east and Dahaneh Siyah show that this parameter is 2 times smaller in the first area than in the second and third. Magnetic anomalies of the two volcanic units in the KC5 east are similar but their amplitudes are lower than the anomalies produced by the same units in the KC5 west. Anomaly amplitudes of the Dahaneh Siyah volcanic are smaller than those produced by the same volcanic unit in the KC5 west and east. Lower magnetic susceptibilities of surface volcanic samples in the KC5 west and their higher amplitude anomalies in comparison with the anomalies from similar volcanic units in the KC5 east and Dahaneh Siyah implies that the source of the anomaly and main mineralization at KC5 west must be deep. Correlation of aeromagnetic anomaly with old abandoned copper mine (including the Dahaneh Siyah copper mine and the KC5 prospect area), upper boundary of the volcanic and carbonaceous sediment and geochemical anomaly of the region are indications of the relation of main mineralization with aeromagnetic anomaly.
مغناطیسی سنجی‌های زمینی بر روی پی‌هنجاره‌ها

Keywords: Magnetic susceptibility, Magnetic anomaly, KC5, Dahaneh Siah.
مغناطیسی سنگهای زمینی بر روی پی هنجریهای مغناطیسی هوبردنی

در منطقه معدن مس دهنه سیاه و منطقه اکتشافی KC5 (بردسنک)

محمدرضا حیدریان شهری، محمدحسین کرمی‌پور و آزاده ملکزاده شفارودی

گروه ریسم‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

E-mail: hshahri@ferdowsi.um.ac.ir

(دیروز مقاله 14/5/1394 نسخه نهایی 17840017)

چکیده: محدوده اکتشافی مس KC5 در 80 کیلومتری شمال غرب بردسکن و 4 کیلومتری شمال شرقی معدن مس دهنه سیاه در خراسان رضوی است. مناطق KC5 و دهنه سیاه جز
زان زمین‌شناسی، مس بستر در غالب کانی‌های تانوه، الهالکیت و
کالکوزتی به صورت پرکرده درز و شکستگی‌ها در مرز سنگ‌های آتش‌شنا و سنگ‌های سری
عربان (کربنات و توف) که گسلی است مشاهده می‌شود. پی هنجری مغناطیسی سنجی هوباردی
بیشتری شکل را دارد از آن روی مزرین سنگ‌های آتش‌شنا و سنگ‌های معادن مس-
قلمی متروکه را تعقیب کرده تا منطقه اکتشافی KC5 و معدن مس دهنه سیاه ادامه می‌باید. مطالعات و جداسازی حاضری نهایی در دستگاه اکتشافی، این دانه می‌دهد.

پژوهش‌های مغناطیسی سنگ‌های آتش‌شنا در منطقه KC5 غربی، شرقی و دهنه سیاه

نام دهنه که این پارامتر در بافت نصف دوم و سومی است. پی هنجریهای مغناطیسی

و اهدافی آتش‌شنا در KC5 شرقمی یافته به‌کننده با یکدیگر نداشتند اما دانه‌نام کمتر از

پی هنجریهای مربوط به به‌مان در منطقه KC5 غربی است. دانه پی هنجری کمتر

اکتشافی دهنه سیاه از پی هنجریهای همان واحد در منطقه KC5 غربی و شرقی کوچکتر

است. پژوهش‌های مغناطیسی کوچک‌تری موثری سنجشی اهدافی اکتشافی در منطقه

غربی پی هنجری به‌مان یافته با یکدیگر از طرف مقابلی به هنجریهای وابسته‌ی اکتشافی سه‌گانه و دهنه سیاه در منطقه اکتشافی KC5 در منطقه KC5 غربی، مشابه کم‌سازی

در منطقه کوچک‌تری موثری سنجشی اهدافی اکتشافی سه‌گانه و دهنه سیاه در منطقه اکتشافی

 KC5، مرز فوتوئی بین سنگ‌های آتش‌شنا و تنش‌سنجی‌های کربنات و پی هنجریهای زوئومیدی‌بایی دهنه سیاه و بردرسکن.

واژه‌های کلیدی: پیدا‌سازی مغناطیسی، پی هنجریهای مغناطیسی،KC5 دهنه سیاه و بردرسکن.
مقدمه
محدوده اکتشافی Ms5 در ۸۰ کیلومتری شمال غربی شهرستان برداسکن و در ۴ کیلومتری شمال شرقی معدن مس دهنه سیاه در مرکز استان فارس قرار دارد. از نظر ساختاری این بور، قبلاً از زون زمین‌شناسی سیبزور محوسب می‌شود. زمین‌شناسی زون سیبزور مشکل از سنگ‌های انتخابی سیزروک، افکولت، سنگ‌های انتخابی و تونشتهای عربیان و به وسیله گسل دکتر (ریوش) در جنوب و گسل شاهزاده در شمال محدود می‌شود (نقشه ۱). در سمت غرب مرز جنوبی این زون گسل مربوط است (نقشه ۱).

زن متأثر از گسل‌های محدود کننده آن بوده به طوریکه رود بسیاری از مجموعه‌های فاصله از که خورده هماهنگ با گسل‌های محدود کننده آن (شرقی- غربی نیز شرقی- جنوب غربی) است. کانی‌سازی مس در هر دو منطقه بیشتر در غالب کانی‌های تانهوی مالاکیت و کالکوزیت (در سطح. کندوکاهه قدمی و مغزه‌های حفاری دو چاه از دهنه سیاه) به صورت برنمکند در و شکسته‌گیها در مرز فوقانی وحدسان ناشی از انتخابی آن‌دزی (نجمی) و به تختی تهیه‌شده‌های عربیان که یک مرز گسلی است، مشاهده می‌شود.

