Characterisation of p-Si/SiGe/Si inverted remote doped structures using X-ray and electrical techniques

M. A. Sadeghzadeh

Department of physics, University Of Yazd, Yazd, IRAN

(Received: 30/8/2006, received in revised form: 6/3/2007)

Abstract: In this work, the epitaxially grown, lattice–matched p-Si/Si$_{1-x}$Ge$_x$/Si inverted remote doped structures have been characterized using X-ray and electrical techniques. The Si cup layer thickness (l_c) and Ge content (x) have been determined from computer simulation of intensity and angular separation of (004) peaks observed in the X-ray diffraction pattern due to misorientation of corresponding Bragg planes of Si and SiGe layers. On the other hand, a quasi two dimensional hole gas (2DHG) is formed in the compressively strained alloy of these structures and its areal density (n_s) has been measured by Hall experiment and can be controlled by applying a voltage (V_g) to the artificial gate. In the electrical technique, x and l_c characteristics have been obtained using theoretical calculations of the linear dependence of n_s versus V_g. Finally, the uncertainty and partial inconsistent of the results have been explained in terms of the affecting effects.

Keywords: Si/SiGe structure, Si/SiGe characterisation, X-ray and Hall technique.
مشخصه‌ی پایه‌ای ساختارهای دور‌الزمانی وارون بر روی X و الکتریکی

محمد علی صادق زاده

پژوه - دانشگاه زاهد - دانشکده فیزیک

چکیده: در این کار، ساختارهای رونش‌بان‌های تک‌لایه‌ای وارون p-Si/Si، SiGe/Si، Ge/Si مورد بررسی قرار گرفته‌اند. در نتیجه، سپت‌های طیف‌سنجی منتقلیات سطحی p-Si و SiGe نسبت به لایه Si، می‌توان نسبت SiGe نسبت به لایه Si را تعیین کرد. در این ساختارها، مشاهده شده که گاز حفشه دو بعینی با چگالی سطحی n، با روشن‌سازی آماده‌گیری گهگاهی شد و با اعمال ولتاژ مناسب به درجه مصنوعی (V)، قابل کنترل است. در ساختارهایی با روشن الکتریکی، دو مشخصه x و y با تغییرات خ黏ی به حساب n، به دست آمدند. در این ساختارها، عوامل مؤثری که موجب عدم قطع‌بندی نتایج هر روش و اختلاف جزئی آنها می‌شود، نیز توضیح داده شده‌اند.

واژه‌های کلیدی: ساختار، SiGe/Si، مشخصه‌پایه، ساختار X، Si/SiGe
ساختارهای نامت‌جاسی در آلاینده‌های
\(n/p\)-Ga\(_1_x\)Al\(_x\)As/Ga\(_x\)As/Ga\(_{1-x}\) و \(p\)-Si/Si\(_{1-y}\)Ge\(_y\)/Si

\(1-\) Field Effect Transistor
\(2-\) Quantum Well
\(3-\) Lattice Matched
\(4-\) Molecular Beam Epitaxy
شکل 1 ترتیب ناحیه‌ها (چپ) و نواحی طرفین در ساختار دور آلاتیده وارون (راست).}

یافته‌ای اغلب با نسخه طراحی شده منفاوت است. در اولین هدف پس از رشد، مشخصه‌بندی ساختار است و در این مقاله به آنها نتایج روش پرتو X و روش الکترونی در تعبین دو مشخصه بنیادی نسبت x در آلایژ Ge و ضخامت لایه پوششی l1 در ساختارهای دور آلاتیده وارون p–Si/Si1-xGe/x/Si برداریم.

