شیمی کانی و دما-فشارسنجی زینولیثنیهای دمای بالا در حاشیه توده ریوداسیتی منطقه‌ای

آستانه (جنوب غرب اراک)

زهره طهماسبی* احمد احمدی خلله، عفره حیدریان‌مشن

گروه زیست‌شناسی دانشگاه علوم، دانشگاه اراک
(دریافت مقاله 13/11/1994، پذیرش نهایی: 13/3/85)

چکیده: در منطقه آستانه (جنوب غرب اراک) و در حاشیه توده‌های ریوداسیتی، زینولیثنیهایی با ترکیب رخساری پیروکسین هورنفلس دیده شدند. این سنگ‌ها درآمده مجموعه کانالیا کردنوم + اسپینل + آندالوزیت + فلبرپیت + پلازوکلاز + مسکویت + بروتیت + کرینت بوده و حاوی فاته‌های گرینالتونیک، لیپیدوپیروپیلاتیک، وریلیت، پیداکر، سیمپلیکتیک و بیتی کیلولیت‌های سختی است. در این مجموعه بافت واکنشی (سیمپلیکتیک)، کانالیا اسپینل - پلازوکلاز - بروتیت - جایگزین آندالوزیت شده است. شواهد سنگنگاری در این سنگ‌ها بیانگر این است که بافت واکنشی حاشیه‌های آندالوزیت در شرایط دولوئیکستی ایجاد شده است. شواهد زمین‌شناسی و کانالیا نیز حاکی از این است که پیروماتوپرگسم مسول بیدایی این مجموعه کانالیا شاخس بوده است. بررسی‌های صحرایی، شواهد سنگنگاری دما - فشارسنجی (گستره‌بندی 218⁰C و فشار
(23 کیلوپیو) در این سنگ‌ها نشان می‌دهد که حلید بی‌پدیداری آندالوزیت تا منطقه‌ای کردنوم-اسپینل در زینولیثنیهای مورد بررسی، نرخ گرم فاز سنگها و درهم‌چینکننده (overstepping) است. انتشار انسجامی ناشی از شیب آنفشاریهای روداسیتی سپب
فرآیند پیروماتوپرگسم شده است به‌طوری که درد مدا نهایی بتواند به این زینولیثنیهای کم و نرخ گرم شده سیلیزیت بوده است.

واژه‌های کلیدی: کردنوم، پیروماتوپرگسم، فاته‌های واکنشی، اراک

مقدمه

منطقه‌ای مورد بررسی در استان مرکزی و در 40 کیلومتری جنوب غرب شهر اراک و 6 کیلومتری جنوب آستانه بین طول‌های جغرافیایی ۳۱°۴۹′ تا ۳۲°۰۰′ شرقی و عرض‌های جغرافیایی ۵۲°۱۳′ تا ۵۲°۴۸′ شمالی با وسعت ۳۰ کیلومتر مربع قرار گرفته است (شکل ۱). این منطقه از نظر زمین‌ساختی بخشی از پهنی سنگ‌سر سری‌سپره بوده که جایگزین توده‌های گرینالتونیک در تکامل مستقیم آن نقش پژوهان داشته است [1] (شکل ۱) توزیع توده‌های گرینالتونیک، آستانه به سن پیکرپتیک میانی [2] در سنگ‌های رسوبی دگروگن شده، چاپیت‌هایی تحت شرایت‌های زمین‌ساختی زیرین سپر قرار گرفته‌اند.

*تویینده دانشگاه، تلفن: 0413/6633340، پست الکترونیکی: zahra_tak@yahoo.com
شکل 1 نمایی ساده شده زمین‌شناسی منطقه (برگرفته از نقشه‌های 10000 شازند، [5] و موقيتی آن در پنجه سیب‌جیران).

شکل 2 تصویر سحرایی از تودهٔ روبوداسیتی منطقه استانه (دید به سمت جنوب غرب).