نقشه ۱:۵۰۰۰ مغناطیس، سنگ‌های هوادار بالایی، انسانی (۸۷-۶۶) با فاصله خطوط پرواز ۴۰۰ تا ۱۰۰۰ متر و ارتفاع پرواز ۴۰۰ تا ۱۸۰ متر به هنگاری مغناطیسی پیشی شکل باشند بالایی را بر روی سپاه‌های انتخابی (نرم‌شیبی) منطقه ۵ کننده میدهد که در که جهت شمال غربی مس دهنه سیاه ادامه دارد (نقشه ۲). این به هنگاری در امتدادی نسبتاً طولانی با مس متروکه قدیمی، به هنگاری‌های زمین‌شناسی ناحیه‌ای و نیز شاخه‌های معدنی هم اهمیت دارند. هدف از این تحقیق بیدارکند ارتباط بین هنگاری با شدت بالایی مغناطیس هوایی مشاهده شده و کانی‌سازی مس در محدود مس دهنه سیاه است. نتایج این ارتباط می‌تواند به منطقه اکتشافی Ms5 که همان واحد سنگی و به هنگاری کانی‌سازی KCS5 و به هنگاری مغناطیسی هوایی را دارد تعیین داده شود.

روش مطالعه
به منظور بررسی ارتباط زمین‌شناسی- کانی‌سازی منطقه و پاسخ‌های مغناطیسی آن، مطالعات در دو بخش زمین‌شناسی و هم‌جزیی انجام شد. مطالعات زمین‌شناسی- کانی‌سازی شامل:
1- تصحیح نقشه زمین‌شناسی محدوده اکتشافی Ms5 بر روی نقشه ۱۵۰۰۰۰ کانتر
2- مطالعه ۲۲ مقطع نارک و ۲ بلوک صفحی از Ms5 دهنه سیاه (از سطح در KCS5 و دهنه Sیاه ازطقس در Ms5
3- مطالعه مغزه‌های حفاری چاه شماره ۱۲ به عمق ۹۵ متر و چاه شماره ۲۸ به عمق ۶۰ متر از محدود دهنه سیاه.
4- مطالعات کانی‌شناسی با استفاده از XRD و محتویات داخل حفایه سنگ‌های انتخابی آن‌دزی (نجمی)
شکل ۱ نمای زون سیور و واحدهای تشکیل‌دهنده آن (با تغییرات پس از [۱۷]).

شکل ۲ پی‌هنجاری مغناطیسی مثبت روی محدوده KC5 (برگرفته از نقشه ۱:۵۰۰۰۰ مغناطیسی هوابی سازمان اثری اتمی).
مطالعات زنوفیزیکی شامل:
1- ادارات گیری و پژوهشگران مغناطیسی روزانه ماموران از سطح زمین در
هر دوره منطقه و مقیسه دهنده سیاه، ماموران سربره معدن دهنده سیاه و چند نمونه آمکن
- کسی که از 430 متری (TMI) جمعاً در ۲۳۶۶ نقطه (هشت نمره) دو
منطقه که ۲۵ نقطه آن به دهنده سیاه و بقیه متعلق به
مغناطیس سنگ مورد استفاده از نوع پروتون مدل
ENVي با دقت ۰.۱ گاما و پژوهشگران
 سنگ به کار برده شده مدل GMS2 با دقت SI ۱۰×۱۰ متر که هر دو ساخت شرکت
سینتکس کانادا و متعلق به بخش زمین‌شناسی دانشگاه فردوسی مشهد بوده است.
زمین‌شناسی و سنگ‌شناسی
زمین‌شناسی و سنگ‌شناسی واحدهای انششافی منطقه کسی و دهنده سیاه توسط کریمپور و
ملکزارد [۸] و جهانری و همکاران [۹] به تفکیک تشريح شده است. زمین‌شناسی محلی
محدوده انششافی کسی و دهنده سیاه بیشتر شامل مجموعه سنگ‌های آننششافی و شنطسنتی
ترشیوی است.
و ادای کار در محدوده کسی از گدازه‌های آن‌زینیت‌های دریایی تحت‌های بک حوضه کم-
عمق تشکیل شده که با هم‌های غنی از فسفه‌های کوکسی و نوکلئوتید به سمت پالتو-لوس-
یوشی شده است. مجموعه انششافی از سه واحد سنگی شامل پیروکسین آندزیت پورفیری,
فلدسفار تراکی آندزیت پورفیری و واحد انتقالی بین آن دو با، فلدسفار پیروکسین آندزیت تا
پیروکسین فلدسفار آندزیت پورفیری تشکیل شده است (شکل ۳).

شکل ۳ نقطه زمین‌شناسی محدوده کسی (برگرفته از [۷] با تغییرات اساسی [۱۷])

یکی از این آندزیت‌های واحدهای‌اش.
ویاد پیروکسن آنتریت پورفیری در آغاز فعالیت‌های آنتی‌فیلمنی فیئور کره و به دلیل داشتن دردسره و فشک‌سکیبا و بلورهای درشت تا اندازه‌گیری سیال قبل و سپس تحت تأثیر فرایشی قرار گرفت و تهیه ماتورهایی با پستی و بلندی‌های کم‌را در محدوده 6 تشکیل داده‌ای است. این ویاد در معنی مس دهنده سیال دیده نمی‌باشد و بیشتر از درشت بلورهای کلیپورکوکسین در حد اوجیت - از بین و کمی درپسی در قسمت‌های 30 تا 40 درصد با یافته پورفیری تا گلوپورفیری تشکیل شدست. کانی‌های زمینه شامل پیروکسن، بلیزپورکل، کانی‌های آویک و کانی‌های حاصل از دگرسانی است. مقدار کانی‌های آویک در این سنگ‌ها قابل توجه و در حد 7 تا 8 درصد است. حفره‌های ناشی از خروج گازهای آنتی‌فیلمنی در این ویاد در حد 8 تا 10 درصد بوده و با کانی‌های دگرسانی بر شده‌اند. دگرسانی در این ویاد از نوع پروپتیک بوده و کانی‌های آن شامل کلریت، ابیدان، کمی زلوئیت و کلستیت است. کلریت و ابیدان در سنگ سیاه و زلوئیت و کلستیت در حفره‌ها قرار دارد.