مشخصه پایه روی پرتو X

sSiGe/Si مورد مطالعه Si/SiGe/Si/Ge/Si در ساختارهای نامتجانس در (200 nm) می‌باشد که در صورتی می‌گردد و نابش نصب‌کننده LM به سبب کمتر از ضخامت بحرانی است. لذا رشد تکثیرتیک آلایژ در حالتی که بدون تغییر جامداتی باشد در شکل 2 طرح‌هایی دو بعدی از ساختار یافته‌ای که در صورتی که می‌تواند به درصد x نسبت گذر آب با ساختارهای دور آلاتیده وارون سنتزی مشاهده شود و نسبت x به سبب آلایژی سیگنال برای برداشت به لایه‌های پوششی می‌باشد. ساختارهای در طرح برای این ساختار در کنار هر فلک مرتبط به لایه Ge می‌باشد. فلک توان وابسته به لایه Si/Ge، ظاهر شود. نسبت x در آلایژ Ge در می‌توان مستقیماً با استفاده از فاصله Si1-xGex مشخصه پایه روی پرتو X.
مشخصه‌یایی ساختارهای دور آتیبه وارون

شکل 2. طرح‌واره‌ی دو بعدی از ساختار نامناسب Si/SiO\(_{0.8}\)GeO\(_{0.2}\)/Si

جهانی زاویه‌ی میان قله‌های (004) دو نام‌د نه دست آوردال و 6. از طرفی شدت پرتو پراش
یافته از ساختار که به ضخامت لایه‌ها بستگی دارد را می‌توان با کاربرد رابطه زیر برای لایه‌های
پی در پی و سرجمع کردن آنها به دست آورد[8];

\[
R_n = \frac{R_{n-1} \sqrt{B^2 - EA + i(BR_{n-1} + E)\tan(B\sqrt{B^2 - EA(\Delta z_n)})}}{\sqrt{B^2 - EA + i(AR_{n-1} + B)\tan(B\sqrt{B^2 - EA(\Delta z_n)})}}
\]

که در آن \(R_n\) نسبت دامنه پرتو \(X\) پراش یافته به دامنه پرتو تابشی در سطح بالایی لایه \(n\)، \(R_{n-1}\) نسبت دامنه‌ها در زیر آن لایه \(n\), \(\Delta z_n\) ضخامت آن، و پارامترهای \(E\) و \(D\) و \(B\) و \(A\) و \(\Delta z_n\) و \(R_0\) نسبت دامنه‌ها در سطح زیراارد (با
است که بلوری نامحدود و کامل فرض می‌شود. طرح‌های پراش ساختارهای مورد مطالعه با دستگاه پراش سنج PHRD محیط به‌طور متوسط ۱۵۴۰۵۹۷ آنگستروم، به روش ۲/۲ Ω/۴ رهی و با نمونه شیب‌سازی شده با نرم‌افزار RADS کمپیوتری برآختند. با این نرم‌افزار منحصه‌های X و L (نخستین لایه آلیزی) را به روش سعی و خطا چنان تغییر می‌دهد که اگری شیب‌سازی شده و شرایط حاصل از بهترین پراش را داشته باشند. در شکل ۵ و ۶ دو نمونه مربوط به قله (۰۰۴) را PHRD که مناسب‌ترین و کاربردی‌ترین قله برای چنین ساختارهایی است [۵ و ۶] نشان می‌دهد. چنانکه مشاهده می‌شود قله (۰۰۴) در حدود ۳۵ قرار دارد و تفاوت جزئی ناشی از آمار کچش‌گی است [۵]. از مقایسه فاصله جدایی قله‌های Si و SiGe در ساختار ۵۶:۱۲ پیش‌تر از ساختار ۵۵:۵۳ است و به‌هین‌گاه پیش‌تر قله Ge در ساختار ۵۶:۱۲ نیز به همین دلیل است.

شکل ۵: نتایج تجربی پراش پرتو X (خط‌وط و دوایر پر رنگ) و محاسبات مدل شیب‌سازی (خط‌وط و دوایر کم رنگ) از قله‌های (۰۰۴) ساختار ۵۶:۱۲.

۵- Philips High Resolution Diffractometer
۶- Rocking Curve Analysis by Dynamical Simulation
۷- Bede Scientific Instruments Lt.d
شکل ۴ نتایج تجربی برای پرتو X (خطوط و دوایر بر رگن) و محاسبات مدل شبیه سازی (خطوط کم رگن) از قله های (۰۰۴) ساختار ۵۵۵۳