سنگ‌شناسی و وبی‌گری‌های فیزیکی، بیش از ۴۰ نمونه برداشت شده‌اند و برای بررسی بافت‌ها و کانی‌ها از نمونه‌ها مقطع‌نارک و برای بی‌پردن به نوع کانی‌های موجود در سنگ‌ها و تعبیه‌دنما، فشار آنها مقطع‌نارک‌سیفی ته‌پی‌شده و آنالیز نتیجه‌ای با JXA-8200 Super Prob به عمل آمد (جدول ۱ تا ۸). فرمول کلی‌ها برای کلریت براساس ۱۴ اکسپزیون، کرندوم ۶ اکسپزیون، اسپینل ۲۲ اکسپزیون، بیوتیت ۱۱ اکسپزیون، مسکوئیت ۱۱ اکسپزیون، آندالوژیت ۵ اکسپزیون و پلاژیوکلاز برابر به ۸ اکسپزیون محاسبه شدند.

اساسي در بررسی سنگ‌های دگرگون و بررسی شرایط ترمودینامیکی حاکم بر رخدادهای دگرگون است. لذا هدف از این مطالعه بررسی رخدادهای دگرگونی، شکل‌گیری‌های سنگ‌شناسی و تعبیه‌دنما و فشار حاکم بر زینویت‌های موجود در حاشیه توده‌ی روبوداسیتی آستانه با استفاده از شیمی کانی‌های کرندوم، اسپینل، مسکوئیت، بیوتیت، کلریت، فلدسبار نتایج‌دار و پلاژیوکلاز است.

روش بررسی

ظریه بررسی سحرایی منطقه‌های آستانه، با توجه به تغییرات
جدول 1
نتایج بررسی نقطه‌کشی کردن در زینولیت‌های منطقه‌ای آستانه.

<table>
<thead>
<tr>
<th>Sampel</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS12-37</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>113</td>
<td>114</td>
<td>147</td>
<td>67</td>
<td>68</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>mineral</td>
<td>Ca</td>
<td>Ca</td>
<td>Ca</td>
<td>Ca</td>
<td>Ca</td>
<td>Ca</td>
<td>Crn</td>
<td>Crn</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>99.64</td>
<td>99.68</td>
<td>99.71</td>
<td>99.74</td>
<td>99.75</td>
<td>99.8</td>
<td>99.85</td>
<td>99.89</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>FeO</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Total</td>
<td>100.13</td>
<td>100.14</td>
<td>100.13</td>
<td>100.13</td>
<td>100.13</td>
<td>100.13</td>
<td>100.13</td>
<td>100.13</td>
</tr>
<tr>
<td>O #</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
<td>3.32</td>
</tr>
<tr>
<td>Ti</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
</tr>
</tbody>
</table>

جدول 2
نتایج آنالیز نقطه‌کشی آنالیز‌های منطقه‌ای آستانه.

<table>
<thead>
<tr>
<th>Sampel</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>31</td>
<td>4</td>
<td>80</td>
<td>82</td>
<td>84</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>mineral</td>
<td>And</td>
<td>And</td>
<td>And</td>
<td>And</td>
<td>And</td>
<td>And</td>
<td>And</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.32</td>
<td>34.32</td>
<td>34.32</td>
<td>34.32</td>
<td>34.32</td>
<td>34.32</td>
<td>34.32</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>42.99</td>
<td>43.01</td>
<td>43.01</td>
<td>43.01</td>
<td>43.01</td>
<td>43.01</td>
<td>43.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>FeO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>99.97</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>O #</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Al</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج آنالیز نفتکش اسپینل در زنبوری های منطقه‌های آستانه‌ان

<table>
<thead>
<tr>
<th>Sampel</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>30</td>
<td>32</td>
<td>48</td>
<td>49</td>
<td>39</td>
</tr>
<tr>
<td>SiO2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Al2O3</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>FeO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>MnO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>MgO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج آنالیز نفتکش فلسیار پانسیدار در زنبوری های منطقه‌های آستانه‌ان

<table>
<thead>
<tr>
<th>Sampel</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>67</td>
<td>99</td>
<td>103</td>
<td>122</td>
<td>126</td>
<td>167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵ نتایج بررسی نفتکش پلاژیوکلاز در زنبوری های منطقه‌های آستانه‌ان