اواید دلسپزار تراکی آنتریت پورفیری به صورت نواز صخره‌مس با رنگ شوالی عقیقی-جوب غربی ارتفاعات محدوده کس و دهنده سیا را تشکیل داده و از سمت شمال به سنگ‌های ناشی از پوشیدن سنگ‌های تنفس‌ناپذیر در محدوده کس و دهنده سیا را تشکیل داده است. این سنگ‌ها در حدود 30 تا 40 درصد شکل شدسته‌ای و مقدار کانی‌های آویک در حد 3 تا 6 درصد بوده و در انتهای آن‌ها در حد 7 تا 8 درصد و در انتهای آن‌ها حد 4 تا 5 درصد است. حفره‌های ناشی از خروج گازهای آنتی‌فیلمنی در این ویاد از حدود پیروکسن آنتریت پورفیری بوده و در حد 3 تا 4 درصد است. در عوض قطر حفره‌ای بزرگ‌تر بوده و تا 2 سمی متر می‌رسد. حفره‌های سنگ‌ها اغلب با کانی‌های حاصل از دگرسانی مثل زلوئیت و کلستیت قابل شده است. زلوئیت در حاشیه حفره‌ها و یا در میان سنگ‌ها به شکل رشته‌ای بوده و بطور متوسط به 15 درصد و کلستیت بیشتر در میان حفره‌ها و وجود دارد و تا 5 درصد می‌رسد.

اواید دلسپزار پیروکسن آندزیت تا پیروکسن فلدن‌سپار آندزیت پورفیری عیب و اثبات انتقالی در میان واحدهای پیروکسن آندزیت پورفیری در جروب و هیدرگیر تراکی آندزیت پورفیری در شمال این پو. یافته این سنگ پورفیری و دارای بلورهای درشت و خشکی پلیپورکل است. مقدار کلیپورکوکسین در سمت واحدهای پیروکسن بیشتر بوده و به طرف واحد دلسپزار تراکی آندزیت پورفیری به تدریج از مقدار آن‌ها کاسته شده و بر مقدار پلیپورکل به عنوان فن کن‌کسبی اضافه می‌شود. این حالا ناشی از تبدیل تدریجی واحد پیروکسین آندزیت پورفیری به واحد دلسپزار تراکی آندزیت پورفیری است. در واحد انتقالی مقدار فن کن‌کسبی در حد 30 تا 40 درصد است. کانی‌های زمینه پلیپورکل، کلیپورکوکسین.
کوارتز، کمی قلبی از فلدسفار، کانی‌های اولیک و کانی‌های داخلی از دیگر قسمتی است که کانی‌های اولیک در حد حدود ۲ درصد بوده و میزان حفظ‌ها به ۵ تا ۶ درصد می‌رسد که با کانی‌های دگرسان بر شده‌اند. دگرسانی بیشتر پروبیولیتی-زولیتی بوده و کانی‌های آن عبارتند از کلریت، ایبدوت، زولیت و کلسیت.

ژئوشیمی منطقه‌های ناحیه‌ای و کانی‌سازی

بررسی پی گذراها شیمی منطقه‌های بر اساس تنش‌شکل‌نگاراه‌های در واقعه‌های ۱۰۰۰۰۰ درونه و بردوسکن که از سوی سازمان زمین‌شناسی کشور در سالهای ۱۹۹۵ تا ۱۹۹۷ انجام شده و در موضوع نگاه نشانه می‌دهد که حضور کاهش‌های که بر اساس نتایج برسی‌های زئوشیمیایی مشخص شده بیشتر در مجاورت شاخص‌های کانی‌سازی و معدن معلوم به قدم سازاران سه منطقه اکتشافی KCS و کانی سازی منطقه KCS در میان ۵۰۰۰۰۰ ppm کانی سازی مس در KCS کانی سازی مس در KCS از معدن KCS در حالت معدن مس دهنه سیاه و دهنه آزمایشی شده و آثار کار شادی و دیهوهای زیادی از سربر به مجاورت کوره‌های قدیمی ذوب مس در منطقه تبدیل شده. کانی‌سازی بیشتر به صورت ریز‌سوز کالکوزت و مالاکیت به صورت پرنده در و شکستگی‌ها در نزدیک مرز فوتوانی اولین انششاین‌های فلدسری تراک آندرتی پورفیری با بخش‌های تحتانی حدود گنجوری مس‌های بسیار بالای ذوبی می‌باشد که تشکیل شده است. مغزه‌های حفایی نیز بیشتر همان ریز‌سوز کالکوزت را با ضخامت ۲ تا ۳ میلی‌متر نشان داده و قادر کانی‌سازی مکتبتی است. این بخش از کانی‌سازی بخش اکسیده و ناتوان می‌باشد و کانی‌سازی اولیه فعالاً در عمق وجود دارد (در قسمت‌های اصلی کانی‌سازی معدن) کانی‌های کورپرت، پرولیت و کالکورپریت نیز به عنوان کانی فرعی این کانی‌سازی ذکر شده است.

عرض ناحیه کانی‌سازی شده در محل مرز فلدسری تراک آندرتی پورفیری با تنش‌شکل‌نگار

تشریحی مربوط ظریفی به ۲۰ متراً طول کانی‌سازی به صورت نایبوتیک در طول مرز اولین انششاین‌ها سبب رسوبی محدود از خارج از محدوده معدن از شرق به غرب ادامه دارد و به حدود ۴۰ کیلومتر می‌رسد. عبارت مس در معدن مس دهنه سیاه دیده که به ۱ تا ۲ درصد است (زون غنی شده تا ۸ درصد) و ذخیره آن در حدود ۱۰۰۰۰۰۰ تن با عبارت میانگین ۲ درصد بارود شده است [۸ و ۹].

