Crystal-chemistry and whole rock geochemistry evidences for magma mixing, contamination and metasomatism in Akapol Granitoid (SW Kelardasht, Central Alborz)

D. Esmaeily, M. Khalaj, M. V. Valizadeh

School of Geology, University college of Science, University of Tehran, Tehran, Iran
Email: esmaili@khayam.ut.ac.ir

Abstract: The crystal-chemistry of the plagioclase, alkali feldspar, biotite, amphibole and whole rock geochemistry of Akapol granitic massif are investigated in this paper. The chemical composition of biotites and amphiboles plotted in the annite-siderophyllite, magnesiohornblende and actinolite fields, respectively. Comparison of the chemical composition of biotites and amphiboles with similar minerals from the California granitic batholith indicate that the monzogranitic unit of Akapol belongs to the strongly contaminated I-type granites. Accordingly, these rocks are highly contaminated and may have derived from upper mantle and/or lower crustal sources. They have experienced magma mixing or are affected by contamination with upper crustal rocks. These results are consistent with the curve like logarithmic diagrams of compatible/incompatible elements; the presence of the sieve, poikilitic and rapakivi textures; the partial absorption of the plagioclase phenoherists; the presence of mafic microgranular enclaves and needle apatite in the samples. Based on this study, two types of plagioclase in monzogranitic unit can be recognized in the monzogranitic unit: the first generation occur in the alkali feldspar phenocrysts and the second generation is in the form of covering crystals in rapakivi and sieve textures which probably formed during magma mixing.

Keywords: magma mixing, contamination, akapol, granitoid, rapakivi texture.
شواهد شیمی کاتی و زئوپتومی سنگ کل در آلوگی، دگرنهادی،
و اختلال ماگمایی توده گراتنیتوئیدی اکاپل (جنوب غرب
کلاردشت، البرز مرکزی)

داریوش اسماعیلی، مرضیه خلیج، محمد ویل ویل زاده

دانشگاه تهران، برتریس علوم، دانشکده زمین شناسی
esmaili@khayam.ut.ac.ir

(دلیه: مقاله ۱۷/۱۰۵/۱۸۱۷، دریافت نسخه نهایی ۱۳۸۶/۱/۱۸
چکیده: استفاده از مطالعات کاتی شناسی و زئوپتومی- کاتی توده گراتنی اکاپل با استفاده از
نتایج آنالیز ریزکاک الکترونی کاتی های پلاژیوکلز، آکالی فلدسپار، بیوبویت و آمفتوبول و نیز
زئوپتومی سنگ کل این توده به منظور اثبات وجود آلوگی دگرنهادی و آلوگی ماگمایی
موضوع مقاله است. ترکیب شیمیایی این بیوبویت ها و آمفتوبول ها نشان می دهد که واحد
مونогروناتی اکاپل در رده گراتنیتوئید نوع I به شدت آلوده (ISC) قرار می گیرد، و از یک
ماگمای مشابه به گونه‌ای فوقانی و با بوستن تحتانی، که تحت تأثیر اختلال ماگمایی و با آلیش
با سنگ‌های پوسه‌های قرار گرفته‌اند تشکیل شده است. این نتایج با فرآیند فانتزی گریبانی،
پوئی کلیتیک، راپاکویی، جذب بخشیده درشت بلورهای پلاژیوکلز و حضور آکالی‌های
میکروگروناتور مافیک و آبی‌های سوزی شکل در نمونه‌های مورد مطالعه که از شواهد
آلوگی و اختلال ماگمایی هستند، همخوانی دارد. بر اساس این بررسی‌ها، دو نسل پلاژیوکلز با
دو ترکیب شیمیایی مختلف در واحد مونوگروناتی اکاپل قابل تشخیص است. نسل اول به صورت
نفوذ در فنوسکسی‌های آکالی فلدسپار قرار گرفته، و نسل دوم بلورهای پلاژیوکلزند که
احتمالاً طی اختلال ماگمایی تشکیل شده‌اند به صورت بلورهای پوششی بافت‌های راپاکویی
حضور دارند.

واژه‌های کلیدی: اختلال ماگمایی، آلوگی، بافت راپاکویی، گراتنیتوئید، اکاپل.
اختلاف ماکمایی به عنوان فرآیند مهمی در تغییر ترکیب شیمیایی ماکما و تشکیل ماگماهاي
گرنیتیوندی و اندزیتی توسط محققین مختلف مورد بررسی قرار گرفته است. [1-7]
یکی از این محققین اصلی دو بخش: گونه و یا بخش بینایی، پوسته تشکیل و
شروع به بالا آمدن می کند. هنگامی که ماکما یک لیسه از اثر ذوب بخشی گونه و یا بخش
شناسی پوسته تشکیل و تست خود را به قبیل سه گروه جزء این فرضیه، دستخوش
ویا است. این اختلاف ماکمایی در حد اوایلی و به شکل اختلاف فیزیکی، یا به
امکن است باشد.
حداکثر شیمیایی و تشکیل یک ماکما یک همکاری هستند که شیمیایی
توپ ویا گرنیتیوندی اکتال در زون البرز مرکزی با سنی در حدود ۴۴ ± ۵ میلیون
بر روی زیرکن، بیوتین و آکانیا فلسپار. [۸] بعنی Ar40-Ar39 و U-Pb
صال (به روش‌های U-Pb و Ar40-Ar39) بدلیل دارای واردino معیار جغرافیایی، [۹] ۵۰ تا ۱۰۰ طول ضخیم
در بافت گونه ویا گرنیتیوندی اکتال در حدود ۱۵ درصد نسبی و موارد توان نفوذ کرده است. این توجه
۲۲ و ۲۱ درصد نسبی در سازماندهی شمشک و موارد نفوذ کرده است. این توجه
نفی نشود [۹] از جنبه‌های مختلف زمین‌شناسی مورد مطالعه قرار گرفته است.
در مطالعات انجام شده روی توده گرنیتیوندی اکتال به ویژه روی واحد میان‌گرایینی آن به
دراستی تا با استفاده از داده‌های شیمی‌کاتی بیوتین، آمپیلول، مایکروکاژر و آکانیا فلسپار
در مورد بافت گونه ویا گرنیتیوندی ماگما‌گرایانه از این آثار شود. بدین منظور برای بررسی پیوستگی
ستگانشی، علوفه بر روی بسیاری سازماندهی به مطالعات میکروسکوپی مقاطع نازک، از نتایج
انالیزات با شیمیایی ۱۱ نمونه از استان‌کل و ۴۷ نمونه از شیمی‌کاتی بیوتین، آمپیلول,
ALS Chemex و فلدسپار نیز استفاده شده است. برای سایرها شیمیایی سازگار در آزمایشگاه
کانادا رای اندازه‌گیری که عناصر اصلی و کمیاب به روش ICP-MS و کانالی کایزولا نیز در
آزمایشگاه فراوری مواد معدنی وارئت صنایع زراعت و معادن ایران با یک ریزکاکترونی SX50
بررسی قرار گرفته است. در آنالیزات با ریزکاکترونی برای تعیین مقدار اکسیده‌های عامل
اصلی و فرعی از استانداردهای آلبیت، پیرکلاز، کردنوم، ارتاکلاز، واسِلیت، راکودینت،
اسپیکولایت، سلنیت، بیوتین، و فلوئوریت استفاده شد. اختلاف پتانسیل ۱۰ KV و جریان
۱۰ بیوده است.

