Crystal-chemistry and whole rock geochemistry evidences for magma mixing, contamination and metasomatism in Akapol Granitoid (SW Kelardasht, Central Alborz)

D. Esmaeily, M. Khalaj, M. V. Valizadeh

School of Geology, University college of Science, University of Tehran, Tehran, Iran
Email: esmaili@khayam.ut.ac.ir

(Received:7/1/2007, received in revised form: 7/4/2007)

Abstract: The crystal-chemistry of the plagioclase, alkali feldspar, biotite, amphibole and whole rock geochemistry of Akapol granitic massif are investigated in this paper. The chemical composition of biotites and amphiboles plotted in the annite-siderophyllite, magnesiohornblende and actinolite fields, respectively. Comparison of the chemical composition of biotites and amphiboles with similar minerals from the California granitic batholith indicate that the monzogranitic unit of Akapol belongs to the strongly contaminated I-type granites. Accordingly, these rocks are highly contaminated and may have derived from upper mantle and/or lower crustal sources. They have experienced magma mixing or are affected by contamination with upper crustal rocks. These results are consistent with the curve like logarithmic diagrams of compatible/incompatible elements; the presence of the sieve, poikilitic and rapakivi textures; the partial absorption of the plagioclase phenochoerists; the presence of mafic microgranular enclaves and needle apatite in the samples. Based on this study, two types of plagioclase in monzogranitic unit can be recognized in the monzogranitic unit: the first generation occur in the alkali feldspar phenochohrysts and the second generation is in the form of covering crystals in rapakivi and sieve textures which probably formed during magma mixing.

Keywords: magma mixing, contamination, akapol, granitoid, rapakivi texture.
شواهد شیمی کاکوی و زئوشهدی سنگ کل در جنوب غرب کلاردشت. البرز مرکزی.

داریوش اسماعیلی، مرضیه خلج، محمد ولی واب زاده

دانشگاه تهران، بردیس علم، دانشکده زمین‌شناسی

esmaili@khayam.ut.ac.ir

چکیده: استفاده از مطالعات کاکوی سنگی و زئوشهدی-کاکوی توده گرانیتی آکائی با استفاده از نتایج آنالیز ریزکاکو الکترونی کاتی‌های پلازوکلریک، آکالی فلدسپار، بیوبیت و آمفیبول و نیز زئوشهدی سنگ کل این توده به منظور اثبات وجود آلودگی در گرندنبای و آلودگی ماگمایی موضوع مقاله است ترکیب شیمیایی این بیوبیت‌ها و آمفیبول‌ها نشان می‌دهدکه واحد مونوزیگنیتی آکائی در رده گرانیت‌های نوع 1 به شدت آلوده (ISC) قرار می‌گیرد و از یک ماگمای مشتق از گوشتنی فوق‌العاده با با بوسنی تحت‌الابی که تحت تأثیر اخ تل خیال‌ها و انسان‌ها در شکل سنگ‌های منظمی قرار گرفته‌اند شکل‌دهی است. این نتایج با فروانی بافت‌های غربالی، پوئنی کلینیک، راپاکویی، برش به‌خیال درشت بلوهرای پلازوکلریک و حضور آکالی‌ها و میکروگراینول‌ها شکل‌یابی آبی‌های شوشی‌انه مورد مطالعه‌که از شواهد آلودگی و اختلاط ماگما‌های گستنده همه‌خوانی دارد. بر اساس این برسیده‌ها، دو سهل پلازوکلریک با یک ترکیب شیمیایی متفاوت در واحد مونوزیگنیتی آکائی قابل تشخیص انتخاب نسل اول به صورت نفوذ در فتوکریستال‌های آکالی فلدسپار قرار گرفتند، و نسل دوم بلوهرای پلازوکلریک که احتمالاً با اختلال ماکمایی تشکیل شده و به صورت بلوهرای پوششی در بافت‌های راپاکویی حضور دارند.

واژه‌های کلیدی: اختلاط ماگما‌ای، آلودگی، بایت راپاکویی، گرانیت‌نوی، آکائی.
مقدمه

اختلاف ماکماهی به عنوان گشتی مهمی در تغییر ترکیب شیمیایی ماکما و تشکیل ماگماهای گراتنکندی و اندرنیتو توسط محکمین مختلف مورد بررسی قرار گرفته است. [1-7]. هنگامی که یک ماکماهای اولیه در انر دوب بخشی کوشش و یا بخش پایینی پوسته تشکیل و شروع به بالا نمودن می‌کند، می‌تواند کاهش کامل و حتی پس از انجام، دستخوش تغییرات زیادی می‌شود که ممکن است نیلوفر جزء اختلافات کامل و غلیظ پوسته‌ای است. اختلاف ماکماهی ممکن است در حد اولیه به شکل اختلافات نسبی، و یا ممکن است نا

نوع ماکماهی ایجاد شده در زون البرز مرکزی با سالیان حدود ۴۵±۱ میلیون

ساوی (به روی زیرکونی، بیوتید و اکلینی پلیمر) [8]، یعنی

در بازویی فوقانی (تا انسن زیرین در محدوده جغرافیایی '۸۰، ۵۰۰ تا ۱،۵۰۰ طول مداری و

و ۲۲۲ تا ۲۳۳ عرض پیش‌باز، در سازندان شمشک و مارک نفوذ گردید است. این نوع

نفوذی قابل توجه [9 تا 1۳] از جنبه‌های مختلف زمین‌شناسی مورد مطالعه قرار گرفته است.