در محدوده اکتشافی KCS کانی‌سازی مشاهاه شده شده نیز بیشتر مالاکیت و کمی کالکوزت (در کنده‌کارپهای قدیمی) به صورت پرنده در و شکستگی‌های که با عرض در حدود ۲.۵ meter در محل مرز واحده فلدسری تراک آندرتی پورفیری و بخش تحتانی واحد اهکی (مرز...
دانشگاه شهید کریمی‌پور، ملک‌زاده شافروندی

بحث

گل‌کوره) دیده می‌شود. کنده‌گیره‌های قدمی در تمامی این مراز مشاهده می‌شود. طول زون کانی‌سازی نیز به صورت نابوده (با اندام طول واحد انتشارشان، ورسپ) در حدود ۴۰ کیلومتر در محدوده اکتشافی و خارج از آن ادامه دارد [۸ و ۹].

دگرسانی

دگرسانی مشاهده شده همراه با کانی‌سازی در معدن مس دهته سیاه غربی از نوع زولیت-گلکسیت و کمی پروفیلینک است. کلیسیت پیشرو در سرت خوجرها و زولیت در حاشیه قرار دارد. در منطقه اکتشافی KC5، دگرسانی مرتب با محلول کانی‌سازی به دو زون پروفیلینک و زولیت-کلیسیت قابل تشخیص است. اولی در واحد پیارکس اندزیت پروفیلینک و دور از کانی-سازی مشاهده شده و شامل کانی‌های گلکرت و اپیدوت است. در دومی در داخل فلدسپار تراکی اندزیت پروفیلینک همراه با کانی‌سازی دیده می‌شود، و شامل زولیت در متن سنگ و در حاشیه حفره‌ها و کلیسیت پیشرو در میان آنها قرار دارد [۸ و ۹].

به منظور تعیین نوع زولیت‌ها، محیوت‌های درون حفره‌های سنگ‌های اکتشافی منطقه دهنه سیاه و پرف از یک جهر مورد آنالیز XRD قرار گرفت و بررسی‌ها نشان داد که کانی‌های زولیت‌ها یک نوع لاومونیت (CaAl₂Si₃O₁₀, 2H₂O) و اسکالوسیت (CaAl₂Si₃O₁₀, 3H₂O) هستند [۹ و ۱۲].

اندازه‌گیری‌های پذیرفتابی منگانیکی

پذیرفتابی منگانیکی یکی از سرشباهات منگانیکی سنگ بوده که آگاهی از آن تعبیر و تفسیر منگانیکی را محدود ساخته و می‌تواند سببی از اهمیت‌ها را که بر روی منگانیکی سنگ مزرعه اثر می‌گذارد، باشد دهد [۱۳ و ۱۴]. به منظور آگاهی از منیزان پذیرفتابی منگانیکی سنگ مزرعه (و یا فلدسپار تراکی اندزیت پروفیلینک) در معدن سنگ دهنه سیاه از دور یک حفره شده در این واحد انجام، اندازه‌گیری‌های پذیرفتابی منگانیکی انجام شد. این‌ها سنگ‌های خشکی اصلی معدن قرار داشته و جاهرهای محل کانی‌سازی اصلی که در اختلاط شرکت توسیس بود، در اختیار قرار گرفت. چهار شماره ۱۲ تا عمق ۹۷/۱۸ متر بوده که به طور تصادفی از اینکننده چهار تعداد ۲۵ آن‌ها مورد انجام شد (جدول). محدوده تغییرات پذیرفتابی منگانیکی SI در ۱۰۰ تا حداقل ۲/۴۳ و SI تا حداقل ۱/۱۱ و SI تا حداقل ۱/۱۱ پذیرفتابی منگانیکی بر اساس آن‌ها مشخص گردید. قرار می‌گیرد ۵۱/۱۵. این واحد فلدسپار تراکی اندزیت پروفیلینک خود حاوی حدود ۳ تا ۶ درصد مگنتیت بوده که در این منیزان پذیرفتابی منگانیکی اندزیت به اندازه گیری شده منعکس شده است.

در چاه شماره ۲۸ با عمق ۶۰ متر، ۱۶ اندازه‌گیری پذیرفتابی منگانیکی به طور گسترده‌ای از منیزان آن به عموم آماده (جدول). محدوده میزان تغییرات پذیرفتابی منگانیکی در این چاه از بیشینه ۳۷۵/۴۰۲ تا کمینه ۱۰/۴۰۲ SI مشخص بوده است. مقایسه این محدوده
تغییرات پذیرفتابی مغناطیسی با مقادیر گازهای شده پذیرفتابی مغناطیسی در منابع زنویعیکی برای سنگهای اندریزی مطابقت دارد[15]. مقایسه بینگوی نهایی کل پذیرفتابی مغناطیسی بین دو چاه (جدول‌های 1 و 2) تغییر محوسی را نشان نمی‌دهد. تعداد شش اندازه‌گیری پذیرفتابی مغناطیسی از سرباره‌های اینه شده محل معدن انجام شد (جدول 3).

جدول 1 پذیرفتابی مغناطیسی چاه شماره 13 از معدن سه دهنده سیاه [8]

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>رابط لهجه‌ای (SI)</th>
<th>عمق تهیه (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>در ابتدا آثار مالاکیت دیده می‌شد</td>
<td>1279×10^{-5}</td>
<td>15</td>
</tr>
<tr>
<td>547×10^{-3}</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>135×10^{-6}</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1123×10^{-3}</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1186×10^{-5}</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1381×10^{-6}</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>101×10^{-6}</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>165×10^{-6}</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>55×10^{-6}</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>382×10^{-3}</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>409×10^{-6}</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2023×10^{-6}</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1332×10^{-6}</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1527×10^{-3}</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>702×10^{-3}</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1575×10^{-3}</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>904×10^{-3}</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>در عمق رگجه‌های کالکوزیت دیده می‌شد</td>
<td>317×10^{-3}</td>
<td>20</td>
</tr>
<tr>
<td>64×10^{-3}</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>125×10^{-3}</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>150×10^{-3}</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>168×10^{-3}</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>193×10^{-3}</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲ پذیرفتنی مغناطیسی جاه شماره ۲۸ از معدن مس دهنه سیاه (A)\[8\]