<table>
<thead>
<tr>
<th>Sampel</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>105</td>
<td>118</td>
<td>121</td>
<td>152</td>
<td>163</td>
<td>173</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>SiO2</td>
<td>...</td>
</tr>
<tr>
<td>Al2O3</td>
<td>...</td>
</tr>
<tr>
<td>FeO</td>
<td>...</td>
</tr>
<tr>
<td>MnO</td>
<td>...</td>
</tr>
<tr>
<td>MgO</td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td>...</td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 15:06 +0430 on Saturday March 28th 2020
<table>
<thead>
<tr>
<th>Sample</th>
<th>AS17-11</th>
<th>AS17-12</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>SiO_2</td>
<td>39.6±2</td>
<td>40.7±2</td>
<td>41.1±2</td>
<td>41.2±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
<td>41.1±2</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>4.6±1</td>
</tr>
<tr>
<td>CaO</td>
<td>9.1±0.5</td>
</tr>
<tr>
<td>Na_2O</td>
<td>7.8±0.5</td>
</tr>
<tr>
<td>K_2O</td>
<td>2.9±1</td>
</tr>
<tr>
<td>Total</td>
<td>56.6±6</td>
</tr>
<tr>
<td>O #</td>
<td>8</td>
</tr>
<tr>
<td>Si</td>
<td>2.9±1</td>
</tr>
<tr>
<td>Al</td>
<td>1.7±1</td>
</tr>
<tr>
<td>Ca</td>
<td>0.9±0.5</td>
</tr>
<tr>
<td>Na</td>
<td>0.7±0.5</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>X_mg</td>
<td>0.3±1</td>
</tr>
<tr>
<td>X_Mg</td>
<td>0.3±1</td>
</tr>
</tbody>
</table>
جدول 7

نتایج بررسی نتقالی بیوتیت در سنگ‌های منطقه‌ای آسیس.

<table>
<thead>
<tr>
<th>Sample</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>15</td>
<td>22</td>
<td>23</td>
<td>37</td>
<td>38</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>mineral</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
</tr>
<tr>
<td>SiO₂</td>
<td>33.88</td>
<td>34.9</td>
<td>34.14</td>
<td>33.18</td>
<td>38.78</td>
<td>38.9</td>
<td>37.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.19</td>
<td>4.24</td>
<td>5.9</td>
<td>5.7</td>
<td>3.8</td>
<td>3.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.2</td>
<td>22.85</td>
<td>23.74</td>
<td>21.8</td>
<td>24.85</td>
<td>24.9</td>
<td>24.8</td>
</tr>
<tr>
<td>FeO</td>
<td>19.31</td>
<td>18.7</td>
<td>18.12</td>
<td>18.62</td>
<td>19.12</td>
<td>19.1</td>
<td>19.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>8.64</td>
<td>8.14</td>
<td>7.6</td>
<td>7.72</td>
<td>7.92</td>
<td>7.92</td>
<td>7.91</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.72</td>
<td>0.18</td>
<td>0.14</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>51.55</td>
<td>51.65</td>
<td>51.7</td>
<td>51.73</td>
<td>51.73</td>
<td>51.73</td>
<td>51.73</td>
</tr>
<tr>
<td>O #</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Si</td>
<td>3.5</td>
<td>3.4</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Ti</td>
<td>0.5</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>FeO</td>
<td>1.23</td>
<td>1.21</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Mn</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Mg</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>K</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>Total</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>X: Mg</td>
<td>0.23</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