در مطالعات انجام شده روی نوع ماکماهی ایجاد شده روی واحد موزون‌RAW گرایی آن به

شاوهای صحراپی و سنگ‌شنایی اختلاف ماکماهی اشکال شده است [1۴] در این بررسی سعی

شده است با استفاده از داده‌های شیمی کانی بیوتید، آمپیول، بلاژیو کول و اکلینی پلیمر

در موده‌ی خاص‌گیری ماکماهای آن الگویی ارائه شود. بدین منظور برای بررسی‌های

سنگ‌شناسی، علاوه بر پرسی‌های صحراپی و مطالعات میکروسکوپی مقاطع نازک، از نتایج

الانیزی‌های شیمیایی ۱۱ نمونه از سنگ‌کل و ۴۷ نمونه از شیمی‌انواع کانی‌های بیوتید، المپیول،

ALS Chemex و فلدسپار نیز استفاده شده است. الیپروها شیمیایی سنگ‌کل در آزمایشگاه

کانادا برای انتخاب کنی‌ی عناصر اصلی و کمیاب به روی آلودگی و آلبالز کانی‌ها نیز در

آزمایشگاه‌های فنری و مواد معدنی ورودی صنایع و معادن ایران یا یک ریزکار اکتیو

بررسی قرار گرفته است. در الالیزی‌های ریزکار اکتیو برای تعیین مقدار اکسیدهای عامل

اصیل و زیستی از استانداردهای آلپیت، پریکلار، کردو و انتروکلار، ولستین، رمینیت،

اسپیکلازیت، بیوتید، و فلوئوریت استفاده شد. اختلاف پتانسیلی ۱۰ و جریان

۱۰ بوده است.

(۱) زمین‌شناسی عمومی

منطقه‌ی مورد مطالعه جنگی از زون البرز مرکزی محسوب می‌شود که رخ‌نهال‌هایی از منشسته‌های

درگیر شده سازند که، کوارتز‌های کامپرس، نهشته‌های اردوپیت مسوم به سازند

لشکر، اهمیت بزرگ و تنش‌های سازند شمشک را می‌توان مشاهده کرد. رشته‌کوه البرز

بیشتر شامل نتششتها و مواد آنتوفیلی برکنارینی تا انسن است که توجه‌های نفوذی و
سنجش‌نامه

تو头条_[گرانی‌نویسی] آکائی از مرکز به خانه‌ای از سه واحد اصلی مونوزوجنتی بری‌فورشیدی، واحد مونوزوجنتی-کوارتز مونوزوجنتی، و واحد گرانی‌نویسی خاکستران تشکیل شده است (شکل 1). توصیف کامل این واحدها در {[12] و {[15]} ارائه شده است. بخش مرکزی توده گرانی‌نویسی آکائی از مونوزوجنتی بری‌فورشیدی، واحد مونوزوجنتی، واحد گرانی‌نویسی خاکستران تشکیل شده است. بخش ایرانی یافت‌رایکاری و انسی رایکاری از مشخصات مهم یافت‌های این ستگ‌های‌های بلژیکی (23-19/1196)، آلکالی‌فلسفی (07-23)، کوارتز (0-13)، بیوتیت (0-37)، آمفیبول (0-37)، آبپشتی (0-51)، آبپشتی، سیلن، زیبرک، و کانی‌های تیره‌ها از اسیر آسیایش این سنگ‌ها هستند. همچنین وجود آلکالوهای رژانسی و نیک رنگ با ترکیب دیوربرتی مونوزوجنتی بری‌فورشیدی از ویژگی‌های مهم این واحد سنگی است. این آلکالوهای منشأ یافته‌ها به صورت مقطع دایره‌ای تا بیضوی دیده می‌شود و در میزان بین آن‌ها و سنگ درگیرنده‌ها، خاک‌شناختی مشخصی به رنگ سفید شیری ملاحظه شده است. بخش آلکالی‌فلسفی این منشأ‌ها به صورت از روبن‌پتی تسهیلی و هم به صورت بلورهای تیغه‌ای در زمینه سنگ حضور دارد. این نوع الگو‌گرایی تا آلت‌یست است. به‌طوری‌که به ویژگی‌های کانی‌شناختی و فاکتورهای این آلکالوهای میکروگرایی‌ها و فاکتورهای قرار می‌گیرند (16). واحد مونوزوجنتی-کوارتز (0-37)، بیوتیت (0-37)، آلکالی‌فلسفی (0-35)، کوارتز (0-37)، آبپشتی (0-51)
شواهد شیمی‌کانی و زنوشیمی کلسنگ در آلودگی

سنگ‌های گرانیودوریتی نیز با بافت گرانیودوریت‌زای، فرآوری‌های تری‌سنگ‌های توده‌های نفودی اکتاگونال را تشکیل می‌دهند.

سنگ‌های گرانیودوریتی نیز با بافت گرانیودوریت‌زای و ترکیب کانی‌شناسی پلاؤگیک‌زدای (AFC3) آلفاکالی فلدسپار (16-124.7)، کوارتز (127-204.7) و آمفیبول (226-164.7) در کانی‌های مشابه یکسان در حاشیه‌های شمالی و غربی توده نفوذی مورد مطالعه رخ دادند. همچنین آنها با بافت‌های تشیعی دگرگون شده مجاور (مرمر و دیوریت‌های بارنگ‌دار) به خوبی مشخص است. دایک‌های متعدد مونزودوریتی نا دیوریتی و به میزانی کمتر آپینی، این واحدها را قطع کرده‌اند.

شکل 1 نفه ساده زمین‌شناسی ناحیه اکتاگون- جنوب غربی کلاردشت [12].
3) اختلاط ماکمایی
در منطقه مورد مطالعه شواهد ماکروسکوپیکی و میکروسکوپیکی اختلاط ماکمایی در یکدیگر مونوزوگانیتی تولد نفوذی آکاپی، مشاهده می‌شود [۱۶] از شواهد اختلاط ماکمایی می‌توان به وجود بافت رایاکیوی (شکل (۲)) را اشاره کرد. سیستم ۸، آتکالاگی میکروگانولار ماپیک (شکل (۲) و انکلوروزون‌هایی از بلورهای اسفنجی. اسکین دو در نمونه دستی به صورت انکلوروزون یا تیره و ریز در بلورهای درشت پلاژیوکلاز و آتکالی فلدسپار مشاهده می‌شود (شکل (۳) و (۴)).
بافت رایاکیوی و آتی رایاکیوی نیز در نمونه مونوزوگانیتی دیده می‌شود (شکل (۴) و (۵)).
چنین در شکل (۱) در محله می‌شود. کربناتهای بلور آتکالی فلدسپار در اثر انحلال ناشی از اختلاط ماکمایی گرد شده و بلور شکل‌دار پلاژیوکلاز آن را پوشش داده است و به آن ترتیب بافت رایاکیوی ایجاد شده است. و سپس در اثر گردنه‌ای طیاسیک، بلور پلاژیوکلاز به وسیله آتکالی فلدسپار پوشش شده است. نکته قابل توجه این اینکه در نمونه‌هایی از این قبیل بافت رایاکیوی و آتی رایاکیوی نیز در نمونه مونوزوگانیتی را بافت.