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>پذیرفتنی مغناطیسی (SI)</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>واحد قطعات تراکی انگزیبت پورقیری</td>
<td>1351×10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>تخلخل و درز شکستگی در واحد سنتی</td>
<td>1815×10^{-5}</td>
<td>2</td>
</tr>
<tr>
<td>جدیده نم شود</td>
<td>1239×10^{-5}</td>
<td>3</td>
</tr>
<tr>
<td>دگرگویی شامل ریزه‌های جزیی کریت و</td>
<td>895×10^{-5}</td>
<td>4</td>
</tr>
<tr>
<td>راکلیت - کلست</td>
<td>2020×10^{-5}</td>
<td>5</td>
</tr>
<tr>
<td>گیرنده شرایط</td>
<td>334×10^{-5}</td>
<td>6</td>
</tr>
<tr>
<td>37×10^{-5}</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>45×10^{-5}</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>214×10^{-5}</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>327×10^{-5}</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>176×10^{-5}</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>247×10^{-5}</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>45×10^{-5}</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>49×10^{-5}</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>75×10^{-5}</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>75×10^{-5}</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>50×10^{-5}</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳ پذیرفتنی مغناطیسی در نمونه‌های سرباره (A)\[8\]

<table>
<thead>
<tr>
<th>پذیرفتنی مغناطیسی (SI)</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>128×10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>16×10^{-3}</td>
<td>2</td>
</tr>
<tr>
<td>25×10^{-3}</td>
<td>3</td>
</tr>
<tr>
<td>112×10^{-4}</td>
<td>4</td>
</tr>
<tr>
<td>125×10^{-3}</td>
<td>5</td>
</tr>
<tr>
<td>15×10^{-4}</td>
<td>6</td>
</tr>
</tbody>
</table>

مقایسه پذیرفتنی‌های مغناطیسی سنگ میزبان (جدول‌های ۱ و ۲) با سرباره‌ها (جدول ۳).

نشان می‌دهد که پذیرفتنی مغناطیسی سرباره‌ها ۱۰ برابر کمتر از قطعات تراکی انگزیبت پورقیری عین سنگ میزبان است.

همچنین اندام‌گیری‌های پذیرفتنی مغناطیسی از واحدهای پورپوگیک انگزیبت پورقیری و قطعات تراکی انگزیبت پورقیری از نمونه‌های برون‌زاده سنگ‌های زیر نیمرخ‌های
مغناطیسی در منطقه اکتشافی غربی انجم شد (جدولهای ۴ و ۵). مقایسه تغییرات میزان پذیرفتابی مغناطیسی اندازه‌گیری شده در این دو واحد انفعالی (جدولهای ۴ و ۵) نشان می‌دهد که تفاوت‌های بازیگر در این دو واحد از نظر پذیرفتابی مغناطیسی مشاهده می‌شود. اما میزان مغناطیسی در هر دو واحد به درستی کوچکتر از میزان مقدار محدود محسوب می‌شود. بنابراین اندازه‌گیری اکتشافی غربی KC5 نشان می‌دهد که اکتشاف‌های قبلی در مدل‌های واحد به‌خصوص کارکرد پذیرفتابی و قدرت تراکم شبیه‌راعی غربی که اکتشافی اکتشافی نمی‌شود.

اندازه‌گیری‌های مغناطیسی زمینی

• منطقه معدن دهنه سیاه

در نیم‌کره با امتداد SH ۵۵° E و در نیم‌کره با امتداد SJ ۵۵° E هر کدام به طول ۶۰ متر و به فاصله ۱۲۰ متر از یکدیگر و عمود بر امتداد واحد دهنه است. اگر اندازه‌گیری انجام شود، بازه‌ای از نقاط از هر واحد، بر پایه‌ای‌ها و از هر یک۵ متر در نظر گرفته شد. شروع نیم‌کره از محل حوضه شسته با محصولات ۵۵° E ۵۰° S به شمار می‌رود. از آنجایی که در حوزه‌های شناخته شده، شروع نیم‌کره از محل حوضه شسته با محصولات ۵۵° E ۵۰° S به شمار می‌رود.

• میزان تغییرات روزانه مینیمومی که در هر نقطه کمتر از ۲ ساعت طول کشید.

یکپاره و در نتیجه اگر هم‌اکنون نیم‌کره دوم به ناحیه نیم‌کره دوم به ناحیه N (NOAA) National Oceanographic and Atmospheric of America در روزهای بردشته آرام گزارش کرده بودند این تغییرات نادیده گرفته شدند.

جدول ۴ پذیرفتابی مغناطیسی در واحد پیروکسن اندربد پروفیزی در غربی [8].

<table>
<thead>
<tr>
<th>پذیرفتابی مغناطیسی (SI)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>1174x10⁻⁵</td>
<td>1</td>
</tr>
<tr>
<td>35x10⁻⁵</td>
<td>2</td>
</tr>
<tr>
<td>67x10⁻⁵</td>
<td>3</td>
</tr>
<tr>
<td>816x10⁻⁵</td>
<td>4</td>
</tr>
<tr>
<td>1046x10⁻⁵</td>
<td>5</td>
</tr>
<tr>
<td>1365x10⁻⁵</td>
<td>6</td>
</tr>
<tr>
<td>137x10⁻⁵</td>
<td>7</td>
</tr>
</tbody>
</table>
جدول ۵ پذیرفتنی‌ها مغناطیسی در یک‌فلسیت تراکی‌پتری الماسی غربی [۸] 

<table>
<thead>
<tr>
<th>رنگ‌یار</th>
<th>۷۲۰۰x۱۰⁻۵</th>
<th>۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰۰x۱۰⁻۵</td>
<td>۲</td>
<td></td>
</tr>
<tr>
<td>۹۷x۱۰⁻۵</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>۷۲۴x۱۰⁻۵</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>۷۴۵x۱۰⁻۵</td>
<td>۵</td>
<td></td>
</tr>
<tr>
<td>۸۹۲x۱۰⁻۵</td>
<td>۶</td>
<td></td>
</tr>
</tbody>
</table>