۱) زمین‌شناسی عمومی
منابع مطالعه جزئی از زون البرز مرکزی محسوب می‌شود که رنگ‌همه‌ای از تغییرات
درگیر شده سازن که از تغییرات های کامپرسیون، نهشته‌های از ریزکاکترونی موسم به سازند
لشکرک، اهمیت مورد تغییرات های سازن مشکل را می‌توان مشاهده کرد. رشته کوه البرز
بیشتر شامل نشسته‌ها و مواد آننشافات پراکنده‌ای که آن‌ها است که توده‌های نفوذی و
دايکه‌هاي پالتوییک تا پلیتوییک در آنها نفوذ کرده‌اند [15, 16 و 17]. در بخش غربی البرز مرکزی، عناصر آدنین نفوذی تشکیل‌دهنده بوسیله گراندویوریت و گراندویوریت لاهیجان و در غرب با دیوریت و گاروبی ماسوله مشخص می‌شود [15]. در زوراسیک پسین مرحله بعدی، عناصر آدنین نفوذی است که در دماوند و در شرق ماسوله، رخ‌نمای یافته است. در غرب برز نیز رخ‌نماینده نفوذی از نفوذ‌های نفوذی کرنسه بسیار پیش‌تر نفوذی‌شده بوده‌اند. پس از پنجمین کرنسه پسین در زمان واحدهای دانش، حجم عظمی‌دار الکلی، اندرس، پریانال و شوره و در پنجمین نیز توده گراندویوریت در ناحیه ماسوله تولید می‌شود. مشاهده‌های صحراخی نشان دهنده نفوذ گراندویوریتی آکائی در سازندهای میکرو و شرکتک و رخداد دگرگونی مجاری‌شده در آنهاست [9, 10, 14].

سنگ‌شناسی

توده گراندویوریتی آکائی از مرکز به حاشیه از سه واحد اصلی مونوزنوگراندویوریت-برفویرودی، واحد مونوزنوت-کوارتز مونوزنوت و واحد گراندویوریت خاکستری تشکیل شده است (شکل 1). توصیف کامل این واحد در [14] ارائه شده است. بخش مرکزی توده گراندویوریتی آکائی از مونوزنوگراندویوریت با ساختار درشت‌دار با توجه به رنگ سفید مالی به صورتی و اغلب بافت برفویرودی و گاهی بافت داتای معمولی تشکیل شده است. به علاوه بافت راکتیبیوی و آنی راکتیکوزی از مشخصات مهم بافت بین سنگ‌های سرامیک (32-31)، (کوارتز (23، 19)، دیوبیت (13-12)، آمفیبول (10، 11، 8)، آپاتیت، اسفن، زبرین، و کالی های نیتری، اجزای سازنده این سنگ‌ها هستند. همچنین وجود اکلاوهای ژئیتیشه و تیره رنگ با ترکیب دیوریت تا مونوزنوگراندویوریت از ویژگی‌های مهم این واحد سنگ‌پوش است. این اکلاوهای در صحرا به صورت مکعب داریه‌ای با پیشیو دیده می‌شوند و در مرز بین آنها و سنگ دربگیرنده، حاشیه و آتشی مشخصی به رنگ سفید شیری ملاحظه می‌شود. ترکیب پلاژیولاز این نمونه‌ها که هم به صورت فناوریس با ساختار زونیتیک نوسانی هم به صورت پلارهای نیمه در زمینه سنگ‌های پارنتنزا از نوع الگولازز تا آلپت است. با توجه به ویژگی‌های کانی‌شناسی و داتای اکلاوهای در فهروگ اکلاوهای میکروگراندولار فلهای می‌گردد [18].

واحد مونوزنوت-کوارتز‌مونوزنوت با بافت گراندولار درشت‌دار، متسونت و رشد‌های ترکیب کانی‌شناسی پلاژیولازز (۲۳-۲۳)، آلکالی فلدسبار (۲۰-۲۰)، کوارتز (۲۰-۲۰)، دیوبیت (۱۰-۱۰)
مشاهده شیمی کانی و رتوشیمی کل سیگن در آلودگی،...ی/و. امپیبول (17-5/6)، آپاتین، اسفن، زیرکن، و کانپی‌های کدر، فراوانترین سیگن‌های توده نفوذی اکالی را تشکیل می‌دهند.

سیگن‌های گراندیوریتی نیز با اکالی و رکرکی کانی‌شناسی پلاژیوکلاز (82-32٪)، الکالی فلسپار (14-12٪)، کوارتز (26-20٪)، بیونیت (10-2٪)، امپیبول (12-7٪)، و سایر کانپی‌های مشابه واحد قبیل در حاشیه‌های شمالی و غربی توده نفوذی مورد مطالعه رختشون دارند و هم‌بینی آنها با سیگن‌های نشستی دگرگون شده مجاور (مرمر و دولومیت‌های باز تبلور) به خوبی مشخص است. دایک‌های متعدد مونزودیوریتی تا دیوپریتی و به میزان کمتر آپینی، این واحد سیگن را قطع کرده‌اند.