شکل (۲) (A) حاشیه واقعی به رنگ سفید شیری بین انکالو و مونوزوگانیت می‌باشد در نمونه دستی طول انکالو ۲.۵ سانتی‌متر می‌باشد (B) بلور پلاژیوکلاز در انکالو (C) میزبانی نباید بلافاصله پلاژیوکلاز (D) بلافاصله پلاژیوکلاز (E) حضور توم بلافاصله رایاکیوی و آتی رایاکیوی (F) بلافاصله پلاژیوکلاز (G) حضور توم بلافاصله پلاژیوکلاز (H) بافت رایاکیوی و آتی رایاکیوی (I) بلافاصله پلاژیوکلاز در نمونه مونوزوگانیتی.
شواهد شیمی‌کاری و زنوشیمی کلسترول در آلودگی

در مرکز، بلور آلکالی فلدسپار مشاهده می‌شود که با بی‌پایداری احاطه شده و سپس این مجموعه به وسیله آلکالی فلدسپار پوشیده شده است. به عبارتی دیگر روابط رایگان با هم

 Azerbaijani
3-2) بررسی بافت رایاکویی

اگرچه فلسفه‌ی نوکی در مقطع میکروسکوپی بافت‌های رایاکویی مورد شناخته‌ای است (شکل 3)، در نمونه‌های حاوی بافت رایاکویی مورد شناخته‌ای نشده، دو نسل از بلورهای آکل‌فید‌سپار، پلاژیوکلار و پهناور مناهش می‌شود: نسل اول بلورهای آکل‌فید‌سپار یک ناحیه جدید را به‌شمار می‌آورد که توسط پلترنگ‌های شهامت‌دهانه‌ای بافت رایاکویی می‌شود و نسل دوم، بلورهای آکل‌فید‌سپار در زمینه‌های مشابه می‌شوند و ریزدندانه‌اند. به نظر می‌رسد که نوک ریستی ناحیه سخت پالژیوکلار (که آثار آنها به صورت سخت پالژیوکلار در بافت غربی و یا بافت اسید‌های ریز دیده شده است) و نیز انقلاب‌هایی پالژیوکلار موجود در آکل‌فید‌سپار اول بلورهای پلاژیوکلار را تشکیل می‌دهند. نسل دوم پلاژیوکلار نیز به صورت رشد پوستی‌ای پلاژیوکلار را تشکیل می‌دهند و بافت رایاکویی و فونوکریست پلاژیوکلار (تشکیل بافت غربی) نیز به صورت بلورهای ریز در زمینه حضور دارند.

برای مطالعه مکانیکی کانی‌ها در یک نمونه بافت رایاکویی، به ترتیب دو نقطه در پلاژیوکلار یکنقطه (نقطه 1 حاشیه دو یون پلاژیوکلار دقتاً در مجاورت بلور آکل‌فید‌سپار و نقطه 2 در ناحیه بینی پلاژیوکلار یکنقطه) و دو نقطه در بلور آکل‌فید‌سپار (نقطه 3 در مرکز و نقطه 4 در حاشیه آکل‌فید‌سپار دقتاً در مجاورت پلاژیوکلار یکنقطه) صورت بررسی ریز کاوی الکترونی قرار گرفتند (جدول 1).

جدول 1 نتایج حاصل از تجزیه فلسفه‌بندی یکنقطه مبتنی بر نفوذی آکل‌فید‌سپار توسط ریز کاوی الکترونی

<table>
<thead>
<tr>
<th>نقطه 1</th>
<th>نقطه 2</th>
<th>نقطه 3</th>
<th>نقطه 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.123</td>
<td>0.234</td>
<td>0.567</td>
<td>0.890</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

شکل 4 (A) یافته بیشترین در نمونه موتوژوگانیت: (B) یافته رایکابیوی در توده موتوژوگانیت صورتی آلبال مرز بین الکلی فلسپار با پلاژیوکلاژ با فلش زرد و حاشیه خارجی پلاژیوکلاژ با فلش قرمز مشخص شده است. بلور الکلی فلسپار توسط پلاژیوکلاژ احاطه شده است. (C) یافته غربالی در نمونه های موتوژوگانیت صورتی: (D) حاشیه واکنشی بین الکلاک میکروگرنالر مافیک با موتوژوگانیت می‌باشد. مرزها با خط قرمز مشخص شده است. کانال‌های سازندن حاشیه واکنشی عمداً شامل پلاژیوکلاژ، امفیبول، بیوبیت و اسفن و با فراوانی کمتر الکلی فلسپار و کوارتز می‌باشد؛ (E) حاشیه الیبتینی در وجه مشترک دو بلور الکلی فلسپار، در این تصویر نیز در مرز بین الکلی فلسپار با کوارتز حاشیه الیبتینی مشاهده نمی‌شود (نمونه مورد مطالعه مربوط به موتوژوگانیت گل بلان است). (F) یافته آنتی رایکابیوی در نمونه موتوژوگانیت، مرزها با فلش زرد و فلش قرمز مشخص شده است (نورپ، Lª و بزرگ‌نمایی =нلی–3، BI=بیوبیت، Sph=اسفن، Qz=الکلی فلسپار، k=کوارتز، ۲۵ برای) (Pl=پلاژیوکلاژ، Af=الکلی فلسپار، Z=کوارتز، P=پلاژیوکلاژ، Hbl=هورنلاین).

نتایج تجزیه ریزکاراکتر الکلی فلسپار نشان دهنده ترکیب 4 برای نقطه ۳ و ترکیب Ab6.97 Or91.99 An0.04 در نمونه پلاژیوکلاژ. نقطه ۵ در حاشیه Ab88.14 Or4.5 An26.67 مشاهده شد. در نمونه پلاژیوکلاژ، نقطه ۴ در حاشیه Ab68.83 Or4.5 An28.82 گسترده و الیکتری و الیکتری قرار می‌گیرد.
پلاژیوکلار پوسنی در بافت راکودی دارای تركیب مشابه با تركیب حاوی‌بلور پلاژیوکلار
Ab67.55 Or5.26 An25.72 (Ab68.9 Or5.38 An25.57) پلاژیوکلار دارای بافت غربالی (Ab65.48 Or3.26 An31.26) این
و انکلوژنون‌های پلاژیوکلار موجود در الكالی فلدسپار (An27.16)
[19] بر این باورند که تركیب مشابه حاوی‌بلورهای پلاژیوکلار گویای بایان تلاطم ماکما و
در نتیجه سیدیک تر شدن تركیب ماکما در پایان رخداد اختلاط ماکما است.