با استفاده از میدان اصلی مغناطیسی منطقه از نقشه مغناطیسی سازمان زمین‌شناسی کشور [۱۶] میدان اصلی به صورت برداری از تاداب‌سپرها کاسته شد. نیم‌مرکز این برداشتها به‌جریان میدان و میدان اصلی در شکل‌های ۴ ألفت ب‌ب ایجاد شدند. در نهایت نتایج مشاهده شده در نمودارهای شکل‌های ۴ ألفت ب‌ب بین ۲۵۰ تا ۵۰۰ کالومتری درجه است که نتیجه پراکندگی مکتسب در زمینل سنج تعبیر می‌شود. این تغییرات در پذیرفتنی‌ها و در اندارگیری روند مغناطیسی حفاری نیز مشاهده می‌شود (جدول‌های ۱ و ۲).

(الف) شکل ۴ ألفت نیم‌مرکز شدید میدان مغناطیسی L0E در معدن مس دهنه سیاه و واحد سنگی تفسیر شده زمین‌شناسی L120E در معدن مس دهنه سیاه و واحد سنگی تفسیر شده زمین‌شناسی [۸].

(ب)
مناطق اکتشافی KC5 غربی

به صورت چشمگیری سنگی جهت اندامه‌گیری مغناطیسی در منطقه اکتشافی KC5 غربی، جهت نیمرخ شمالی-جنوبی به فاصله ۳۰ متر از یکدیگر و به طول تقریبی ۳۵۰ متر عمود بر امتداد واحدهای انتحاب شدند که فاصله نقاط اندازه‌گیری ۱۰ متر بوده است. نیمرخ اول از جنوب به شمال و از نقطه‌ای با مختصات ۲۷° ۳۵´ عرض شمالي و ۴۳° ۲۸´ طول شرقی و ارتفاع ۱۲۳۷ مترز سطح دریا آغاز شد. با استفاده از نقشه مغناطیسی سازمان زمین‌شناسی کشور [۱۶] میدان اصلی به صورت برداری از اندازه‌گیری‌های کامپیوتری نتیجه اندازه‌گیری‌ها پس از تصحیح تغییرات روزانه میدان و تصحیح میدان اصلی به صورت نیمرخ‌هایی در شکل ۵ مشاهده می‌شود. تغییرات دائمی به هنگاری مغناطیسی از جنوب به شمال به وضوح در هر جهت نیمرخ برداشت شده نشان دهنده واحدهای سنگی مختلف نمیده شانس‌های این نیمرخ‌هاست. قدمبین، اولین واحدهای سنگی در حال اندامه‌گیری قبلاً به پایه‌بندی اندامه‌گیری اندامه‌گیری شد. این واحد با گسترش در حدود ۱۳۰ متر به نیمرخ‌ها دیده می‌شود (شکل ۵).

شکل ۵ الف: نیمرخ شدت میدان مغناطیسی L0E در غرب و واحدهای سنگی تفسیر شده زیر KC5 غربی و واحدهای سنگی L30E در غرب و واحدهای سنگی تفسیر شده که روش آن [۸]
شکل ۵ ج نیم‌خ شدت میدان مغناطیسی L۶۰E در غربی و واقعیت سنگی تفسیر شده زیر K۵C در غربی و واقعیت سنگی تفسیر شده L۹۰E در غربی و واقعیت سنگی تفسیر شده زیر K۵C آن [۶].

جوان‌ترین واحد سنگی شامل آهن‌‌مارن-توف (واقع در دریاچه) است که به‌هنگامی مغناطیسی در آن جهت شدت کاهش می‌یابد شکل‌های ۵ (الف، ب، چ و د.) وارد آتش‌نامی فلدسپار تراکی آن‌دزیت بورفی‌ری در زیر واحد جوان تنش‌سازی قرار دارد که دامنه کمتری نسبت به واحد پیروکسین آن‌دزیت بورفی‌ری نشان می‌دهد. دامنه کمی در این واحد ۴۰۰ کامپ و بیشتر آن ۵۰ کامپ است. بین دو واحد آتش‌نامی واقع شده و در فاصله تقیبی ۱۲۰ متری ۲۳۰ متر، دامنه به‌هنگامی مغناطیسی نگیرانده و از نظر برتری بین دو واحد آتش‌نامی بوده و واقعیت تفسیر می‌شود. مطالعات مقاطع میکروسکوپی نمونه‌های برداشت شده تبدیل تدریجی از پیروکسین آن‌دزیت بورفی‌ری به فلدسپار تراکی آن‌دزیت بورفی‌ری را نشان می‌دهد که تفسیر مغناطیسی را تائید می‌کند [۶].

میزان یکسان پذیرفته‌ای مغناطیسی (جدولهای ۴ و ۵) در نمونه‌های سطحی پیروکسین آن‌دزیت بورفی‌ری و فلدسپار تراکی آن‌دزیت بورفی‌ری در منطقه K۵C غربی می‌رساند که اگر تغییراتی در عمق وجود نداشته باشد، پایین‌ریزی مغناطیسی اندام‌گیری شده در روی این دو
واحد سنگی هماهنگ باشد. مقاپسه دانه‌ی بی‌هنجاری مغناطیسی اندژادگی شده ناشی از پیروکسین آنزیمی و فلدنسیار تراکی آنزیمی پورفیری شکل 5 نشان می‌دهد که اولی در حدود 400 گامای برگرتاب از دومی است. این نشان می‌دهد که خاس‌تگا بی‌هنجاری با دانه‌ی بزرگ‌تر باشد.