ادامه جدول 7

<table>
<thead>
<tr>
<th>Sample</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS17-7</th>
<th>AS12-37</th>
<th>AS17-3</th>
<th>AS17-3</th>
<th>AS17-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>107</td>
<td>169</td>
<td>175</td>
<td>46</td>
<td>65</td>
<td>66</td>
<td>11</td>
</tr>
<tr>
<td>mineral</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.33</td>
<td>34.31</td>
<td>34.27</td>
<td>34.67</td>
<td>34.67</td>
<td>34.67</td>
<td>34.67</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.65</td>
<td>22.85</td>
<td>23.74</td>
<td>21.8</td>
<td>24.85</td>
<td>24.9</td>
<td>24.8</td>
</tr>
<tr>
<td>FeO</td>
<td>18.23</td>
<td>18.87</td>
<td>19.54</td>
<td>18.54</td>
<td>19.74</td>
<td>19.74</td>
<td>19.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>MgO</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Total</td>
<td>94.57</td>
<td>94.64</td>
<td>94.64</td>
<td>94.64</td>
<td>94.64</td>
<td>94.64</td>
<td>94.64</td>
</tr>
<tr>
<td>O #</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Si</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>Ti</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>FeO</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Mn</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Mg</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Na</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>K</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Total</td>
<td>2.76</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>X: M</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>
ویژگی‌های صحرایی و سنگ‌گزاری
مجموعه سنگ‌های آذرین استان‌های جنوبغرب ایران شامل توده‌های آهنی‌بندی با ترکیب تولایت و گرانودوریت (با ترکیب غلط گرناودوریت) همراه با سنگ‌های رویشی-رونق‌هایی است. [۶] در حاشیه ساحلی دریای ترکیب‌هایی با قطر ۱۰ تا ۲۵ سانتی‌متر وجود دارد (شماره۳). کالیفرنیا آن‌ها شامل سنگ‌های جدید است که در مناطق میکروسوپیگی به صورت درشت بین‌های شکل‌دار و نیمه شکل دار و جوهر درارد (شکل‌های ۴ آلف‌تای و ۴ آلف و پ) بین‌های کردنی به رنگ آبی و به شکل‌داری به تنهایی با برجستی شدید نسبت به اندازه‌های درارد و کالیفرنیا دیگر مشاهده می‌شود. وجود کالیفرنیا دمای بالا (اسبیل و پلازیوکالز) نشان داده که در میانه دهای این ساختار رخ داده است. همچنین حضور گرداگز آن می‌دهد که باید حاشیه‌ای اسبینل-پلازیوکالز و بوئینت به جای آن‌الاندالوسیتی در شرایط دوپیکشی رخ‌داده است.

در مقاطع میکروسوپیگی به صورت درشت بین‌های شکل‌دار و نیمه شکل دار و جوهر درارد (شکل‌های ۴ آلف‌تای و ۴ آلف و پ) بین‌های کردنی به رنگ آبی و به شکل‌داری به تنهایی با برجستی شدید نسبت به اندازه‌های درارد و کالیفرنیا دیگر مشاهده می‌شود. وجود کالیفرنیا دمای بالا (اسبیل و پلازیوکالز) نشان داده که در میانه دهای این ساختار رخ داده است. همچنین حضور گرداگز آن می‌دهد که باید حاشیه‌ای اسبینل-پلازیوکالز و بوئینت به جای آن‌الاندالوسیتی در شرایط دوپیکشی رخ‌داده است.

جدول ۸	نتایج آنالیز نقطه‌ای کلریت در زنیولیت‌های منطقه‌های آستانه انالیز									
Sample	AS17-7	AS12-37								
Analysis	9	44	62	89	90	1	2	4	10	43
Mineral	Chl									
SiO₂	27.14	29.0	24.6	23.8	23.1	18.0	18.9	19.4	23.3	23.9
Al₂O₃	24.91	24.11	23.73	23.73	23.68	23.49	23.44	23.46	24.81	
MnO	0.19	0.03	0.19	0.19	0.22	0.59	0.53	0.59	0.59	
MgO	9.55	11.71	11.26	11.23	11.28	11.51	11.79	12.19		
CaO	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	
Na₂O	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Total	58.9	58.94	58.96	58.96	58.97	58.58	58.58	58.58	58.58	
O #	28	28	28	28	28	28	28	28		
AlIV	3.12	3.13	3.14	3.15	3.15	3.15	3.15	3.15		
AlVI	4.84	4.85	4.85	4.85	4.85	4.85	4.85	4.85		
Fe(II)	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32		
Fe(III)	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21		
Mn	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23		
Mg	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25		
Ca	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35		
Na	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22		
شکل 3 تصاویر مایکروسکوپی از زینولیت‌های موجود در حاشیه توده ریوداسیتی منطقه آستانه.

شکل 4 الیف تصویر مایکروسکوپی از زینولیت‌های منطقه آستانه. به برچسبی‌کردن توجه شود، (نور XPL) BSE (بی‌سی‌ایی) تصویر Scattered Electron Image) ادراک درون کردن تصور حضور جدا در منطقه آستانه که کردنم به صورت پایین و اسیپیل به صورت میانوار با میکروپار پدیده کردنم باشد P) تصویر BSE (بی‌سی‌ایی) تصویر میکروپار 100 میکروپار از زینولیت‌های منطقه آستانه که کردنم به صورت پایین و اسیپیل بالا مشاهده می‌شود. (تحت XPL) تصویر BSE (بی‌سی‌ایی) تصویر میکروپار 100 میکروپار از زینولیت‌های منطقه آستانه که کردنم به صورت پایین و اسیپیل بالا مشاهده می‌شود.
این کانی به صورت بلورهای کشیده در زمینه‌های از کانی‌های پلاتیوسکاتر فلدسرپاتاسپیدار قرار گرفته است و در بخش موارد نیز به وسیله این اسلوب احاطه شده است و در زمینه‌های پلاتیوسکاتر، فلدسرپاتاسپیدار و بیوتین مشاهده می‌شود (شکل (vermicular).