† شکل ۱ نقبه ساده زمین‌شناسی ناحیه اکالی-جنوب غربی کلاترشت [۱۲۳].
شکل ۲(A) حاشیه واکنشی به رنگ سفید شیری بین انگلاک و موتوژرگائین می‌باند در نمونه دستی، طول انگلاک ۲.۵ سانتی‌متر می‌باشد. (B) بلور پلاژیوکلاز در انگلاک. (C) انگلاک موجود در موتوژرگائین. (D) بابت آنتی‌رایاکوئی. (E) حضور توان بات پلاژیوکلاز. (F) بابت آنتی‌رایاکوئی و آنتی‌رایاکوئی. (G) بابت پلاژیوکلاز دفت شود. (H) بابت پلاژیوکلاز. (I) بلور حال در اکالی فلدساپ در نمونه موتوژرگائین. (J) بابت پلاژیوکلاز. (K) بابت پلاژیوکلاز.
شواهد شیمی‌کاى و روش‌هایی کل‌شنگ در آلودگی...
3-1) بررسی بافت راپاکیوی

الکلالی فلدسبار در مقاطع میکروسکوپی بافت‌های راپاکیوی مورد مطالعه، از نوع تریتی تعود و دارای حاشیه گرد شده است (شکل ۴). در نمونه‌های حاوی بافت راپاکیوی مورد مطالعه، در نسل از بلورهای الکالی فلدسبار، پلاژیوکلاز و کوارتز مشاهده گردیده است. نسل اول بلورهای الکالی فلدسبار به صورت درشت‌دانه و با حاشیه گرد شده و بیشتر با بلور پلاژیوکلاز احاطه شده‌اند (بافت راپاکیوی). نسل دوم، بلورهای الکالی فلدسبار در زمینه مشاهده می‌شوند و رنگ‌دانه، [نحوه می‌رسد که فیروکریست های اولیه پلاژیوکلاز (چک آثار آنها به صورت هسته پلاژیوکلاز در بافت گربه‌ای بر جا مانده است) و نیز انکلوپوزس‌های پلاژیوکلاز موجود در الکالی فلدسبارها نسل اول بلورهای پلاژیوکلاز را تشکیل می‌دهند. نسل دوم پلاژیوکلاز نیز به صورت رشد پوششی پلاژیوکلاز روی الکالی فلدسبار (تشکیل بفت راپاکیوی) و فیروکریست پلاژیوکلاز (تشکیل بافت غربالی) و نیز به صورت بلورهای ریز در زمینه حضور دارند.

برای مطالعه شیمی کانیها در یک نمونه بافت راپاکیوی، به ترتیب دو نقطه در پلاژیوکلاز بوشی (نقطه ۱ حاشیه درونی پلاژیوکلاز دیققاً در محور پلو الکالی فلدسبار و نقطه ۲ در حاشیه بیرونی پلاژیوکلاز بوشی)، و دو نقطه در پلور الکالی فلدسبار (نقطه ۳ در مرکز و نقطه ۴ در حاشیه الکالی فلدسبار دیققاً در محور پلو پلاژیوکلاز بوشی) مورد بررسی دیده شد که انواع الکالی فلدسبار، شامل الکالی فلدسبار متنوع، الکالی فلدسبار پلاژیوکلازی، الکالی فلدسبار پلاژیوکلازی، الکالی فلدسبار پلاژیوکلازی، الکالی فلدسبار پلاژیوکلازی و الکالی فلدسبار پلاژیوکلازی، در جدول دیده شد. جدول ۱ نتایج حاصل از تجزیه الکالی فلدسبارهای واحد مونوژنیتی توده نفوذی اکسپل‌باین توسط ریزکاکه‌ای اکسپل‌باین می‌باشد (جدول ۱).

<table>
<thead>
<tr>
<th>الکالی فلدسبار</th>
<th>پلاژیوکلاز</th>
<th>بلافاصله</th>
<th>الکالی فلدسبار</th>
<th>پلاژیوکلاز</th>
<th>بلافاصله</th>
</tr>
</thead>
<tbody>
<tr>
<td>الکالی فلدسبار</td>
<td>۹۰</td>
<td>۲۰</td>
<td>الکالی فلدسبار</td>
<td>۷۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>الکالی فلدسبار</td>
<td>۸۰</td>
<td>۲۰</td>
<td>الکالی فلدسبار</td>
<td>۶۰</td>
<td>۴۰</td>
</tr>
<tr>
<td>الکالی فلدسبار</td>
<td>۷۰</td>
<td>۳۰</td>
<td>الکالی فلدسبار</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>

جدول ۱ نتایج حاصل از تجزیه الکالی فلدسبارهای واحد مونوژنیتی توده نفوذی اکسپل‌باین توسط ریزکاکه‌ای اکسپل‌باین می‌باشد (جدول ۱).
شکل 4. (A) بافت یوزی کلیتیک در نمونه مونوزوگانیت; (B) بافت رایاکیوی در نمونه مونوزوگانیت
صورتی آکائی. مرز بین الکالی فلسپار با پلاژوکلاز با فلس زرد و حاشیه خارجی پلاژوکلاز با فلس قرمز مشخص شده است. گل فلسپار توسط پلاژوکلاز احاطه شده است. (C) بافت غربالی در نمونه های مونوزوگانیت صورتی; (D) حاشیه و اکتشی بین الکالی میکروگانولت. ناحیه با موئیت در سایر ناحیه مشابه پلاژوکلاز. امپیسیون، بیوبیت و اسپین با فراوانی کمتر الکالی فلسپار و کوارتز می‌باشد; (E) حاشیه الکاتی در جوی مشترک دو الکالی فلسپار، در این تصویر نمی‌زرد در مرز بین الکالی فلسپار با کوارتز حاشیه الکاتی مشاهده نمی‌شود (نمونه مورد مطالعه مربوط به مونوزوگانیت گل بران است). (F) بافت آنتی رایاکیوی در نمونه مونوزوگانیت. مرزهای با فلس زرد و فلس قرمز مشخص شده است. (تجارب: Hbl= هابلیت، Bi= بیوبیت، Sph= سپھ، Kf= کوارتز، Pl= پلاژوکلاز، Af= الکالی فلسپار، Qz= الکالی فلسپار، ۲۵ یرای). نتایج تجزیه ریزکو الکترون الکالی فلسپار نشان دهنده ترکیب برای نقطه ۳ و نقطه ۵ در حاشیه Ab20.46 Oraz.78.89 An60.65 درونی پلاژوکلاز پوششی دفن‌های در مجاورت بیLEN الکالی فلسپار با ترکیب Ab68.14 Or3.43 An1.04 در Ab68.83 Or3.43 An28.82 و نقطه ۲ در حاشیه پلاژوکلاز پوششی با ترکیب Ab68.85 Or3.43 An26.67 در Ab68.83 Or4.5 An28.82 گستره اندوئید و الیکوکلاز قرار می‌گیرند.
پلازیبوکلرazo پوشتی در بافت رایانکی درای ترکیبی مشابه با ترکیب حاوی‌ش بلور پلازیبوکلار (Ab67.55, Or5.29, An25.72) و انکلورزین‌های پلازیبوکلار موجود در آلکالی فلدسپار (Ab68.9, Or5.38, An25.72) است.