مقایسه بذرتفاره‌ای مغناطیسی اندازه‌گیری شده توان‌های سطحی از واحد فلدسیار تراکی آنزیمی پورفیری در منطقه KC5 غربی و مغناطیسی حفره‌ای از همان واحد آن‌شانسی‌گیری در منطقه معدن مس دهنده سیاه نشان می‌دهد که میانگین این پارامتر اندازه‌گیری شده در اولی نصف از دومی است (جدول 3). با نویج به بی‌هنجاری مغناطیسی با دانه‌ی کوچکتر ناپایداری فلدسیار تراکی آنزیمی پورفیری در منطقه دهنده سیاه نسبت به میانگین این نشان می‌دهد که خاس‌تگا این شده از همین واحد آن‌شانسی‌گیری در منطقه KC5 غربی و نزدیک بذرتفاره‌ای مغناطیسی کمتر اندازه‌گیری شده از KC5 غربی نسبت به منطقه دهنده سیاه نتیجه‌گیری می‌شود که با دیده‌ای بذرتفاره‌ای مغناطیسی و در نتیجه خاس‌تگا بی‌هنجاری با دانه‌ی کوچک‌تر KC5 غربی در عملیات داشته باشد. وجود کانی‌ای‌یا تاناهی همراه با کنار سازی اصلا در منطقه دهنده سیاه در فلدسیار تراکی آنزیمی پورفیری و عدم کانی‌سازی غربی نشان می‌دهد که کانی‌سازی اصلی در منطقه KC5 غربی با دیده در عملیات کان‌سازی می‌شود.

همچنین مقایسه دانه‌ی بی‌هنجاری مغناطیسی اندازه‌گیری شده بر واحد پیروکسین آنزیمی بذرتفاره‌ای پورفیری در منطقه‌ی کوچک‌ت‌تر فلدسیار تراکی آنزیمی پورفیری در منطقه معدن مس دهنده سیاه (جدول 6) نشان می‌دهد که پیروکسین آنزیمی پورفیری با وجود بذرتفاره‌ای مغناطیسی کمتر، با دانه‌ی بی‌هنجاری از ان دو برای فلدسیار تراکی آنزیمی پورفیری است. این بافت‌ها مجدداً تأیید دیگری است بر عقیده مشترک خاس‌تگا بی‌هنجاری مغناطیسی و کانی‌سازی پیروکسین آنزیمی پورفیری در منطقه‌ی کوچک‌تر فلدسیار تراکی آنزیمی پورفیری غربی.

• منطقه KC5 شرقي
• دو نمره شمالی - جنوبي به طول 230 متر و به فاصله 20 متر از یکدیگر و عمود بر روند سنگهای آن‌شانسی‌گیری شده که در آن‌ها فاصله فاصله‌گیری 10 متر در نظر گرفته شد. نمره اول در جنوب به مختصات ‘28° 35 عرض شمالي و 1233 طول شرقی’ و ارتفاع 720 متر بوده است که در 2 کیلومتری مرکز روستای محمدژوراب قرار داشت. نتایج بررسی‌ها بس از تصحیح تغییرات روزانه میدان و تصحیح میدان اصلی در شکل‌های تا و نشان داده شده‌اند. پاسخ مغناطیسی منطقه KC5 شرقي ماند منطقه KC5 غربی پاره‌ای، واحد انتقائي، فلدسیار تراکی آنزیمی پورفیری و واحد آسيک - مانري - توفی
تفصیل شده است. مقایسه بین هنجاری مغناطیسی ناشی از واحدهای انفجاری در منطقه KC5 غربی، شرقی در شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحد انفجاری پاک‌تری که در ناحیه یکنواختی مشابهی داشته، در حالیکه در دومی دامنه بین هنجاری ناشی از پیروگن انفجاری به‌خوبی از فلسیپار تراکی انفجاری ترکیه در منطقه KC5 شرقی که انفجاری پذیرفته‌ای مغناطیسی از نمونه‌های سطحی انفجاری‌های که میزان پکس و دمای مثال، می‌تواند دامنه دامنه را در این منطقه تا حدود معنی‌دار باشد.

جدول ۶ مقایسه‌ی پذیرفته‌ی مغناطیسی و دامنه‌ی هنجاری در KC5 غربی و دهه سیاه

<table>
<thead>
<tr>
<th>پارامتر اندازه‌گیری شده</th>
<th>فلدسیپ تراکی انفجاری</th>
<th>دامنه سیاه</th>
<th>دامنه کیلویی (گاما)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیرقومین انفجاری پذیرفته</td>
<td>غربی</td>
<td>کیلومتر</td>
<td>کیلومتر</td>
</tr>
<tr>
<td>کیلومتر</td>
<td>دهه سیاه</td>
<td>۳۲۰ تا</td>
<td>۲۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۲۱۰ تا</td>
<td>۵۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۳۰۰ تا</td>
<td>۹۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۴۰۰ تا</td>
<td>۱۱۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۵۰۰ تا</td>
<td>۱۳۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۶۰۰ تا</td>
<td>۱۶۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۷۰۰ تا</td>
<td>۱۹۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۸۰۰ تا</td>
<td>۲۲۰۰ تا</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>۹۰۰ تا</td>
<td>۲۵۰۰ تا</td>
</tr>
</tbody>
</table>

شکل ۶ الف) نمودار شیفت میدان مغناطیسی L0W در شرقی و واحدهای سنگی نیم‌قرار شده که در شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحد انفجاری پاک‌تری که در ناحیه یکنواختی مشابهی داشته، در حالیکه در دومی دامنه بین هنجاری ناشی از پیروگن انفجاری به‌خوبی از فلسیپار تراکی انفجاری ترکیه در منطقه KC5 شرقی که انفجاری پذیرفته‌ای مغناطیسی از نمونه‌های سطحی انفجاری‌های که میزان پکس و دمای مثال، می‌تواند دامنه دامنه را در این منطقه تا حدود معنی‌دار باشد.