3- بررسی بافت بونی کیتیک
از موارد غالب جالب وجود بافت بونی کیتیک در سنگهای مورد مطالعه است (شکل 4). در این
بافت بلورهای درشت الكالی فلدسپار و پلاژیوکلار، بلورهای زودتر شکل یافته اسفن، هورنبلند،
پتروپت، زیرکن و پلاژیوکلار را در برگرفته اند. از میزان انکلوژنون‌های پلاژیوکلار‌ها درون
الکالی فلدسپار، بک نمونه انخاب و در آن دو نقطه (در مرکز و در حاشیه بلور) مورد

شکل 5 (A) تركیب شمیایی فلدسپارها در (A) بافت راکودی (B) انکلوژنون پلاژیوکلار موجود در
الکالی فلدسپار؛ (C) بافت آنتی راکودی در یکنوا کروماتیک نویده توانایی اکنال (علائم: ▲ نقطه 1،
 نقطه 2) در پلاژیوکلار و (★ نقطه 3، ★ نقطه 4) در الكالی فلدسپار).
بررسی ریزکاوی الکترون قرار گرفته. نتایج حاصل نشان دهنده ترکیب
برای مرکز و ترکیب Ab۵۳.۵۹ Or۳.۹۱ An۴۲.۵۰ بوده و بسیار است که از
نظر ترکیب در نمونه متفاوت در گستره اندازه مقایسه گرند. بر اساس این
نتایج، هسته پلازموکلاز اکلوزیون از حاشیه بلور گلبولیکتر است.

(۳–۳) بررسی بافت غربالی

بلور پلازموکلاز با پشتیبانی مورد تجزیه ریزکاو الکترون قرار گرفته (شکل ۶). مسیر تجزیه در
چهار نقطه بلور روی این شکل و ترکیب آنها در نمونه متغیر
Ab-Or-An است. چنان‌که ملاحظه می‌شود نقطه ۱ (نقشه شروع در مرکز بلور) دارای ترکیب
Ab۶۸.۴۹ Or۳.۱۳ An۳۷.۶۶ در گستره اندازه، نقطه ۲ (پس از زون خروده شده) با ترکیب
۴۸.۲۳ Or۴۳.۸۷ An۷.۸۱ روان خیاط متشکل گستره اندازه و پلازموکلاز، نقطه ۳ (پس از زون خروده شده) با
ترکیب ۷۴.۸۵ Or۵۷.۵۵ An۱۸.۶۴ در نمونه بنا به خط متشکل گستره اندازه و پلازموکلاز و نقطه ۴ (در حاشیه بلور) با ترکیب
Ab۷۴.۹۳ Or۵۸.۴۹ An۱۸.۶۴ در گستره پلازموکلاز قرار می‌گیرد.

شکل ۶ (A) بافت غربالی در بلور پلازموکلاز مورد تجزیه الکترون میکرویوب مسیر تجزیه با خط سفید
نشان داده شده است، نور Lp و برگشتهای ۲۵ برای (B) تغییرات ترکیبی بافت غربالی در بلور
پلازموکلاز و (C) نمونه مولکولیتی بستر تغییراتی که بر روی نمونه متغیر
Ab-Or-An نمودار مشاهده شده‌اند. از این نقاط ۴ از آنها از Ab نمودار مشاهده‌ای نشود اما از نقطه ۳ ۲ نمودار مشاهده شدند و از ۱ نقطه ۲ نمودار مشاهده می‌گردد (علامات: A نقطه ۱، نقطه ۲، نقطه ۳ و نقطه ۴).
نتایج حاصل از تجزیه ریزکالکولی ۱۵ نمونه از بیوتیت‌های واحد میوتروپیتی، توده نفوذی Fe/(Fe+Mg) و Al
(Phlogopite و Siderophylite) چارگوش آنتیت (Annite) استنیت (Eastonite) یا به صورت (ASPE) برای نشان دادن ترکیب این کامپوننت‌ها کرد.
از این نمونه‌ها به ورزی برای تشخیص پراولومینومی (با توجه به مقدار Al) سنج میزان بیوتیت
می‌توان به‌طور گرفت.
میکاهای انواع سنگهای مورد مطالعه در نمونه‌های این مطالعه و در سه گروه Fe/(Fe+Mg) و Al
نمونه‌ها، بیوتیت‌های تجزیه شده با داشتن Fe/(Fe+Mg) و Al
در گروه Fe/(Fe+Mg)
با انتخاب تمایلی به سمت قطب آنت قرار می‌گیرند. همچنین [17] ترتیپ دیگر در
رده‌بندی واحد‌های مختلف گرانیتی بالونیت کالیفرنیا با استفاده از شیمی درون و آمپیی
ارائه کردن. بنابراین رده‌بندی گرانیت‌ها با چهار گروه به شرح زیر تقسیم می‌شوند.

جدول ۲: نتایج الکترو میکرویمپ نمونه‌های میکاهای واحد میوتروپیتی، توده نفوذی اکاپیل. تعداد
کامپوننت‌ها به‌ازای ۳۲ کسیز محاصره‌شده است.