این کانی به صورت بلورهای کشیده در زمینه‌های از کانی‌های پلاتیوسکاتر و فلدسرپاتاسپیدار قرار گرفته است و در بخش موارد نیز به وسیله این اسلوب احاطه شده است و در زمینه‌های پلاتیوسکاتر، فلدسرپاتاسپیدار و بیوتین مشاهده می‌شود (شکل 5 تصاویر از اطراف بیوتین و پلاتیوسکاتر (Symbiecte) بافت سیمپلکتیت در اطراف کانی‌های بیوتین، مسکویت و کریست، پ) رشد درشت بلوک کردن در حاشیه کانی‌های مسکویت، بیوتین و پلاتیوسکاتر به پرگاره اطراف کردن توجه شود، ت. انادالوزیت به صورت بلور کشیده (vermicular).

افتانه در کردنوم باشند (شکل‌های 4 الف، ب، پ، ت، ث و 5 الف و پ) پلاتیوسکاتر در همرنده‌های سیمپلکتیت با اسپینل به همراه بیوتین، فلدسرپاتاسپیدار و کریست دیده شد (شکل 4 ج و 5 الف و پ). این بافت‌ها معنی‌دار و قبلاً از دیده شده است که اسپینل به دستگاه‌هایی و همراه با اسپینل به دستگاه‌های اسپینل به دستگاه‌هایی و همراه با اسپینل به در حاشیه کانی‌های مسکویت، بیوتین و پلاتیوسکاتر. رشد کرده است.

اسپینل کانی متناول دیگر زئولایت‌های مورد بررسی است که به صورت شکل‌دار، شیشه‌شکل، با شکل‌دار، یا به شکل‌دار (در زمینه‌های از پلاتیوسکاتر و فلدسرپاتاسپیدار) با یک‌عینه‌های هم انداره به رنگ‌های سبز، زرد، و قهوه‌ای و گاهی در حاشیه آنادالوزیت و گاهی به صورت کوکلری متاینار در کانی‌های کردنوم مشاهده می‌شود. که ممکن است ناشی از تبلور گدایی به‌دلیل

![Back Scattered Electron Image) BSE (بیس Ef]m]نن ممکن است ناشی از تبلور گدایی به‌دلیل

1) 7Cor + Clin/Ames = 3And + 5Sp + Melt
2) 3Cor + Phil = 3Sp + San + Melt
3) 10Cor + 2Ann + Ames = 4And + 6Sp + 2East + Melt
مسوکوتی به صورت ادخل و همراه با کلیه‌ها فلدسیار پتانسیدار، آنالزولاز، پلرزولاز، برونت و بنه دیتر کلری در اطراف کرموم دیده می‌شود که دارای اتصال میکروسکوپی و واکنش‌های KFMASH کلرکمو می‌باشد. خرید رخند، فرانکه‌ها، درگوگی، پیشروند کتیز در کلرکم رشد کتیز است.
کلری به صورت ادخال در کرموم دیده می‌شود که به همراه مسوموتی و پلرزولاز مشاهده می‌شود. شیمی برونت، میکروسکوپی، هیپوگو دگرگونی و تجزیه‌های در کرموم مشاهده می‌شود و حتی همراه با بافت سیمی‌لقنیت به صورت مستقل بلند مشاهده می‌شود.