ب) نمودار شیفت میدان مغناطیسی L30W در شرقی و واحدهای سنگی نیم‌قرار شده که در شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحد انفجاری پاک‌تری که در ناحیه یکنواختی مشابهی داشته، در حالیکه در دومی دامنه بین هنجاری ناشی از پیروگن انفجاری به‌خوبی از فلسیپار تراکی انفجاری ترکیه در منطقه KC5 شرقی که انفجاری پذیرفته‌ای مغناطیسی از نمونه‌های سطحی انفجاری‌های که میزان پکس و دمای مثال، می‌تواند دامنه دامنه را در این منطقه تا حدود معنی‌دار باشد.

شکل ۶ الف) نمودار شیفت میدان مغناطیسی L0W در شرقی و واحدهای سنگی نیم‌قرار شده که در شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحد انفجاری پاک‌تری که در ناحیه یکنواختی مشابهی داشته، در حالیکه در دومی دامنه بین هنجاری ناشی از پیروگن انفجاری به‌خوبی از فلسیپار تراکی انفجاری ترکیه در منطقه KC5 شرقی که انفجاری پذیرفته‌ای مغناطیسی از نمونه‌های سطحی انفجاری‌های که میزان پکس و دمای مثال، می‌تواند دامنه دامنه را در این منطقه تا حدود معنی‌دار باشد.

ب) نمودار شیفت میدان مغناطیسی L30W در شرقی و واحدهای سنگی نیم‌قرار شده که در شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحد انفجاری پاک‌تری که در ناحیه یکنواختی مشابهی داشته، در حالیکه در دومی دامنه بین هنجاری ناشی از پیروگن انفجاری به‌خوبی از فلسیپار تراکی انفجاری ترکیه در منطقه KC5 شرقی که انفجاری پذیرفته‌ای مغناطیسی از نمونه‌های سطحی انفجاری‌های که میزان پکس و دمای مثال، می‌تواند دامنه دامنه را در این منطقه تا حدود معنی‌دار باشد.
مقایسه پذیرفتنی مغناطیسی و دامنه بهنجاری مغناطیسی بین مناطق دهنه سیاه شرقي KC5 غربی و KC5 شرقي از نظر دو کمیت یاد شده اختلاف دارد.

بحث و برداشت

پذیرفتنی‌های مغناطیسی اندازه‌گیری شده روی واحد فلدسپار تراکی اندرزیت پورفیری از منظره‌ی حفاری (از دوچرخه که خارج از کانال‌های اصلی بوده و ضمنا کانال‌گیری‌های در آنها ثانویه است) منطقه‌ی معدن دهنده سیاه شرقي می‌دهد که میزان یافته‌های بهره‌برداری در هر دو به‌مدت هم‌این. و تغییر جندانی ندارد. میانگین دامنه پذیرفتنی مغناطیسی SI 10-3 است (جدول‌های 1 و 2). پذیرفتنی‌های مغناطیسی اندازه‌گیری شده از سری‌های معدن غربی روی کبک‌های سنگی نیز هستند. اندازه‌گیری‌های این کمیت سطحی در منطقه KC5 غربی روی نمونه‌های سطحی پروکسیک تراکی اندرزیت پورفیری و فلدسپار تراکی اندرزیت پورفیری جدول‌های 1 و 2 و تفاوت جندانی با یکدیگر نداشته و میانگین ان است. پذیرفتنی مغناطیسی سیاه‌های ان‌نشان‌ین منطقه KC5 غربی تقریباً نصف میانگین در منطقه معدن دهنده سیاه است (فلدسپار تراکی اندرزیت پورفیری در هر دو منطقه مشابه می‌شود).

شدن کل میدان مغناطیسی در هشت نمره از 346 نقطه در مناطق معدن مس دهنه سیاه غربی و کن.5 شرقي گُنگی 38.4 (شکل‌های 4 و 6) اندازه‌گیری شده دامنه بهنجاری مغناطیسی اندازه‌گیری شده ناشی از واحد فلدسپار تراکی اندرزیت پورفیری در منطقه معدن غربی روی کن.5 غربی 400 تا 250 گاما، با توجه به واحد پروکسیک تراکی اندرزیت پورفیری در منطقه کن.5 غربی حداقل نصف پذیرفتنی مغناطیسی واحد فلدسپار تراکی اندرزیت پورفیری در منطقه دهنده سیاه بوده، که نسبت به کن.5 غربی زیرگرید از همان واحد در دهنه سیاه است. بنابراین خاستگاه بی- شرقي با دامنه بزرگتر در منطقه کن.5 غربی عمیق است. بزرگ‌ترین دامنه بهنجاری مغناطیسی روی واحد پروکسیک تراکی اندرزیت پورفیری در منطقه کن.5 غربی واقع شده در حالت‌های
مطالعات زئوئیمیایی تعشیش‌های رودخانه‌ای نیز علاوه بر مناطق KC5 و دهنه سیاه، وجود ینهجاری‌های دیگری را نیز مرتبط با این افق کانی‌سازی را نیز تایید می‌کند. تمامی این معادن قدمی و ینهجار‌های زئوئیمیایی در ایاپ و جهانی مشترکی از جمله بردارش با بیکری می‌باشد. یک‌باره هنگامی که نشان می‌دهد که این کانی‌سازی‌ها از یک حاشیه‌ای و در شرایط یکسانی تشکیل شده‌اند و اینهای این شواید دلیلی بر این است که محلول کانی در برخوردی بعضی دیگر و تراکم نهایی پودری و بخش تحت‌پوشش‌های سری عربان که گسلی بوده حرکت کرده و در افق مناسب شکستی‌ها کانی‌سازی مس شکل گرفته است. حضور زئوئیمیایی pH کلسیم‌دار و کلسیم می‌توان این است که محلول کانی‌سازی قلیایی و محلول غنی از کلسیم بوده است. گسترش بودن کانی‌سازی در طول ۴۰ کیلومتر نشان می‌دهد که خاصیت‌های کانی‌سازی بسیار وسیع بوده و باید جویی‌های بزرگ‌تری را می‌طلبد.