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A11</th>
<th>A12</th>
<th>A13</th>
<th>A14</th>
<th>A15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>76.8</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.74</td>
</tr>
<tr>
<td>Al2O3</td>
<td>11.2</td>
</tr>
<tr>
<td>FeO</td>
<td>0.55</td>
</tr>
<tr>
<td>MgO</td>
<td>13.4</td>
</tr>
<tr>
<td>K2O</td>
<td>11.1</td>
</tr>
<tr>
<td>Na2O</td>
<td>11.1</td>
</tr>
<tr>
<td>F</td>
<td>1.22</td>
</tr>
<tr>
<td>Si</td>
<td>74.4</td>
</tr>
<tr>
<td>Ti</td>
<td>1.4</td>
</tr>
<tr>
<td>Al</td>
<td>1.7</td>
</tr>
<tr>
<td>Fe2+</td>
<td>1.5</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.5</td>
</tr>
<tr>
<td>Mn</td>
<td>0.5</td>
</tr>
<tr>
<td>Mg</td>
<td>1.2</td>
</tr>
<tr>
<td>Na</td>
<td>1.2</td>
</tr>
<tr>
<td>K</td>
<td>11.1</td>
</tr>
<tr>
<td>F</td>
<td>1.22</td>
</tr>
<tr>
<td>OH</td>
<td>1.87</td>
</tr>
</tbody>
</table>

اسبانی، خلیج، ویل زاده
1. گرانیتهای نوع 1 با آلودگی انداک
2. گرانیتهای نوع 1 با آلودگی متوسط
3. گرانیتهای نوع 1 به شدت آلوده
4. گرانیتهای نوع 1 احیایی به شدت آلوده

(Strongly Contaminated I-type granite = I-SC)
(Strongly Contaminated and reduced I-type granite = CR)

در اینجا وارد آلودگی دارای مفهوم وسیع است و کلیه واکنش‌های تحت تاثیر قرار دهند. مکانیزم نوع 1 مشتق از گوشته فوئی، بیشتر معقید و به لیتوکسیتروپونید بالا می‌رود. نتایج حاصل از تجزیه بیوتیتهای مورد مطالعه در این نمودار و در گروه I-SC یعنی گرانیتهای نوع 1 به شدت آلوده قرار می‌گیرند. (شکل 8)

شکل 7. ترکیب شیمیایی میکاهای واحد مونژودارنیتی توده نفوذی آکابل در ردیبدی [20]

3.1.3 شیمی آمپیبول

تعداد 10 نمونه آمپیبول یونه واحد مونوگرانيتی مورد بررسی برخی از الگوهای آمپیبولی که بر اساس (جدول 2) به منظور نامگذاری آمپیبولی یونه واحد خود از رده‌بندی [2] استفاده شد. بنابراین رده‌بندی (Ca+Na) /Fe2+ در گروه آمپیبولی (Log (XNa / XFe2+) دارای شکل 9، که می‌تواند به تجزیه شده باشد. این زیر گروه مربوط به اکتبولت قرار می‌گیرد. مقدار Log (XNa / XFe2+) نسبت به نسبت میان نیز بیش‌تری در طی گستردگی (از 1.69 تا 2.65) تغییر می‌کند.

4 شواهد شیمی سنگ

با استفاده از نمودارهای اگریتی عناصر کمیاب نیز مول (مانند Zr و Th و Rb) مقایل عناصر سازگار (مانند Ni و V) نشان داد که با افزایش Ni و V احتمالاً ماگماری را از یک‌بخشی تغییر داده. این نتایج نیز برای تشخیص این فرآیندها و استفاده شده است (شکل 10). جانبه واقع می‌شود روی تغییرات نمونه‌های مورد مطالعه با روند اختلال ماگمایی سازگاری دارد.

جدول 2 نتایج الکترون میکروبروپ (میکروسکوپ) واحد مونوگرانيتی تابیده نفوذی اکلب

<table>
<thead>
<tr>
<th>جدول 2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>74</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>0.3</td>
</tr>
<tr>
<td>Fe2+</td>
<td>0.6</td>
</tr>
<tr>
<td>Fe3+</td>
<td>0.3</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>0.6</td>
</tr>
<tr>
<td>Ca</td>
<td>0.5</td>
</tr>
<tr>
<td>Na</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>0.3</td>
</tr>
<tr>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>OH</td>
<td>0.8</td>
</tr>
</tbody>
</table>

ا سماعی، خلج، وی زاده
شکل ۸ طبقه‌بندی آمپیلیت‌های واحد مونوزوگرانیتی اکمال در رده‌بندی [۲۷].

شکل ۱۰ نمودار لگاریتمی عناصر سازگار در مقابل عناصر ناسازگار برای نمونه‌های مورد مطالعه. همانطور که مشاهده می‌شود، روند تغییرات نمونه‌های مورد مطالعه مشابه محتوی شماره ۳ می‌باشد که گویای این امر است که اختلال ماهماپی نقش موتوری در تشکیل نوده‌های اکمال داشته است. نمودار کوشری [۱۲] محتوی شماره ۱ نشان دهنده ذوب بخشی، محتوی شماره ۲ نشان دهنده تبلور بخشی و محتوی شماره ۳ نشان دهنده اختلال ماهماپی می‌باشد. برای توضیحات بیشتر به متن مراجعه شود (عکس ۶، گرانودیوریت، مونوزوگرانیت، گرانتزیت، مونژریت، پاژیراتیت، اکلاوهای میکروگرانولار مافیک).
5- بحث و بررسی

1- اختلال و آلودگی ماغمایی

منطقه‌بندی نوسانی (شکل 3) بافت رایاکوبی (شکل H) و گرفتاری (شکل F) بافت روی و گلیکوژن‌داری (شکل D) سوزنی شکل (شکل 4) بافت پوستی کلیوبی‌تیک (شکل 4) بافت رویی کلیوبی‌تیک (شکل 4) بافت بی‌لیوبی‌تیک و بی‌فیت‌تیک (شکل E) و غالب‌های میکروگنواتیز (شکل 3) حاشیه‌ای از دو رشته‌ای از تک‌نیزه‌های بودایی. به انتقاد [24] منطقه‌بندی نوسانی و سنس منطقه‌بندی معمولی در بلوپلاژیکال‌تیک در اثر تغییر ترکیب ماگما در مراحل مختلف رشد بلوپلاژیکال چهار چندین ترکیب ماگما در پلاژیکال در حال تغییر شیمیایی است. لذا وقتی بلوپلاژیکال در ترکیب مغما به سپرک کردن می‌گردد. سرانجام زمانی که ماگما به تغییر شیمیایی و دینامیکی می‌رسد، در این هنگام رشد بلوپلاژیکال به‌وسیله پیش‌تر رود که ترکیب ماگما سبب می‌شود ترکیب ماگما به پلاژیکال و دیگر طبیعت‌های ماگما را پوشش می‌دهد و در نتیجه هسته بلوپلاژیکال با منطقه‌بندی معمولی با حاشیه‌ای با منطقه‌بندی معمولی تشکیل می‌شود.

