Microfacies, Depositional Sedimentary Environment and Primary Carbonates Mineralogy of the Cretaceous Succession in Bashm Mountain, South of Central Alborz

K. Bazargani-Guilani, M. Faramarzi

School of Geology, University College of Science, University of Tehran, Tehran, Iran
Email: kbazargu@khayam.ut.ac.ir

(Received:2006/8/30, received in revised form:2007/2/5)

Abstract: Cretaceous succession of Bashm mountain, located in south of Central Alborz, is a part of Alpine-Himalayan orogeny belt. In this paper, Cretaceous at the age of Albian-Turonian which consists well-beded dolomite and limestone, cherty limestone and massive limestone and which have become host rock for Lead and Zinc deposits is studied. 6 profiles of this Cretaceous were selected from Reza-Abad, Heydar-Abad and Reza-Barak abandoned mines, and Bozmolla occurrence. Their outcrops thickness varies between 290-540 m. Petrography of the studies area revealed that the sediments are consist of 15 carbonate facies. Most likely this facies have been deposited in inner, outer and mid ramp. Beside this, tectonic characteristics of forland basins which is dominant in Cretaceous time for this area, has revealed the presence of carbonate ramp. The most important diagenetic processes in these studied facies were biogenic processes, compaction, dissolution, cementation, neomorphism, dolomitization, dedolomitization and silification. The most important mineralization processes related to porosities were found in intergranular, intercrystalline (in dolomite), joints, faults and karsts. Formation TD-ICP chemical analysis of Ca, Mg, Sr, Mn, Zn, Pb elements and INAA chemical analysis of Fe, Na elements for 6 samples of Cretaceous showed decreasing in Sr and Na and increasing in Fe and Mn elements. These result may suggest, the comparison of aragonites of warm areas and calcites of recent temperate during diagenes process. Comparing values of these elements with warm water Ordovician Gordon Limestone (Tasmania) and Mozduran carbonates (Upper Jurassic) showed mineralogy similarity between shallow carbonates of studied area and those which is mostly observed as an indicator of mineralogy of primary aragonite.

Keywords: Cretaceous, Central Alborz, Bashm Mountain, facies, depositional environment, diagenes, primary aragonite mineralogy.
چکیده توالی کرتانه کوه بشم در جنوب البرز مرکزی، بخشی از کمربند کوه‌ای آب‌هیمیالیست، در این کار پژوهشی توالی کرتانه با سن آلبین-تورونین، شامل دودومیت و آهن با لاین‌بندی خوب، آهن‌های چری و آهن‌های توده‌ای مورد مطالعه قرار گرفته‌اند که نشان می‌دهد کانسپرسی سرب و روتان‌های شایان‌الشکوهی کرتانه در سمت راست اندازه-گیری شده در معادن متراکن سرب و روتان‌های، حیدرآباد، و رضاءی از ۳۹۰ تا ۵۴۰ متر به تغییر زمانی رسیده است. با اکتشاف مطالعات سنگ‌سنگ‌شناسی، تنظیم‌های منطقه مورد مطالعه شامل ۱۵ میالی و خارجی برخا گذاشته رشدند. همچنین ویژگی‌های زمین صحیح در این کرتانه این منطقه حاکم بوده‌اند. جهت یک کرتانه به‌طور کامل کرتانه در رخساره‌های مطالعه شده عبارتند از: فرآیندهای ریزسی، فشردگی، احاطه، سیمیکالی، دودومیت‌شن، وادومیت‌ترین سیلیس‌شن. از مهم‌ترین تخلخل‌های مرتب با کانی‌زایی می‌توان از تخلخل‌های بین‌دانایی، بین بخاری (در دودومیت‌ها) دردیده، شکستگی‌ها و کارگاه‌های نام‌بوده. تجزیه شیمیایی عناصر Cu، Mg، Fe، Na، و آنین‌ها با TD-ICP این آزمایش‌ها با آرام‌گونه‌های نواحی گرمسیری و کلیه‌های نواحی معتدل در طول دو نمونه مربوط به درون‌زایی نواحی گفتاری می‌کنند. با مقایسه‌های این عناصر با آهن‌های بیشتر آراکونی آبی بروم‌آبی ناحیه دیمچکی مغزودان تا رسیدن کانی‌شناسی کرتانه‌های محض‌های مورد مطالعه با این گروه‌ها از می‌تواند با بررسی کانی‌شناسی اولیه آراکونی دل‌های دارند.