[19] بر این باورند که ترکیب مشابه حاوی‌ش بلورهای پلازیبوکلار گروهی بایان تلاطم ماکماهی و در نتیجه سدیک تر شدن ترکیب ماکما در پایان رخداد اختلال ماکماهی است.

3-7) بررسی بافت پوستی کیلینیک

از موارد جالب دیگر وجود بافت پوستی کیلینیک در سنگهای مورد مطالعه است (شکل 4). در این بافت بلورهای درشت آلکالی فلدسپار و پلازیبوکلار، بلورهای زددر شکل یافته‌ای مشابه نورتیلند، بیوتبیت، زیرکن و پلازیبوکلار را در برگرفته‌اند. از آنجای اینکلورزین‌های پلازیبوکلارها درون آلکالی فلدسپار، یک نمونه انتخاب و در آن دو نقطه (در مرکز و در حاشیه بلور) مورد

شکل 5 (A) ترکیب شیمیایی فلدسپارها در (A) بافت رایانکی؛ (B) انکلورزین‌های پلازیبوکلار موجود در آلکالی فلدسپار؛ (C) بافت آنتی‌رایانکی در واحد موزه‌گرانیتی توده نفوذی اکالی (علاوه‌ن (نقطه 1، نقطه 2 در پلازیبوکلار و (نقطه 3 نقطه 4 در آلکالی فلدسپار).
بررسی ریزکاکالکترین قرار گرفته. نتایج حاصل نشان دهنده ترکیب Ab۵۳.۵۹ Or۳.۹۱ An۴۲.۵۰ برای حاضرین پلاژیکالکتمورد بررسی است که از نظر ترکیبی در نمودار مشاهده شده از گستره اندرزین قرار می‌گیرند. بر اساس این نتایج، هسته پلاژیکالکت انکلوئزونی از حاضرین پلاکرات نسبت است.

(Sive) ۳-۱-۴ بررسی بافت غربالی

بافت پلاژیکالکت با بافت غربالی مورد تجزیه ریزکاکالکترین قرار گرفته (شکل ۶). مسیر تجزیه در چهار نقطه بلور روي این شکل و ترکیب آنها در نمودار مثلثی Ab-Or-An نشان داده شده است. حاصل ملاحظه می‌شود نقطه ۱ (نقطه شروع در مرکز بلور) دارای ترکیب Ab۶۸.۴۹ Or۱.۳۶ An۶۰.۳۶ در گستره اندرزین، نقطه ۲ (پس از زون خورده شده) با ترکیب Ab۶۷.۱۳ Or۵.۳۹ An۲۷.۷۱ و نقطه ۳ (پس از زون خورده شده) با ترکیب Ab۶۷.۵۵ Or۵.۲۹ An۲۷.۱۶ در گستره الیگولکلاز قرار می‌گیرد.

(در حاضرین پلاکرات) با ترکیب Ab۷۴.۹۵ Or۶.۴۱ An۱۸.۶۴ (شکل ۶). (A) بافت غربالی در پلاژیکالکت مورد تجزیه کردن کالکترین مسیر تجزیه را به سه نقطه قرار داده شده است. نور Lپ (B) تغییرات ترکیبی بافت غربالی در پلاژیکالکت و (C) نمودار مشاهده نمی‌شود اما نقطه ۳ از نقطه ۲ از افزایش Ab هرماه با کاهش Or مشاهده می‌گردد (علائم: Δ نقطه ۱، □ نقطه ۲، D نقطه ۳، ○ نقطه ۴).
نتایج حاصل از تجربه ریزکو الکترونی 1۵ نمونه از بیوتیت‌های واحد مونوگرانتی، توده نفوذی Fe/(Fe+Mg) و Al با توجه به میکاها، سیدروفیلیت (Siderophylite) و (Phlogopite) تا جاروکش آنیت (Annie) در طرح با کربن‌هایی (ASPE) را به صورت (Eastonite) با توجه به مقدار
از این نمونه به ویژه برای تشخیص برنامه‌های (با توجه به مقدار) سه سیف فیزیولوگی بیوتیت
می‌توان بهره‌گرفت.

میکاهاي نوع سنگ‌های مورد مطالعه در نمونه TiO2 و در شکل (2) آراشته شده‌اند. برای
این نمونه، پیمان‌های تجزیه با داشتن 19.7, 39.2 و 19.7 در گروه Fe/(Fe+Mg) و Fe3+/Fe2+
و Fe2+/Fe3+ با استفاده از شیمی آلی و آزمایش می‌شوند.

جدول ۲: نتایج الکترون میکروسکوپی نمونه‌های میکاهاي واحد مونوگرانتی توده نفوذی اکاپل