بافت رایاکوبی می‌تواند در اثر اختلال ماگمایی و با دگرگونه‌ای تشکیل شود. بکه از مشخصات مهم بافت رایاکوبی در نمونه‌های مورد مطالعه گردش‌بندی فلسفیست‌های آلالوگی فلسفی‌شکلی است. در واکنش به پرتوهای ضد ماگما، بافت رایاکوبی در اثر اعمال تنشی شکل شده به‌وسیله دیگر طبیعت‌های ماگمایی ارتباطی ندارند و در نتیجه ناشی از افزایش دما در اثر اختلال ماگمایی بلوپلاژیکال با ماگمایی.

اسیدی اولیه حاصل شده از [25] و [19].

نتایج حاصل از بررسی الکترونی در نمونه پلاژیکال محسوب نموده می‌شود و بافت غربالی را نشان می‌دهد که در حواله پلاژیکال (با منطقه‌بندی غربالی) حاشیه‌ای بلوپلاژیکال چهار چندین ترکیب ماگما در اثر تغییرات بافت، آن قابل ارزش و استفاده در یک نمونه با بافت غربالی از نظر اثرات ۱ نقطه (ناهیده حاشیه بلوپلاژیکال) بررسی شد. بنکه مشاهده شده در نقاط ۲ تناطیش ۳ نمونه با یک نقطه از نظر ۴ نمونه آبی افزایش یافت و در نتیجه کاهش قبلاً یافت و یک منطقه‌بندی معمولی را به نمایش می‌گذارد که سی‌تکنیک نشان دهنده تعادل شیمیایی و
شواهد شیمی‌کاکی و زنده‌یی کل سلنگ در آلودگی:

dینامیکی ماکما طی روان‌دار اختلاف ماکماهای باشد [19 و 24] به اعتقاد این پژوهشگران، طی این مسیر، اختلاف ماکماهای باشد در اثر تنازل دمای بین ماکماهای اسبیتی و بازیک پلاژیولاست خوش سیمی برای تولید خود از دمای بین ماکماهای باشد در اثر تنازل یا ماکما کلسیک در می‌شود. به این ترتیب، به خروج شده گرانه‌ها با رشد پلاژیولاست کلسیک‌تر، پلاژیولاست سدیک‌تر را می‌پوشاند و بافت غربالی و منطقه‌ی نشکل می‌شود [۲۴].

این‌جا، وسیع‌ترین به‌ندازهای اندازه‌ای آن، به فشار فوق‌العاده مورد مطالعه می‌شود که می‌تواند به عنوان یک گردش از شاک‌ها اختلاف ماکماهای در نظر گرفته شود. به اعتقاد بسیاری از محققین (به عنوان مثال [1، 1۶ و ۲۷]) پلاژیولاست‌های سوزنی تأثیر آب‌ترین از تبلور و سرد شدن سریع و موضوعی ماکماهای مافیک داغ آمیخته با ماکماهای فلزیک نسبتاً سردرت در طول اختلاف ناشی می‌شود.

اکلاوهای میکرو‌گیلانولار که از ستگه‌های در بی‌راره‌ها، خود به واسطه رنگ‌تیری‌نر، بافت ریزاتن و مرز مشخص از سنگ میزان خود قابل تشخیص داده است [۱۴]، زیر از دیگر شواهد اختلاف ماکماهای به حساب می‌آید (به عنوان مثال [۱ و ۲۸ تا ۲۱]). در میومرهای دستی در مرز بین اکلاوهای سنگ در بی‌راره‌های گردنگ کلینیکی به رنگ سفید شیری مشاهده می‌شود (شکل ۲A) که ضعیف آن تا حدودی دو میلیمتر نیز می‌رسد (شکل ۲B). به نشان داده می‌شود که اختلاف دما برای سرد شدن سریع ماکماهای مافیک به اندام کافی اندازه‌ریزی شده است، بنابراین می‌توان به عنوان میزان اولیه اختلاف بین و ماکما در نظر گرفته شود. به علاوه اختلاف دما و میزان دو ماکما، حاشیه‌های سریع‌تر سرد شده و بافت ریزاتن اکلاوهای ماکماهای مافیک را توجیه می‌کند.

از طرف دیگر مقایسه ترکیب پوسته‌ها و آمفیبولی‌های مرده مطالعه با یک‌پارچه گدان‌تولید کالیفرنیا [۱۱] نشان می‌دهد که این نمونه‌ها در گستره I-SC I-SC به عنوان گرانی‌های نوع I شش گروه قرار می‌گیرند. این آمفیبول با گرانی‌ها دارای اصل اختلاف ماکماهای ایا باید از مواج بوستی‌های حاصل شده باشد [۲۱] که در مورد منطقه‌ای مرده مطالعه با توجه به شاک‌های دیگر اختلاف ماکماهای محتمل است.

۲-۵ درگنهوری

مهمترین شواهد درگنهوری در منطقه مرده مطالعه بافت آنتی‌راپاکیوی (شکل ۴) و کرانه‌های آلپینی پیروان پلاژیولاست‌های ایا آنتی‌راپاکیوی ممکن است در
اثر دگرنهادی و یا اختلاف ماکمایی تشکیل شود. در یک ماده فسفرانی، توده‌ی نفوذی اکائیل، بافت آنتی‌راپاکیوی در نتیجه اختلاف ماکمایی حاصل نشده است. این بافت بافت راپاکیوی در نتیجه اختلاف ماکمایی در حال تشکیل است. بافت آنتی‌راپاکیوی تشکیل نخواهد یافت [29 و 19]. همچنین روند می‌تواند از ارتباط با دگرنهادی پتاسیک همراه با حذف سدیم است. زیرا این نمونه‌ها از مقادیر Rb، K2O، Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23

