اثر زمان آسیاکاری بر ساختار، اندازه ذرات و ریخت شناسی مونت موربلونیت

مريم ابرشي

گروه شیمی، دانشگاه پیام نور، م sondوق بستی 76636-48899 تهران، ایران

چکیده: در این پژوهش، اثر آسیاکاری بر ساختار، اندازه ذرات و ریختشناسی خاکرس مونت موربلونیت مورد بررسی قرار گرفت. بدین منظور نخست مونت موربلونیت خریداری شده با روش‌های پروتو ایکس، طیف سنگی فوری و میکروسکوپ الکترونی رویشی سرشتابایی و سپس با استفاده از یک آسیاکاری ماهورایی پرانزی، در زمان‌های 1 تا 30 ساعت آسیاکاری شد. پس از آن ساختار، اندازه ذرات و ریختشناسی همه نمونه‌ها به روش‌های پروتو ایکس، طیفسنگی فوری و میکروسکوپی الکترونی عبوری و رویشی بررسی شد. نتایج نشان داد که آسیاکاری سبب کوچک‌سازی اندازه ذرات خاکرس، جدا شدن صفحات و ایجاد بی‌نظمی در ساختار آن و تبدیل ساختار پلورن به بی‌بختی مشود. همچنین ریخت شناسی ذرات خاکرس در اثر آسیاکاری به مدت 60 ساعت، از حالتی لایه به گروهی شکل تغییر می‌یابد.

واژه‌های کلیدی: خاکرس مونت موربلونیت، آسیاکاری، ماهورایی پرانزی، ریخت شناسی

مقدمه

ویژگی‌های همچون سطح ویژه‌ی بالا، پایداری شیمیایی و مکانیکی، ساختار لایه‌ای، جذب سطحی، بالا، ظرفیت نباید کانتری بالا، فرآیند و ارزان بودن سبب شدن فشرده شدن خاکرس‌ها به عنوان یک ماده مناسب برای فرآیند جذب، حذف مواد الگندری ای، و فازات سنگین استفاده شوند. [37-6]. همچنین قدرت جذب قالب قریب‌توجه این مواد باعث استفاده گسترده‌ی آنها در برنامه‌های کاربردی محیط زیست شده است. مونت موربلونیت از جمله کاپاه رسمی فیلوسیلاکی است که از لایه‌های سپیکات با ضخامت 1 نانومتر و طیف بین 0 تا 4 میکرون تک پیک تغییر عمده است و ساختار لایه‌ای ان شکل یک لایه هشتوچی آلومیناسی که بین دو لایه‌ی چهار و پنج سیلیکاتی قرار گرفته است [38]. مونت موربلونیت یک خاکرس با سطح ویژه و ظرفیت نباید کانتری بالا، به همراه تورم یک پیکری، جذب و پایداری گرمایی زیاد است که در سیلیکات‌ها نیست. گرچه چیزی در مقایسه با دیگر مواد مونت موربلونیت به عنوان کمک‌کننده نیز می‌باشد. 

abareshi@pu.ac.ir

*تویستند مسئول، تلفن: 021-234444-2017-13، پست الکترونیکی: 2478434-621-7-13، نامبر: 911، 7477013-17، پست الکترونیکی:
سری‌های از کاربردهای خاکسازهای، به اندازه‌ی ذرات و ویژگی‌های سطحی آنها ویا است. ذرات خاکساز با اندازه‌ی کوچک به عنوان کاتالیزور مناسبی و کاربردهای زیادی دارد [9]. نیازهای رسی در تولید لوازم ارتباطی، داروسازی، تصفیه آب، سفارشی و پوشش مورد استفاده قرار می‌گیرد [10]. از طرف دیگر، سابقه‌ی خاک رس در صنعت به منظور داشتن درمان‌ی با اندازه‌ی کوچک و یکپارچگی انجام می‌شود [11]. آسیاکاری یک روش سازی این است که مراحلی همچون مربوط به صرفاً بودن اقتصادی است که با زیست‌محیطی ساختمانی، قابل استفاده برای مواد مختلفی، و کارایی بالا به عنوان یک روش نهی‌پذیر منطقه‌ای در فضاهای بی‌پر و نیز نهی‌پذیر پانه‌سازی استفاده می‌شود. آسیاکاری پانازی با مواد مختلف به شکلی در نظر گرفته شده که در ارائه‌های استادی در ویژگی‌های مختلف مکان‌سازی‌های بی‌پر و علاوه بر موارد می‌تواند در می‌شود. کاکش اندازه‌ی ذرات، اصول و قابلیت‌های مکان‌سازی‌های طبقه‌بندی شده، همکارانی و ارائه و انتقال شرایط خاکسازی، اثر آسیاکاری را به شدت به بی‌پر و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد و براساس آنها نشان داده که کاکش اندازه‌ی ذرات در ترتیب آسیاکاری به عنوان ابزار مختلفی می‌باشد و به‌طور تبلوری و تطبیقی در همه نمونه‌ها می‌شود.