شیمی‌کاتی
براس بررسی‌های نقطه‌ای از کلیه‌های مختلف موجود در زینلوپتی‌های مورد بررسی، شیمی‌ای از کلیه‌های مورد بررسی قرار گرفت.
کرموم‌های ناحیه بازی تبیینی قابل توجه می‌باشد که کلیه‌های تبیینی مبتنی بر است. پایه بررسی‌های میکروسکوپی و ناحیه قابل توجهی شیمی‌ای مسوموتی وجود بافت سیمی‌لقنیت ناشی از است. (جدول ۴)

انالزولاز: براس بررسی‌های شیمی‌ای، میقدار آلیاژ SiO۲ به‌طور متوسط ۴۲±۱۱ درصد و ۳۷٪ است. (جدول ۲)

اسبیل: تجزیه‌های شیمی‌ای استحکام‌های تشکیل دهنده می‌باشد که مقدار Al۲O۳ به‌طور متوسط ۴۲±۱۱ درصد و Fe۲O۳ به‌طور متوسط ۳۷٪ است. (جدول ۲)

فلسفی‌سپاسیما، نشان‌های حاصل از تجزیه‌های شیمی‌ای فلدسیاری‌پات‌ها دارای مشاهده می‌باشد که این کاتی از نوع ارنژولاز است. (جدول ۶ و ۷)

پلرزولاز‌ها، نشان‌های حاصل از تجزیه‌های شیمی‌ای پلرزولاز‌ها نشان می‌دهد که ترکیب پلرزولاز‌ها از آلیاژ تبیینی و متغیر است. برونت و بنه دیتر کلری در اطراف ناحیه بازی تبیینی قابل توجهی شیمی‌ای می‌باشد. پلرزولاز‌ها در کرموم‌های مشاهده می‌شود. تغییرات ترکیبی این کاتی باستنی به جای Ca۲+Al۲+Si۲+ به جای آرد. این جانشینی شامل شکستن پیوندهای شدید
شکل 6 (الف) ترکیب فلذسی‌های منطقه‌ی آسیه روی نمودار Fe2+/Fe3++Mg تایب (15) [پ] رشته‌ای شیمیایی میکاها در سنگ‌های مورد بررسی (16) [ت] نمودار Si در کریت‌ها (11) [ث] موقعیت ترکیب شیمیایی موسمویت‌های مورد مطالعه (16) [ج] ترکیب شیمیایی کلریت‌های روی نمودار Al(IV)+2Ti+Cr-2 دربرابر 2 Al(IV) [12].

در اساس نتایج تجزیه شیمیایی کسر مولی منیزیم برای این کانی‌ها 0.38 ± 0.45 است. کانی‌های Al از Si 4/11 تا 5/18 می‌باشند. کانی‌های Na 0.01 تا 0.07 می‌باشند. در این کانی‌ها مولی Ti از 0.09 تا 0.25 می‌باشد. مولی کانی‌ها در این ناحیه (جدول 8) می‌باشد.

منطقه‌ی کانی شناسی و واکنش‌های دگرگونی

در انتها منطقه‌ها و واکنش‌های احتمالی موثر در پیدایش دانه‌های پورفیری‌پلاست‌های کریت‌نرم حاصل بوده است. واکنش‌های تشکیل مجموعه کانی‌های زئولیت‌های منطقه‌ای آسیه بر پدیده‌های شده است. مجموعه این سنگ‌ها شامل کانی‌های Crn + Spl + And + Kfs + Pl + Ms + Bt + Chl
دما-فشارسنجی با منحنی‌های تعادلی جنگله

یکی از مهم‌ترین روش‌های دما-فشارسنجی، استفاده از منحنی‌های تعادلی جنگله است. در این روش، دما و فشار به‌عنوان دو متغیر مستقل نگهداری می‌شوند و ابعاد ویژه‌ای از ترتیبی تابعی در آنها پدیدار می‌شود. سپس با استفاده از یک تابع شیمیایی کامی‌ها (نتایج حاصل از تجزیه و تحلیل الکترونی) منحنی‌های نشان دهنده واکنش‌ها در هر نقطه رسم می‌کردند و با استفاده از پوپوگاه منحنی‌ها، دما و فشار به دست آمده از این تابع برای محاسبه جنگله استفاده می‌شود.

جایگاه‌های (1-5) نشان دهنده دما تقریبی (SdT=46°C) سانتی‌گراد و فشار حدود 2.8 کیلوبار است. (SdP=1.1 Kbar، (شکل 8). محاسبات بر اساس مقطع دایری (2.4) و بستگی به حالت و حالت های دما و فشار به دست می‌آید. دما و فشار به دست آمده در این تابع، از جنسیت واکنش‌های پزشکی تابعی (Thermocalc v.2.4) پرداخته می‌شود.