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
<th>A15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>78.68</td>
<td>78.60</td>
<td>78.61</td>
<td>78.62</td>
<td>78.66</td>
<td>78.67</td>
<td>78.68</td>
<td>78.69</td>
<td>78.60</td>
<td>78.61</td>
<td>78.62</td>
<td>78.63</td>
<td>78.64</td>
<td>78.65</td>
</tr>
<tr>
<td>TiO2</td>
<td>3.77</td>
<td>3.78</td>
<td>3.79</td>
<td>3.80</td>
<td>3.81</td>
<td>3.82</td>
<td>3.83</td>
<td>3.84</td>
<td>3.85</td>
<td>3.86</td>
<td>3.87</td>
<td>3.88</td>
<td>3.89</td>
<td>3.90</td>
</tr>
<tr>
<td>FeO</td>
<td>0.51</td>
<td>0.52</td>
<td>0.53</td>
<td>0.54</td>
<td>0.55</td>
<td>0.56</td>
<td>0.57</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
<td>0.64</td>
</tr>
<tr>
<td>MnO</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
<td>0.50</td>
<td>0.51</td>
<td>0.52</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>MgO</td>
<td>3.88</td>
<td>3.89</td>
<td>3.90</td>
<td>3.91</td>
<td>3.92</td>
<td>3.93</td>
<td>3.94</td>
<td>3.95</td>
<td>3.96</td>
<td>3.97</td>
<td>3.98</td>
<td>3.99</td>
<td>4.00</td>
<td>4.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>K2O</td>
<td>1.01</td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
<td>1.05</td>
<td>1.06</td>
<td>1.07</td>
<td>1.08</td>
<td>1.09</td>
<td>1.10</td>
<td>1.11</td>
<td>1.12</td>
<td>1.13</td>
<td>1.14</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
</tr>
</tbody>
</table>
۱- گرانیت‌های نوع ۱ با آلودگی اندک (I–WC)
۲- گرانیت‌های نوع ۱ با آلودگی متوسط (I–MC)
۳- گرانیت‌های نوع ۱ با آلودگی شدید (I–SC)
۴- گرانیت‌های نوع ۱ احیایی به شدت آلوده (I–CR)

(Strongly Contaminated and reduced I type granite)

در اینجا واژه آلودگی دارای مفهوم وسیع است و کلیه واکنش‌های تحت تأثیر فرآیند دهندگی ماده‌های نوع ۱ مشتق از گونه‌های فلوزی، بوسته عضیق و یا لیتوسفر فرورونده به علت ذوب بخشی، اختلاط ماده‌های با هم در سیال می‌گیرد. نتایج حاصل از تجزیه بهبودهای مورد مطالعه در این نمونه و در گسترده‌ای گرانیت‌های نوع ۱ به شدت آلوده قرار می‌گیرند (شکل ۸).

شکل ۷: ترکیب شیمیایی میکاهای واحد موزوگراتیتی توده نفوذی آکاپل در رده‌بندی [۲۰]
شیمی آمیپیول

تعداد 10 نمونه از آمیپیول‌های واحد مونوگرانیتی مورد بررسی ریزگاک کلین ویک‌ریز، که از نمونه‌های دیده شده در گروه آمیپیول‌های

(جدول ۲)، به منظور نموداری آمیپیول‌ها از رده‌نام‌دهی [۲] استفاده شد. نوار این رده‌نام‌دهی

شکل (۲)، به منظور نموداری آمیپیول‌ها از رده‌نام‌دهی [۲] استفاده شد. نوار این رده‌نام‌دهی

Log \(X_{Na} / X_{Fe} \) (جمله)

کلیه آمیپیول‌های تجزیه شده با داشتن \(X_{Na} / X_{Fe} > 11 \) در غرب گروه آمیپیول‌های

و در زیر گروه‌هایی پس‌اندیش و اکتبایت قرار می‌گیرند. مقادیر Log \(X_{Na} / X_{Fe} \) (جمله)

امیپیول‌های نیز مانند بیشترها در طیف گسترده‌ای (از ۱/۶۰ تا ۳/۴۰) تغییر می‌کنند.

شواهد شیمی سگ

[۲۲] آب‌میوه با استفاده از نمودارهای تحلیل کمیاس تاساگ‌راز (مانند

(۲) می‌توان با استفاده از نمودارهای تحلیل کمیاس تاساگ‌راز (مانند

مقابل عناصر ساژنی (مانند V, Ni, Al...) نشان دهد که تا فراوان‌ترین ذوب‌یابی، تخلیه تبخشی و

اختلاط مگامیتی را از یکدیگر تشخیص دهند. در این بررسی نیز برای تشخیص این فرآیندها در

استفاده شده است (شکل ۱۰) جنگنه Log Ni - Log Th

منطقه‌های مطلوب از نمودار

Log Ni - Log Th

ملاحظه می‌شود روند تغییرات نمونه‌های مورد مطالعه با روند اختلاط مگامیتی سازگاری دارد.

جدول ۲ نتایج الکترون میکروسکوپ امپیول‌های واحد مونوگرانیتی توده نفوذی پلی

<table>
<thead>
<tr>
<th>(X_{Na} / X_{Fe})</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.16</td>
<td>34.05</td>
<td>34.99</td>
<td>35.4</td>
<td>35.14</td>
<td>35.74</td>
<td>35.83</td>
<td>35.86</td>
<td>35.97</td>
<td>35.78</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.88</td>
<td>5.88</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
<td>6.27</td>
</tr>
<tr>
<td>MnO</td>
<td>0.36</td>
</tr>
<tr>
<td>MgO</td>
<td>7.77</td>
</tr>
<tr>
<td>Na₂O</td>
<td>14.01</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.81</td>
</tr>
<tr>
<td>FeO</td>
<td>0.87</td>
</tr>
<tr>
<td>Total</td>
<td>94.9</td>
</tr>
<tr>
<td>Si</td>
<td>7.94</td>
</tr>
<tr>
<td>Ti</td>
<td>0.13</td>
</tr>
<tr>
<td>Al</td>
<td>0.53</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>1.55</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.45</td>
</tr>
<tr>
<td>Mn</td>
<td>0.05</td>
</tr>
<tr>
<td>Mg</td>
<td>0.24</td>
</tr>
<tr>
<td>Ca</td>
<td>1.78</td>
</tr>
<tr>
<td>Na</td>
<td>0.45</td>
</tr>
<tr>
<td>K</td>
<td>0.15</td>
</tr>
<tr>
<td>F</td>
<td>0.32</td>
</tr>
<tr>
<td>OH</td>
<td>1.37</td>
</tr>
</tbody>
</table>
شکل ۹ طبقه‌بندی آمپبیل‌های واحد مونوزگانیتی آکایل در رجب‌ندهی [۲۲].