تبیین شده‌اند (جدول 4). بررسی نسبت Nb غنی و از غنی در آن‌ها می‌باشد. شعاع کالی‌سیلیکات در این یافته تا حد کمک‌رسان در گونه‌ی اکائیل راپاکیوی (شکل 5) به ترتیب دو نقطه در یلی‌پاکیوک (نقطه 1) در مرکز و نقطه 2 در حاشیه یلی‌پاکیوک دارای شکل C اکائیل فلسفیساپیوسی وو (نقطه 3) حاشیه‌ای در اکائیل فلسیسی دارای نقطه 4 در حاشیه‌ی برونو اکائیل فلسیسی پویشی مورد بررسی و پژوهش اول گرفته که نتیجه‌ی آن در جدول 1 و شکل 5 را مشاهده نموده. این نتایج نشان دهندهً اینکه (الکالی‌لیتیک) متمایل به جابجایی Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23

موجه در اکائیل فلسیسی و یلی‌پاکیوک با منطقه‌ی شبه‌سیلیکات. نسبت به همه‌ی اکائیل یلی‌پاکیوک نسبت به ناشوهری بلوور یلی‌پاکیوک در پایین روند می‌باشد. شده در بلوهای یلی‌پاکیوک با یک دو نقطه مورد ممانده نشده است. به شکل C اکائیل فلسیسی پویشی مورد بررسی و پژوهش اول گرفته که نتیجه‌ی آن در جدول 1 و شکل 5 را مشاهده نموده. این نتایج نشان دهندهً اینکه (الکالی‌لیتیک) متمایل به جابجایی Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23

با یک نقطه 1. اینکه (الکالی‌لیتیک) متمایل به جابجایی Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23

موجه در اکائیل فلسیسی و یلی‌پاکیوک با منطقه‌ی شبه‌سیلیکات. نسبت به همه‌ی اکائیل یلی‌پاکیوک نسبت به ناشوهری بلوور یلی‌پاکیوک در پایین روند می‌باشد. شده در بلوهای یلی‌پاکیوک با یک دو نقطه مورد ممانده نشده است. به شکل C اکائیل فلسیسی پویشی مورد بررسی و پژوهش اول گرفته که نتیجه‌ی آن در جدول 1 و شکل 5 را مشاهده نموده. این نتایج نشان دهندهً اینکه (الکالی‌لیتیک) متمایل به جابجایی Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23

موجه در اکائیل فلسیسی و یلی‌پاکیوک با منطقه‌ی شبه‌سیلیکات. نسبت به همه‌ی اکائیل یلی‌پاکیوک نسبت به ناشوهری بلوور یلی‌پاکیوک در پایین روند می‌باشد. شده در بلوهای یلی‌پاکیوک با یک دو نقطه مورد ممانده نشده است. به شکل C اکائیل فلسیسی پویشی مورد بررسی و پژوهش اول گرفته که نتیجه‌ی آن در جدول 1 و شکل 5 را مشاهده نموده. این نتایج نشان دهندهً اینکه (الکالی‌لیتیک) متمایل به جابجایی Na2O، MgO، CaO، TiO2، V2O5، P2O5، 72 23
فرایند پلاژیوکالز کلسیک نخست به وسیله آلیپت و سپس به وسیله فلسپار پتاسیک جلوگیری می‌کند. بنابراین می‌توان به این نتیجه رسید که تا این فرایند، هسته بلو پلاژیوکالز از مرکز به هاشیه بلو در ناحیه غربی از دست داده کلسیم به پلاژیوکالز سدیک تبدیل می‌شود. سدیک نسبت به هسته بلو پلاژیوکالز در بافت آتشی راپاکیویو و سپس هاشیه بلو پلاژیوکالز که ترکیب سدیک نسبت به هسته بلو پلاژیوکالز بافته با آلکالی فلسپار جایگزین می‌شود.

وجود حاشیه‌ای آلیپت در مرز مشترک دو بلو آلکالی فلسپار (شکل 4) از موارد جالب توجه دیگر در بررسی میکروسکوپی مقاطع نازک است. با توجه به انکه حاشیه آلیپت با درجه و نوع برخی شنده آلکالی فلسپار (برتریت رشته‌ای، تک‌، رگه‌ای و ... برخی نشانه‌های بنده) مرحله سریا در مرحله مشترک دو بلو آلکالی فلسپار تشکیل شده است، نمرو می‌شود که تشکیل حاشیه آلیپت با ترکیب برخی، مرتب نیست. از طرف دیگر شدت برخی شنده آلکالی فلسپار ناشی به ایجاد حاشیه آلیپت ندارد؛ بنابراین خاستگاه جدیدی این پدیده را مسیر دانسته و بنابر نظر [19] این امر را به جانشینی آلیپت به جای آلکالی فلسپار پیش‌رفته در دو درگنهاد می‌دانیم.

کارتن [32] حضور حاشیه‌های آلیپت در حاشیه‌های بافت آتشی راپاکیویو را به...

واکنش:

\[\text{CaAl}_{2/3}Si_{3}O_{8}+4\text{SiO}_{2}+2\text{Na}^{+}=2\text{NaAlSi}_{3/2}O_{8}+\text{Ca}^{2+} \]

(1)

و تبادل عنصر الكالی را به واکنش

\[\text{NaAlSi}_{3/2}O_{8}+K^{+} = \text{KAlSi}_{3}O_{8} + \text{Na}^{+} \]

(2)

نسبت می‌دهد. توزیع عنصر الكالی بین یک شرایه همگن و آلکالی فلسپارها به شدت به دما و ایستاییت [32] بنابراین در یک سیستم سبز، پتانسیم به بخش‌های سردرت و سدیم به بخش‌های غیرمرت سیستم انتشار می‌یابد. اگر چنین سیستم‌های باز باشد نشانه‌هایی از میکرو بیانه بالاتر به میکرو بیانه بالاتر بیانه بالاتر پتانسیم در شرایه با سدیم در سلول دیواره ستون غیرمرت دکره‌هاست پتانسیک، نشانه‌های می‌دهد و دکره‌های پاتاکیک، نشانه‌های می‌دهد و دکره‌های پاتاکیک به وسیله اکسید آماد
جدول ٤ نتایج شیمیایی سنگ کل نمونه‌های انتخاب شده از توده تفوشی اکاپل. مقدار بدون جزای فار می‌باشد.