مشخصه بایپ در روش الکتریکی

شکل ۵ ساختار دریچه داری را نشان می دهد که اتصال‌های (الومینیوم و دریچه‌ای (Contact) پس از رشد روی ساختار یاد شده ایجاد شده‌اند [۸]. با پاشیدن آلومینیوم بر سطح سیلیکان، پوششی به صورت قرصی‌ای به قطر ۱µm و ضخامت ۱mm و یخت در محیط ازرت در دمای ۵۵۰°C به مدت یک ساعت اتصال‌ها، اتصال‌ها شکل پیچیده‌ای در فرآیند یخت، اتم‌های آلومینیوم به عمق ساختار نفوذ کرد و اتصال الکتریکی از سطح با گاز اکسیژن برقرار می‌شود. پس از شکل گیری اتصال‌ها، فرآیند دریچه‌سازی با قرار دادن نفاث و بن از سطح ساختار شروع می‌شود. سپس با پاشیدن Ti و سپس Al و یخت در دمای ۱۵۰°C به مدت ۱۰ دقیقه، بیوند به وجود می‌آید. در آخرین مرحله با نفاثی کنی، عملیات خورش شیمیایی در محلول Ti/Si به وجود می‌آید. در اینجا هر از یک ساختار HF انجام می‌شود و ایزوله‌ای و اندر‌بار و هال بار به دست می‌آیند. جایگاه سطحی گاز n_1 انسجام موضوع و بر اساس کارهای و جایگاه سطحی x در دی‌هی‌بی [۸] واژه‌ای در جایگاه سطحی x و به ضخامت‌های جدایی‌نگذارند. ۲DHG B و مناسب است که البته با غلاف‌های خارجی بروند. B در دی‌هی‌بی (ب) از طرف جایگاه سطحی گاز (جهت روس هال) در اندام‌کردن و با تغییر ولتاژ اعمالی به دست آمده (V_var) کنترل کرده (V_1 گامنت [۸]). تغییرات n_1 از تغییرات V_1 در ساختارهای مورد
مطالعه که در دمای $T=4.2^\circ K$ به روش هال (روش الکترونیکی) به دست آمده‌اند (نمادهای) در شکل 6 نموده شده‌اند. نتایج تجربی و محاسبات نظری نشان می‌دهد در هم‌ساختارهای دریچه‌دار جرف‌های (با الکترونی) اهمیت تغییرات خطی $n_s V_g$ بر حسب $n_s V_g$ با ΔE_V در لایه آلیاژی (x) بوده ولی با افزایش ضخامت لایه جدایی، به عبارت دقیقتر با مقدار مؤثر t_{eff} کاهش می‌یابد. لازم به یادآوری است که در ساختارهای وارون، t_{eff} همواره کمتر از مقادیر طراحی شده (t_1) است و این به دلیل پدیده واندگی آلایندگی در رشد مسح‌گر MBE و وجود آنها در لایه جدایی است. [43] محاسبات نظری بر اساس حل خودسازگار معادلات شرودینگر و در پاسخ برای ساختارهای مورد مطالعه انجام شده است [8]. در این روش با تغییر در لایه آلیاژی x مستقیماً به نسبت ΔE_V که ترکیبی بر اساس $10nm$ می‌باشد و به پاسخ t_{eff} در لایه آلیاژی (x) با پاسخ t_1 و t_2 مشابه است. هر دو را می‌توان با بهترین برازش محاسبات نظری و نتایج تجربی، به دست آورد. شکل 7 نمونه‌ای از محاسبات نظری (خط پرا را نشان می‌دهد که با انتخاب 42° و $t_{eff} = 11nm$ انتخاب 75.51^{nm} برازش مطلوبی به دست آمده است.

![شکل 7: نمونه‌ای از محاسبات نظری (خط پرا را نشان می‌دهد که با انتخاب 42° و $t_{eff} = 11nm$ انتخاب 75.51^{nm} برازش مطلوبی به دست آمده است.](image-url)
شکل ۷ تغییرات نتایج تجربی (داربینه) و نتایج نظری (خطوط) چگالی گاز حفره‌ای در ساختار در حال حاضر با حساب و ولتاژ درجهٔ V_g در ساختاری مورد مطالعه.

شکل ۸ نتایج تجربی یک گاز حفره‌ای دو بعدی n_s بر حسب ولتاژ درجهٔ V_g در ساختارهای مورد مطالعه می‌باشد.