1. \[2\text{And} + 4\text{East} + \text{Ames} = 8\text{Cor} + 4\text{Phl} + 4\text{H}_2\text{O}\]
2. \[7\text{Mu} + \text{Phl} = 3\text{Sp} + 4\text{San} + 4\text{H}_2\text{O}\]
3. \[4\text{East} + 2\text{Ames} = \text{Mu} + 7\text{Sp} + 3\text{Phl} + 8\text{H}_2\text{O}\]
4. \[3\text{East} + \text{Clin} = 2\text{Cor} + 25\text{Sp} + 3\text{Phl} + 4\text{H}_2\text{O}\]
\[P = 2.8\text{ kbar (sd=1.1)} , T = 718\text{ oC (sd = 46)}\]

![Diagram](https://example.com/diagram.png)
آنالوژی در گسترهٔ سیلیمانیت است. پایداری نمونه‌های دارای آنالوژی در گسترهٔ سیلیمانیت در هاله‌های دگرگونی محیطی گزارش شده است [22]. که در اینجا می‌تواند نامیده می‌شود [23]. ظاهراً هر قدر دویسی دمای محیط شده به سنگ کمتر باشد دانه‌ی برهم‌چینی پلاسی حیاتی و خواهد شد و به همین دلیل است که در زینولیت‌ها، بیشتر از تمام موارد است [24]. بنا بر این شکل 9 و 20 و فشار محاسبه شده، به نظر می‌رسد که علی‌الحداپیار آنانالوژی در گسترهٔ سیلیمانیت در زینولیت‌های زنده است به دلیل انتقال سریع گرما با آن تودیده می‌شود. دسیتنی به این سنجش اینکه سیب دگرگونی محیطی دریچه‌ای با آنها شده است و به علت انتقال سریع گرما و زمان کم، فرصت کافی برای تبدیل آنانالوژی به سیلیمانیت نمی‌بیند. لذا کاتی آنانالوژی به صورت پایدار در این زینولیت‌ها مشاهده می‌شود.

بحث و برداشت

مجموعهٔ سنجش‌های آذرین آستانه (جنوب غرب اراک) شامل تودید گرانیت‌سوسسی و گرانیت‌سوسسی و گرانیت‌سوسسی و گرانیت‌سوسسی (با ترکیب غالب گرانیت‌سوسسی) و تودید گرانیت‌سوسسی است. از نکات قابل توجه در سنگ‌های رودسیاستی وجود برون‌بوم‌ها به اینکه کاتی آنانالوژی به صورت پایدار در این زینولیت‌ها حاوی گرانیت‌سوسسی و گرانیت‌سوسسی است [18].
شیمی کانی، واکنش‌های ذوب و دما- فشارسنجی نشان می- دهد که علت پایداری آندالوزیت در منطقه‌ی سیلیمات در زینولیت‌های منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- تörtار در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آستانه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترتیب‌دان در غنی از ناحیه‌های منطقه‌ای منطقه‌ی آstanه، نرخ گرم شگفتی سبب است تنوع نسبی بین موارد و هماهنگی بین فرآیندهای واکنش- ترمولوژیکی پنه‌نه‌ستینج- سیرجان در نزدیکی شمال باختری و معرفی زیربنایی جدید در آن، قسمت‌های خاور زمین، سازمان زمین شناسی و اکتشافات مدیونی کشور، شهره ۳۲-۳۳ (۱۳۷۸) ص. ۴۳-۴۹.۲۸-

And + Bt = Sp + Bt + Pl + Melt
Bt + Chl = Crn + Spl + Kfs + Melt
And + Bt + Chl = Sp /Crn + Bt + Melt

مهمترین واکنش‌های کَشرش گُذرانده در زینولیت‌های درگو نشده منطقهٔ آستانه است. نتایج دما- فشارسنجی حاصل از ترموز داکو کِستَز دمایی ۳۷۵ درجه سانتی‌گراد در ۲۸ kbar را نشان می‌دهد که نمایشگر شکل‌گیری این سنگ‌ها در یک هالی کَشرش و تشکل رخ‌سازی پیرکم‌سوز هورنفلد است. بررسی‌های صحراوی، شواید سَنگ‌گزاری،