شکل ۱۰ نمودار اکارینی عناصر سازگار در مقابل عناصر ناسازگار برای نمونه‌های مورد مطالعه، همان‌طور که مشاهده می‌شود روند تغییرات نمونه‌های مورد مطالعه مشابه محتوی شماره ۳ می‌باشد که گویای این است که اختلاف ماگما‌پی نقص موتوری در تشکیل توده نشودی اکائیل داشته است؛ نمودار کوشری [۲۳] محتوی شماره ۱ نشان دهنده ذوب بخشی، محتوی شماره ۲ نشان دهنده تبیور بخشی و محتوی شماره ۳ نشان دهنده اختلاف ماگمارپی می‌باشد. برای توضیحات بیشتر به متن مراجعه شود (عکلام گراندوریت، مونوزگانیت، گیتژنوریت، مونوزنوریت، مونوزدوریت، اکلاوهای میکروگرانتور مافیک).
منطقه‌بندی نوسانی (شکل 3)، بافت راپیکی‌وی (شکل 4)، بافت راپیکی‌وی ترکیبی (شکل 5) و بافت طبیعی راپیکی‌وی (شکل 6) می‌تواند در اثر تغییر تركیب ماکما در مراحل مختلف رشد بلور حاصل شود؛ به عبارت دیگر در نتیجه رشد بلور بلژیوکلاژ می‌تواند در حالت تغییر شیمیایی، منطقه‌بندی نوسانی شکل می‌گیرد. زیرا در این شرایط، بلور به بخش‌هایی که دارای ترکیب گلیکترینه هستند متمایل شده و در نتیجه بلژیوکلاژ کلریکتر روز بلور قبلی رشد می‌کند. از طرفی آنکه ماکما به عنوان اختلال ماکمایی در حالت تغییر شیمیایی، ابتدا وقتی بلور پیش شده به بخش‌های سیدپکتر ماکما می‌رسد بلژیوکلاژ سیکتری روز بلور رشد می‌یابد. این جرخه به‌سازمان‌برداری تکرر می‌شود و در نتیجه بلور بلژیوکلاژ زمانی شکل می‌گیرد. سرانجام زمانی که ماکما به شیمیایی و دنایی‌سازی می‌رسد، در این هنگام روند تولید بلور به گونه‌ای پیش می‌رود که ترکیب ماکما سیدپکتر می‌شود و بلژیوکلاژ سیدپکتر روز بلور قبلی روشش می‌دهد و در نتیجه هسته بلور بلژیوکلاژ پایین‌ترین نوسانی با حاشیه‌ای از منطقه‌بندی معمولی تشکیل می‌شود.

بافت راپیکی‌وی می‌تواند در اثر اختلال ماکمایی و یا دگرنهادی تشکیل شود. یکی از مشخصات مهم بافت راپیکی‌وی در نوسان‌های اثر مطالعه‌گر اکالانی فلزسیرکانی است. در اثر منحنی‌گیری‌های مورد مطالعه، بافت راپیکی‌وی می‌تواند در اثر دگرنهادی تشکیل شده باشد. زیرا گردنده اکالانی فلزسیرار به ویژه در انرژی‌ها و در انرژی‌ها ارتباطی ندارند و در نتیجه انحلال ناشی از افزایش دما در اثر اختلال ماکما بایستی با ماکمای اسیدی حاصل شده است [19 و 25].

نتایج حاصل از بررسی الکترونی دو نمونه بلژیوکلاژ حاوی منطقه‌بندی و بافت غربالی را نشان می‌دهد که در هر دو بلور بلژیوکلاژ (با منطقه‌بندی غربالی) حاشیه بلور نسبت به هسته آن ترکیب سیدپکتری بیشتر. در شکل‌های مختلف اپلیت، آنورنیت و اروت در یک نمونه با بافت غربالی از نقطه 1 (نقطه افزایش) به نقطه 4 (حاشیه بلور) بررسی شد. جناب‌نام مشاهده می‌شود از نقطه 3 تا نقطه 4 از دیدن افراشتنا نیاز که ماکما یا یک منطقه‌بندی معمولی را به نمایش می‌گذارد که سم توان نشان دهنده تعادل شیمیایی و
دانشکده ماکما طی ویداد اختلاف ماگما به [19 و 24] به اعتقاد این پژوهشگران، طی اختلافات ماگما، در اثر تغییر فاصله بین ماگما اسفید و بایزک پلاژیوپلاستی و شکل گرماپی شده و کرانه‌ها و بخش‌های دیگر از دما و رطوبت می‌شود. این بخش‌های دیگر به عنوان تولید در آبمایی بیشتری بخش‌های خورده نشده در اثر واکنش با ماکما کلسیک‌تر می‌شوند و به این ترتیب بخش‌های خورده شده کرانه‌ها به رشد پلاژیوپلاستی و کلسیک‌تر پلاژیوپلاستی سدیکترا می‌توانند و بافت غربالی و منطقه‌بنده تنش‌کننده می‌شوند [26].

آبیگی‌سوزی به همراه انواژ دانان آن، به فعالیت در نمونه‌های مورد مطالعه مشاهده می‌شود. به‌طوری‌که هوایی که در شواهد اختلاف ماگما در مرز گرفته شود. به اعتقاد بسیاری از محققین (به عنوان مثال: [18 و 27]) بلورهای سوزنی شکل آبی‌گی از تبلور و سرده شدن سریع و موضعی ماگما‌های ماکما داغ آمیخته با ماکماها فلزیک نسبتاً سردرت در طول اختلافات ناشی می‌شوند.

مهم‌ترین شواهد درگنها در منطقه مورد مطالعه بافت آنتی راپاکویی (شکل 4) که در منطقه مورد مطالعه بافت آنتی راپاکویی (شکل 4) است. بافت آنتی راپاکویی ممکن است در
اتر دگرنه‌دادی و یا اختلاف ماکمل‌ای تشکیل شود. در واحد موزون‌گرانتی توده نفوذی اکاتل، بافت انی را ایکوی در نتیجه اختلاف ماکمل‌ای حامل نشده است، زیرا در شرایطی که بافت را ایکوی در نتیجه اختلاف ماکمل‌ای در حال تشکیل است، بافت انی را ایکوی تشکیل نخواهد یافت. نمونه‌های مورد مطالعه احتمالاً در شد [۱۹] همچنین روند ممیزی Na۲O-SiO۲، Rb، K۲O، CaO، Mg۲O، TiO۲، MnO، Fe۲O۳ و غیره و شیمی اکاتل در این روند نیز مؤثر این مدکسانست که به عنوان نماد در کی نمونه بافت آنتی راکوی (شکل C) به ترتیب دو نقطه در پلاژیوکلزا (نقطه ۱) در مرکز نقطه ۲ در حاشیه پلاژیوکلزا دقيقاً در کنار اکاتل فلدنسری بوشتنی، و دو نقطه در بلو آکالی فلدنسری (نقطه ۳ حاشیه درونی آکالی فلدنسری دقيقاً در کنار بلو پلاژیوکلزا و نقطه ۴) در حاشیه بیرونی آکالی فلدنسری بوشتنی) مورد بررسی و ریگار الکترونی گرفته که نتایج این درجهول ۱ و شکل C درstop می‌تواند باهکامبیت به Ab۸۱، Or۸۳، An۱۲، Or۸۳، An۱۲ (خط مایرک گستره الیکترولزا و آبیت) Ab۸۷، Or۹۳، An۴۰، Or۹۳، An۴۰ برای نقطه ۳، کربن Ab۷۲، Or۸۹، An۱۲ برای نقطه ۴ (اردکوت) برای نقطه ۴ است.