بررسی ریخت‌شناسی و ساختار خاکساز به علت کاربردهای کسترودی آنها به‌صورت توجه به اثرات فراوانی قرار گرفته است که این کاکش‌ها به اندازه‌ی ذرات، نسبت سطح، و ویژگی‌های سطحی آنها یکی است [12]. در میان علمی و اندازه‌ی زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد، همکاران [13] آن‌ها می‌باشد، که به‌طور کامل راهی سازی می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد. کاکش‌های زیادی در زمینه‌های اثر آسیاکاری بر ساختار و ویژگی‌های شیمی‌ای، فیزیکی و آنالوگی شناخته شسان می‌باشد.
نوان م.د.ن. چنانکه در شکل دیده می شود در حالت بهینه
قلمه بر پرقدرت به گروه صفحه (1) خاک رس در موقعیت
13 حذف 60. یکدیالیفی کننده نموده دهندیده
قابلیت لیاپا برای حذف 13 اکسترموم است. با بررسی پرتو
ایکس این تیمارها، می توان نتیجه گرفت که حاکس در
اوله مونو مولیبولین و حاکس، کاربرد افزایش از حاکس مونو مولیبولین مورد استفاده
این بروز روا در دو بزرگنمایی 1000 و 5000 بر نان
می هد. چنانکه مشاهده می شود ریخت نشانی حاکس در
لایه و هیچ انگشتی در دشت مشاهده نمی شود و مانگین
اندازه ذرات 4 مکرومتر است.

طیف FTIR حاکس مونو مولیبولین و پی از پی از
آسیاکاری در گستردگی 300-600 cm⁻¹ در 2.5
داده شده است. بنابر شکل 3، طیف حاکس رس اولیه دارای
این قلی در 2.562 cm⁻¹ و مربوط به ارتباط های کشی در ورقه
واشح O-H در SiO₂ حاکس مونو مولیبولین. کشفی 1360 cm⁻¹
به ارتباط نشان دهنده حاکس مونو مولیبولین.
و در نهایت، 1440 cm⁻¹ به ترتیب به ارتباط های کشی
نامتقارن و ارتباط های خمیشی داخل صفحه
گروه CH₂ است. قلمهای 1085 و 1002 cm⁻¹ در ورقه
کشی خارج صفحه داشته و در 1247 cm⁻¹ و
چهارچوبی مونو مولیبولین و قلمهای 589 و 810 و
Al₂O₃ و Al₂O₃ SiO₂ می شود. (15) قلمهای 115.11.15
بر اساس 12 SiO-Si
 جایگزین ارائه شده در شکل 3. بنابراین به
در 18. و 19. طیف های ترکیبی این کشتی به
مبدأ 1.5 و 10 مونوهای قطعی از FTIR
مشاهده می شود. در مکان قلمهای اصلی طی
سیستم مقایسه این اسپیکس از
مشاهده نشده است.

روش بررسی پرتو ایکس از روش ی بسیار محدود در
مورد روش ۱۷. روش بررسی پرتو ایکس حاکس
این در سه حرارت بهطور اینکه گروه موردی
شده در دمای ۶۰ در گستردگی ۲۰ بین ۱۴ درجه

بحث و بررسی
روش بررسی پرتو ایکس از روش ی بسیار محدود در
مورد روش ۱۷. روش بررسی پرتو ایکس حاکس
این در سه حرارت بهطور اینکه گروه موردی
شده در دمای ۶۰ در گستردگی ۲۰ بین ۱۴ درجه

قصه‌های موجود در نواحی (66) و (76) و (8) (829 cm⁻¹ و (1) 20 سازه‌ای موجود است. این کاهش ساعت آسیاکاری، می‌تواند به ایجاد بی‌نظمی و بی‌ریختی شدن ساختار خاک‌رس در نتیجه آسیاکاری باشد.

شکل 1 طرح پرتو انیکس خاک‌رس در سه حالت به‌هنگام اشوا در ایالت گلیکول و گرماده شده در دمای 550°C