شکل ۹ نتایج تجربی یک گاز حفره‌ای دو بعدی n_s بر حسب ولتاژ درجهٔ V_g در ساختاری مورد مطالعه می‌باشد.
بحث و برداشت

در این پژوهش، ۴ ساختار X با دو روش الکتریکی و پرتو p-Si/Si، Ge/Si، Si/SiGe مشخصه‌بایی و نتایج حاصل در جدول ۱ درج شده‌اند که نشان می‌دهد که نتایج حاصل از دو روش، سازگاری خوبی دارند. اختلاف جزئی و عدم قطعیت نتایج بعضاً به عوامل زیادی مربوط می‌شود. نتایج[۱۱] و نواحی‌های پیده‌ها مشاهده شده‌اند، در رشد این ساختارها و Si/SiGe عامل ناپایدی این سه نماهای برای هستند. همچنین از آنها که جای‌گیری انعکاس در لایه آلبایژی کردن‌ای است و چنانکه شکل ۲ نشان می‌دهد، باعث‌هایی مجازی می‌توان بافت که فاقد Ge بوده و این موضوع افت و کاهش این نتایج در بازه‌های آلبایژی[۱۲] و پهون‌شدن Ge در طرح پرتو می‌شود و این عوامل در خطای پرتو X مبتنی، در مقابل وجود بارهای الکتریکی در پیوندهای[۱۳ و عدم قطعیت در غلظت ناخالصی و اثری برانگیختگی تا خالصی‌های برون، عمده خطاها دخیل در روش الکتریکی به شمار می‌رودند. نسبت فراوانی کردن که این ورودی برتری‌ها و صحت‌های پهون‌های دارند. در روش الکتریکی می‌توان ضخامت پوششی لایه جداگانه[۱۴] را به دست آورد و حاصل که این کار برای تعیین ضخامت لایه آلبایژی عملی نیست. از آنها که فرایندهای دیسک‌سازی به انجام آمایش هال در دمای پایین دشوار و وقت گیرند، لذا این روش فقط در مطالعات خاص به کار گرفته شود[۱۸ و ۱۵] در مقابل از روی پرتو X به حالت سرعت و سادگی کار به طور گسترده‌ای در مشخصه‌بایی ساختارهای انتخابی استفاده می‌شود و دیگر اینکه در روش پرتو X می‌توان ضخامت لایه آلبایژی را با دقت خوبی به دست آورد هر چند که در تعیین ضخامت مؤثر لایه جداگانه، این روش ناپایدار است.

خلع اینکه در این مقاله ساختارهای دور انگشت وارون p-Si/Si، Ge/Si با روش‌های Ge پرتو و الکتریکی مشخصه‌بایی شده‌اند. در روش اول ضخامت لایه پوششی (l۱) و نسبت Ge بر روی الکتریکی مشخصه‌بایی شده‌اند. در روش دوم ضخامت لایه آلبایژی (l۱(\(\alpha x\))) با شیب‌سازی کامپیوتری نتایج جزئی سطح پل‌های (۰۰۴) به دست آمده‌اند. در روش الکتریکی با پرتو نظری تغییرات گاز حفره‌ای دو می‌شود و به دست آمده‌اند. از دست آمده‌اند. علپس دخالت عوامل وزیگایی که موجب پیدایش خطافی در نشانی هر روش می‌شود و در تعیین مشخصه‌های l۱ و X وجود دارد.
جدول 1 مقایسه مشخصاتی از دو روش الکتریکی و پرتو X.

<table>
<thead>
<tr>
<th>روش الکتریکی (X)</th>
<th>روش پرتو (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(meV) ΔE_{\nu}</td>
<td>I_{p} (nm)</td>
</tr>
<tr>
<td>54.39</td>
<td>0.19</td>
</tr>
<tr>
<td>55.1</td>
<td>0.34</td>
</tr>
<tr>
<td>56.16</td>
<td>0.24</td>
</tr>
<tr>
<td>55.53</td>
<td>0.19</td>
</tr>
</tbody>
</table>

تشکر و قدردانی
این ساختارها در گروه نیمردانی یکشن فیزیک دانشگاه واریک افغانستان طراحی، رشد و آزمایش شده‌اند و مؤلف از پرفسو پارک و دکتر فیلیپس به خاطر رشد ساختارها و راهنمایی‌های مفید تشکر و قدردانی می‌نماید.

مراجع