چنان‌که ملاحظه می‌شود هسته بلور پلاژیوکلزا (نقطه ۱) نسبت به حاشیه بلور پلاژیوکلزا (نقطه ۲) کربن سدیکتر دارد که برخالا روند معمول م Continent به شده در بلورهای پلاژیوکلزا واقع موزون‌گرانتی مورد مطالعه است. زیرا چنان‌که پیش از این کپنه شده حاشیه‌ای بلورهای پلاژیوکلزا (در بافت غربالی) اکاتل موزون‌گرانتی موجود در اکالی فلدنسری و پلاژیوکلزا با منطق‌هایی نسبت به هسته بلور ترکیب سدیکتر هسته نسبت به حاشیه بلور پلاژیوکلزا و بافت آنتی راکوی احتمالاً طی دگرنه‌دادی به ترکیب سدیکتر شده است (شکل C). ولی نکته جالب این است که نقطه ۴ نسبت به نقطه ۳ می‌تواند اثر برخالا در نقطه ۴ برای بافت ۱۲۰۰۰ بازده انرژی نقطه ۴ نسبت به نقطه ۳ دارای ساختار الیکترولزا کم‌تری ابست، زیرا طی واکنش ۲ چنان‌که در ادامه خواید دید (الیکترولزا) نقطه ۴ دارد ساختار اثر ترکیب ابست، این اثر می‌تواند در ارتباط با بافت دگرنه‌دادی پیشین دارد و می‌تواند به ترتیب که طی این
فرآیند، پلاژیوکلاز کلسیک نخست به وسیله آلیت و سپس به وسیله فلدسبار پتاسیک جانشین شده است. بنابراین می‌توان به این توجه رسید که طی این فرآیند، هسته بلور پلاژیوکلاز از مرکز به جابه‌جایی بلور به تدریج بر اثر از دست دادن کلسیم به پلاژیوکلاز سدیک تبدیل می‌شود (سدیک تر بودن حاشیه نسبت به بلور پلاژیوکلاز در بافت آنتی راباکیوی) و سپس حاشیه بلور پلاژیوکلاز که ترکیب سدیک نسبت به هسته بلور پلاژیوکلاز یافته با آلکالی فلدسبار جایگزین می‌شود.

وجود حاشیه آلیتی در مرز مشترک دو بلور آلکالی فلدسبار (شکل ۳) از مواد جالب توجه دیگر در بررسی میکروسکوپی مقاطع نازک است. با توجه به انگک حاشیه آلیتی با درجه و نوع پتاسیک شدن آلکالی فلدسبار (برنیت رشته‌ای، تک‌دره، نیزگه، و ... برای شکل به به صورتی در سطح مشترک دو بلور آلکالی فلدسبار تشکیل شده است، نشان می‌دهد که تشکیل حاشیه آلیتی با تغییر پتاسیت مرتب نیست. از طرف دیگر شدت پتاسیک شدن آلکالی فلدسبار تاثیری در ایجاد حاشیه آلیتی ندارد؛ بنابراین خاستگاه این پدیده در چهاردهنامه و ناپایدار نظر [۱۹] این امر به جانشینی آلیتی به جای آلکالی فلدسبار می‌گردد. در این مطالعه می‌تواند تغییر باشد.

کارتن (۲۲) حضور حاشیه‌های آلیتی در حاشیه‌های بافت آنتی راباکیوی را به نشان می‌دهد. توزیع عنصر الکالی را به واکنش:

\[\text{CaAl}_2\text{Si}_2\text{O}_8 + 4\text{SiO}_2 + 2\text{Na}^+ = 2\text{Na}_2\text{AlSi}_3\text{O}_8 + \text{Ca}^{2+}\] (۱)

و تبادل عنصر الکالی را به واکنش:

\[\text{Na}_2\text{AlSi}_3\text{O}_8 + \text{K}^+ = \text{KAl}_2\text{Si}_3\text{O}_8 + \text{Na}^+\] (۲)

نسبت می‌دهد. توزیع عنصر الکالی بین پتاسیم و آلکالی فلدسبار به شدت به دما و بارنشین [۳۳] بنابراین در یک سیستم پتاسیم به پتاسیم به بخش‌های سردرن و سبز می‌باشد و بخش‌های گردن سیستم انتشار می‌یابد. اگر عناصر وابسته به یک دایئیکس شکل باید در حاشیه از میان با دمای بالاتر به میان با دمای پایین‌تر، مبادله تشکیل می‌دهد.

ألای می‌دهد و سبز دمای موجود در شاره با پتاسیم موجود در سیستم می‌تواند در شاره با ناپایداری در سیستم دیواره‌های می‌شود و دگرگویی سدیک به وجود خواهد آمد.
جدول 4 نتایج آنالیز شیمیایی سنگ کل نمونه‌های انتخاب شده از توده نفوذی اکبیر. مقدار بدون جزای قرار گیران.