شکل 2 تصویر میکروسکوب الکترونی روبشی خاک رس با برگ‌نما (آلفا) 1000 و (ب) 5000 برابر.
شاخص‌های FTIR خاکرسنگ کلر: پیش از آسیاکاری و پس از آسیاکاری به مدت ۲۵ ساعت (پس از آسیاکاری به مدت ۲۰ ساعت و ۵ ساعت) مورد بررسی قرار گرفت. نتایج نشان داد که در مداوم حرارت در طول زمان‌های بیشتر مرجوع می‌شود که کوچک مقدار و ابزار در درجه حرارت با دمای ماده تغییر کرده و در نتیجه کاهش فاز پروپان در نمودار این پس از ۱۰ ساعت آسیاکاری، به نظیر افزایش یافته ساختار پروپان خاکرسنگ کلر از بین رفته و نمودار ساختار پریشی پیدا می‌شود. به‌طور کلی، نتایج حاصل از طیف‌سنجی FTIR نشان داد که بهترین شکل ۶ تصویر میکروسکوپ الکترونی عبری مونت مورلونیت را پس از ۱۰ و ۲۰ ساعت آسیاکاری نشان می‌دهد. این ترفند تغییر دمای کاهش در دما از طرح برای پروپان الکترونیک تغییر میکروسکوپ الکترونیک روبی مهیا می‌شود. در ماده حرارتی خاکرسنگ با ریخت شناسی پولکی و لایی لایی (شکل ۱) در اثر آسیا به دست آمده تغییر و نتیجه در گستره نارنجی تبدیل می‌شوند. چنان‌که در شکل مشاهده می‌شود درازه خاک رس اولیه با اندازه ذرات حدود ۱۴-۲ اطراف برای توانایی جزئی دیگر و FTIR پس از زمان‌های مختلف آسیاکاری در شکل ۵ نشان داده شده است. چنان‌که در این شکل دیده می‌شود، ذرات
میکروموت پس از ۶۰ ساعت آسیابکاری به ذرات با میانگین اندازه‌ای حدود ۱۰۰ نانومتر تبدیل شدند.

برداشت
در این پژوهش تغییر ساختار، اندامده ذرات و ریخت‌شناسی خاکرس مونترویل‌ویت در اثر آسیابکاری مورد بررسی قرار گرفت. برای رسیدن به این هدف خاکرس با یک آسیاب ماهواره‌ای برازید در زمان‌های مختلف، آسیا شده و سپس

بررسی ساختاری و ریخت‌شناسی نمونه‌ها به روش‌های پراش پتی ایکس، طیف سنجی فوریه فروسخ، میکروسکوپ‌های الکترونی رویشی و عبوری انجام گرفت. مهمترین نتایج حاصل از این بررسی عبارتند از: طیف‌های FTIR نمونه‌ها نشان دهنده جدا شدن ورق‌های خاکرس از یکدیگر طی آسیابکاری و بی- شکل شدن ساختار آن است.

![نمودار](الف)

![نمودار](ب)

شکل ۴ طرح پراش پتی ایکس مونترویل‌ویت پیش و پس از آسیابکاری (الف) از ۲۰ برای با ۴ تا ۴۰ و (ب) از ۲۰ برای با ۱۵/۵ تا ۱۰/۰.
شکل ۵ تصاویر میکروسکوپ الکترونی روشی مونت موریلونیت (الف) پیش از آسیاکاری (ب) پس از ۱۰ ساعت، (ب) ۴۰ ساعت و (ت) ۶۰ ساعت آسیاکاری.

شکل ۶ تصاویر میکروسکوپ الکترونی عبوری مونت موریلونیت، پس از (الف): ۱۰ ساعت و (ب): ۶۰ ساعت آسیاکاری.

طرح پرایش پروتئین‌ها کاهش شدید شد فله‌ها طی آسیاکاری را نشان داد. ابن کاهش شدت، حاکی از ایجاد بی‌نظیری، حداً پرونده‌های فلتر کرده که باعث کاهش فاز بی‌پریله در نمونه است. همچنین پس از ۱۰ ساعت آسیاکاری، ساختار بی‌پروین خَکَرَس کاملاً از بین رفت و نمونه‌های ناخنی و ناخنی بسته و پیدا می‌شد. علاوه بر این پهن‌تر شدن قله‌ها طی آسیاکاری، نشان دهنده کاهش اندازه ذرات است.
به طور کلی می‌توان گفت، آسیاب‌کاری بر انرژی بر ساختم خاک‌رس مورث است، بدین‌گونه که در مراحل مختلف آسیاب‌کاری سرب لایه‌ای کردن صفحات خاک رس، نشان‌یزد صفحات کاهش اندازه‌ی ذرات و در نتیجه افزایش مساحت سطح می‌شود. در مراحل بعدی با آدامه آسیاب‌کاری، جوی خورد ذرات کوچک به‌شکلی که کاهش مساحت سطح منجر به از بین رفتن ساختر خاک‌رس و ایجاد یک ساختار به شکل می‌شود. از لایه‌ای شدن صفحات خاک‌رس در آسیاب‌کاری می‌توان برای تهیه نانومیکروژیسم‌های میکرو‌خاک‌رس با ویژگی‌های به‌هم پایه‌افته و کاربردهای گسترده استفاده کرد.

مراجع

[۱] مصطفی ف، معاون ح، جعفرزاده حقیقی فرد ن، امیری م، بررسی سیستم‌های زیرترم جلب کامیابی از محلول‌های آب توسط ترکیبات‌ها، مجله آب و فاضلاب، شماره ۳ (۱۳۹۲) ص ۱۱۸–۱۲۸.


[۴] فسل علی ش، ابراهیمی س، ذاکریا ن، موحتی تابنیی، سعی، پاش انتقال نفت سنگی و آب عبوری از خاک سیک حاوی نانومیکروژیسم‌های نیترات، خط‌های حفظ شده منابع آب و خاک، شماره ۱ (۱۳۹۴) ص ۵۵–۶۵.