<table>
<thead>
<tr>
<th>MKBA1</th>
<th>MKBA2</th>
<th>MKAK17</th>
<th>MKT13</th>
<th>MKG013</th>
<th>MKT12</th>
<th>MKKH14</th>
<th>MK4</th>
<th>MKD16</th>
<th>MK5</th>
<th>MK3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (W%)</td>
<td>55</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.5</td>
</tr>
<tr>
<td>MgO</td>
<td>3</td>
</tr>
<tr>
<td>CaO</td>
<td>55</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>28</td>
</tr>
<tr>
<td>Cr</td>
<td>2</td>
</tr>
<tr>
<td>Co</td>
<td>0.05</td>
</tr>
<tr>
<td>V</td>
<td>0.05</td>
</tr>
<tr>
<td>Zn</td>
<td>0.05</td>
</tr>
<tr>
<td>Nb</td>
<td>0.05</td>
</tr>
<tr>
<td>Hf</td>
<td>0.05</td>
</tr>
<tr>
<td>Zr</td>
<td>0.05</td>
</tr>
<tr>
<td>Th</td>
<td>0.05</td>
</tr>
<tr>
<td>U</td>
<td>0.05</td>
</tr>
<tr>
<td>Cs</td>
<td>0.05</td>
</tr>
<tr>
<td>La</td>
<td>0.05</td>
</tr>
<tr>
<td>Ce</td>
<td>0.05</td>
</tr>
<tr>
<td>Nd</td>
<td>0.05</td>
</tr>
<tr>
<td>Sm</td>
<td>0.05</td>
</tr>
<tr>
<td>Eu</td>
<td>0.05</td>
</tr>
<tr>
<td>Gd</td>
<td>0.05</td>
</tr>
<tr>
<td>Dy</td>
<td>0.05</td>
</tr>
<tr>
<td>Er</td>
<td>0.05</td>
</tr>
<tr>
<td>Yb</td>
<td>0.05</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05</td>
</tr>
<tr>
<td>Ho</td>
<td>0.05</td>
</tr>
<tr>
<td>Tm</td>
<td>0.05</td>
</tr>
<tr>
<td>Lu</td>
<td>0.05</td>
</tr>
<tr>
<td>Pr</td>
<td>0.05</td>
</tr>
</tbody>
</table>
6- برداشت
بررسی‌های انجام شده در این پژوهش نشان می‌دهند که؛
1- روابط صحرایی و مطالعات سنگ‌شناسی (مثل فراوانی بافت رایاکوبی، بافت پونی کلینیک، بافت غربالی، حضور انکلاوه‌های میکروگانولار مافیک و آپنیت سوزنی) نشان دهنده اوظیگی ماگماتی در منطقه مورد مطالعه هستند.
2- بنابراین بررسی‌های میکروسکوپی و ریزکاوش الکترونی، دو نسل پلاژیوکلز در واحد میکروگانولار مورد مطالعه قابل تشخیص گردیدند. نسل اول به صورت انلاین در فنکریست‌های اکالی فلدسپار قرار دارند که درایز ترکیب بوده و در‌کستره اندزین قرار می‌گیرند. نسل دوم بلوهای پلاژیوکلز به صورت بلوهای پوششی در بافت‌های رایاکوبی و نسبی را باید نام برده که در بافت رایاکوبی بلوهای اکالی فلدسپار با ترکیب Ab13.71 Or85.45 An6.84 می‌باشد. بلوهای پلاژیوکلز بلورهای پلاژیوکلز در بافت إربالی نزدیک با بافت رایاکوبی دارای ترکیب Ab68.46 Or3.82 An37.72 می‌باشد و روی خط مشترک‌گسترده آن‌دستین و الگوکلاژن، قرار می‌گیرند. بلوهای پلاژیوکلز در بافت غربالی نزدیک با بافت رایاکوبی بلوهای پلاژیوکلز در بافت غربالی نزدیک با بافت رایاکوبی، می‌باشد و روی خط مشترک‌گسترده آن‌دستین و الگوکلاژن، قرار می‌گیرند. ترکیب مشابه پلاژیوکلز پوششی در بافت رایاکوبی و بافت غربالی خود می‌تواند موی‌د نسل دوم بلوهای پلاژیوکلز باشد که احتمالاً طی فرآیند اختلاط ماگماتی تشکیل شده‌اند.
3- منحنی نمونه‌های لگاریتمی عناصر سازگار در مقابل عناصر ناسازگار می‌تواند با فرانک اختلاط ماگماتی در تشکیل و تجربه‌های اکتیلی اکتیلی ارتباط باشد.
4- مقایسه ترکیب بیوتیت و آنسیموکل نمونه‌های مورد مطالعه با نمونه‌های کالیفرنیا این نوع نمونه‌ها در رده I-SC گرا بوده که انگیزه‌های این نوع از گوشتن‌های مناسب که تحت تأثیر انلاین قرار گرفته است، تشکیل شده است.
5- بافت‌های رایاکوبی که در بافت پلاژیوکلز با ترکیب روی خط مشترک الگوکلاژن، بیوتیت و پلاژیوکلز، فرآیند انلاین گذاری می‌بوده و نیز حضور حاشیه‌ای الپینی Ab46 Or0.76 An0.75 می‌باشد. در پیرامون پلاژیوکلز نیز از شواهد آلپینی با ماده پوششی در منطقه مورد مطالعه محسوب می‌شوند.
قددرادی

از شورای محترم پژوهشی پردازی علمی دانشگاه تهران به دلیل تأمین هزینه مالی این پژوهش (طرح نوع ششم) نشکن می‌شود. همچنین از جنب اقای‌های مهندس مجنی کرمانی کارشناس‌اند محترم سازمان انسان ایمنی ایران به حضرت همکاری ارزش‌مندشان در انجام کارهای صحرایی سپاسگزاریم.

مراجع

[۱۳] خلج م، بروزی کهانی، شناسی توده گرانتوئیدی آکابل، پایان نامه کارشناسی ارشد، پردیس علوم، دانشکده زمین شناسی ۲۰۰ صفحه (۱۳۸۴).
[۱۴] اسماعیلی د، خلج م، و. پتروپلیزی و زئوئیتی توده گرانتوئیدی آکابل (جنوب غرب کلاترشت)، مجله علوم دانشگاه تهران، (۱۳۸۴) زیر جای.