<table>
<thead>
<tr>
<th></th>
<th>MKBA1</th>
<th>MKBA2</th>
<th>MKK17</th>
<th>MKT13</th>
<th>MKG15</th>
<th>MKT12</th>
<th>MKKH14</th>
<th>MK4</th>
<th>MKD16</th>
<th>MK5</th>
<th>MK3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (Wt%)</td>
<td>75.2</td>
<td>75.1</td>
<td>75.3</td>
<td>75.9</td>
<td>79</td>
<td>78.6</td>
<td>79.9</td>
<td>81.2</td>
<td>80.7</td>
<td>79.5</td>
<td>78.6</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.89</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.89</td>
</tr>
<tr>
<td>MgO</td>
<td>0.7</td>
</tr>
<tr>
<td>CaO</td>
<td>3.33</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.5</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.51</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.87</td>
</tr>
<tr>
<td>Total</td>
<td>74.33</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>72</td>
</tr>
<tr>
<td>Cr</td>
<td>20</td>
</tr>
<tr>
<td>V</td>
<td>15.0</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>Rb</td>
<td>57</td>
</tr>
<tr>
<td>Ba</td>
<td>115.5</td>
</tr>
<tr>
<td>Sr</td>
<td>156</td>
</tr>
<tr>
<td>Ga</td>
<td>75</td>
</tr>
<tr>
<td>Nb</td>
<td>55</td>
</tr>
<tr>
<td>Hf</td>
<td>9</td>
</tr>
<tr>
<td>Zr</td>
<td>74</td>
</tr>
<tr>
<td>Th</td>
<td>15</td>
</tr>
<tr>
<td>U</td>
<td>36</td>
</tr>
<tr>
<td>Cs</td>
<td>15</td>
</tr>
<tr>
<td>La</td>
<td>135</td>
</tr>
<tr>
<td>Ce</td>
<td>128</td>
</tr>
<tr>
<td>Nd</td>
<td>81.7</td>
</tr>
<tr>
<td>Sm</td>
<td>13</td>
</tr>
<tr>
<td>Eu</td>
<td>2.2</td>
</tr>
<tr>
<td>Gd</td>
<td>0.8</td>
</tr>
<tr>
<td>Dy</td>
<td>0.9</td>
</tr>
<tr>
<td>Er</td>
<td>1.4</td>
</tr>
<tr>
<td>Yb</td>
<td>0.7</td>
</tr>
<tr>
<td>Tb</td>
<td>0.9</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1</td>
</tr>
<tr>
<td>Tm</td>
<td>0.1</td>
</tr>
<tr>
<td>Lu</td>
<td>0.1</td>
</tr>
<tr>
<td>Pr</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 12:07 -0430 on Sunday July 28th 2019
شواهد شیمی‌کایی و زئوئیشی کل سنج در آلودگی،...

6) برداشت

بررسی‌های انجام شده در این پژوهش نشان می‌دهند که:

1- روانه‌های صحرایی و مطالعات تنگ‌شناختی (مثل فراوانی بافت رایاکویی، بافت پونی کلینهک، بافت غربالی، حضور نکلاوهای میکروگانولار مافیک و آپاتیت سوزنی) نشان‌دهنده آلودگی مagmaی در منطقه مورد مطالعه هستند.

2- بر اساس بررسی‌های میکروسکوپی و ریزکاوهای الکترونی، دولول پلاژیوکلاز در واحد میکروگانولی مورد مطالعه قابل تشخیص‌اند؛ نسل اول به صورت انکلوپس در فنوتکست‌های الکالی فلدسپات قرار دارند که درای ترکیب به‌دست در کستره آندزین قرار می‌گیرند؛ نسل دوم دولول پلاژیوکلاز به صورت بلوهره پوسه‌نشین در بافت‌های رایاکویی غربالی را با نام برد که در بافت رایاکویی بلوهره‌کلاس فلدسپات با ترکیب Ab13.71 Or85.45 An0.84 و در گستره‌ای از پلاژیوکلاز Ab68.46 Or3.82 An7.72 روی خط متشکل گستره آندزین و الگوکلاز قرار می‌گیرند. دولول پلاژیوکلاز در بافت غربالی نیز با بافت رایاکویی دارای ترکیب Ab67.55 Or5.29 An0.84 و روی خط متشکل گستره آندزین و الگوکلاز قرار می‌گیرند. ترکیب مشابه پلاژیوکلاز پوسه‌نشین در بافت رایاکویی غربالی، خود می‌تواند نشاندهنده نسل دوم دولول پلاژیوکلاز باشد که احتمالاً طی فرآیند اختلاط مagmaی تشکیل شده‌اند.

3- منحنی نمونه‌های الگاریزی عناصر سازگار در مقابل عناصر ناسازگار می‌تواند با فرآیند اختلاط مagmaی در تشکیل و تحویل توده گرانیتی آکائیل در ارتباط باشد.

4- مقایسه ترکیب بیوتیت و آمیبول نمونه‌های مورد مطالعه با توده نفوذی کالیفرنیا نشان می‌دهد که این نمونه‌ها در رده I-SC (گرانیت‌های نوع I به شدت نفوذ) قرار می‌گیرند. بنابراین واحد میکروگانولی مورد مطالعه از یک مagmaی نوع I مشتق شده از گونه‌ناپایی و با پوسه‌نشین تحتانی که تحت تأثیر اندودگی قرار گرفته است، تشکیل شده است.

Ab83.18 Or6.67 An12.15

5- بافت آنی رایاکویی که در این بلوهره پلاژیوکلاز با ترکیب روی خط متشکل الگوکلاز-البیت و بلوهره الکالی فلدسپات پوسه‌نشین ان با ترکیب Ab74.46 Or0.79 An0.75 در گستره از پلاژیوکلاز قرار می‌گیرد و نیز حضور حاشیه‌ای آلیتی در پیرامون پلاژیوکلاز نیز از شواهد آمیش با موارد پوسه‌نشین در منطقه مورد مطالعه محصول می‌شوند.
قدربانی

از شورای محتوم پژوهشی پرده‌بردار علوم دانشگاه تهران به دلیل تأمین هزینه مالی این پژوهش (طرح نوع ششم) تشریک می‌شود. همچنین از جنبه آقای مهندس مجتبی کریمی کارشناس ارشد محتوم سازمان انرژی اتمی ایران به خاطر همکاری ارزشمندشان در انجام کارهای صحرایی سپس‌زاریم.

مراجع

[14] اسماعیلی د.، خلج م.، ولی‌رضا ونیزی و زرتشتی، توده گرانیتوفنیتی‌های کابلی (جنوب غرب کارل‌آباد)، مجله علوم دانشگاه تهران، (۱۳۸۴) زیر کتاب.