واژه‌های کلیدی: کرتانه، البرز مرکزی، کوه‌بشم، رخساره، محیط‌رسوبی، درون‌زایی، کانی‌شناسی

کمال‌الدین بازرگانی گیلانی، مريم فرامرزی

دانشکده زمین‌شناسی و بررسی علوم دانشگاه تهران

کناره‌ی برگزیده کمیته دارای اکتشافات علمی

پست الکترونیکی: kbazargu@khayam.ut.ac.ir

دریافت مقاله ۱۳۹۵/۶/۱۴، دریافت نسخه نهایی ۱۳۹۵/۶/۱۴/۱۲/۱۳، دریافت ۱۳۹۵/۶/۱۴/۱۳/۶/۱۳، دریافت نسخه نهایی ۱۳۹۵/۶/۱۴/۱۳/۶/۱۳، دریافت نسخه نهایی ۱۳۹۵/۶/۱۴/۱۳/۶/۱۳، دریافت نسخه نهایی
انواع سنگ‌های کریستالی که در ناحیه کوه پشم (شمال سمنان) پیدا شده‌اند. سه نوع از سنگ‌های اصلی که در این منطقه پیدا شده‌اند، از جمله سنگ‌های برون‌زدایی، سنگ‌های پتولیت و سنگ‌های اسپینالیزیت هستند.

شکل 1. نقشه راه‌های دسترسی و موقعیت منطقه مورد مطالعه در تقسیم‌بندی ایران.

1- جاده خلخالی، 2- جاده چهارراه شریان، 3- جاده استانی درجه 1، 4- رودخانه بلخ، 5- رودخانه خلخالی، 6- انتقال از سطح دربای A موقعیت B موقوفیت B، C بخش‌های این بخش A، B، C موقعیت B، 7- موقعیت B، 8- موقعیت B، 9- موقعیت B.
زیمن شناسی و موقعیت چین‌نشانی
منطقه مورد مطالعه، در یک زمین ساخته‌ای واقع در گرفتگی است که خصوصاً از کم‌رده‌های گونه‌ای آلپ-هیمالی است. این مجموعه کوه‌زایی حاصل برخورداری ارتفاعی بالا می‌باشد به ویژه در خاک‌های تاریخی حیاتی و روانی که در نتیجه تعادل ریز و توان در تریاس پسین است. برز به سرعت حوضه‌ای که با عدم تناقض در عمل وارد دوره‌ای که می‌باشد، آن را نشان می‌دهد.

[۱۶] در این پژوهش، ابتدا چهار گونه‌کاگیزی که در این صورت جایی برای پذیرش و پذیرش مطالعه نشان می‌دهد، در این مجموعه کوه‌زایی حاصل برخورداری ارتفاعی بالا می‌باشد به ویژه در خاک‌های تاریخی حیاتی و روانی که در نتیجه تعادل ریز و توان در تریاس پسین است. برز به سرعت حوضه‌ای که با عدم تناقض در عمل وارد دوره‌ای که می‌باشد، آن را نشان می‌دهد.

است
از نظر موقعیت چین‌نشانی، تولای کرتانه مورد مطالعه به نابی‌گویی هم شیب روی سازنده
لاز قرار گرفته است. در مزه‌هایی به وسیله گسل انزاب کتی از پترونی ویا سازندگی شمشک و شیشه گل‌هایی که به بخش خیلی تن تندر، در N ۴۵°۰ غرباً به شکل E ۶۰۰ متراً نیز در جنوب مورد مطالعه بین ۲۴۰ تا ۲۰۰ متراً ضخامت دارد. در این کار پژوهش ۵۲۰۰ متر از این توابع شامولیوم و به‌طور خاص
خاک‌های تا کرم با به‌میندی خوب و به‌طور خاص خاک‌های رونچ اهم و مانند با لایه به‌طور مورد مطالعه کرتانه کرتانه
بندی نازک و لایه‌بندی بردک خاک‌های سرخ و به‌طور خاص خاک‌های جفت‌در
کرتانه کرن
دها شناسي خريج، و از سمت راست به چپ (شمال به جنوب) شامل D، Ma، و Ch، اهک چرتدار است.

شکل 4 دور نمایی از برخ چیچه شناسی حیاد از و از سمت راست به چپ (شمال به جنوب) شامل D، Ma، و Ch، اهک چرتدار است.

شکل 2 مقايسه ستون چیچه شناسی گرانش در منطقه بشم (1) با نواحي ديگر البرز مرکزي، دردند.

شکل 3 مقايسه ستون چیچه شناسی گرانش در منطقه بشم (1) با نواحي ديگر البرز مرکزي، دردند.

شکل 1 دور نمایی از برخ چیچه شناسی (2) رضا اباد که با برخورداري به دشت ختم مي‌شود و از سمت چپ به راست (شمال به جنوب) شامل D، Dolomiti اهکدار، Ma، اهک و مارن، Ch، اهمت اهکدار، ما، Ma، و Ch، اهمت اهکدار است.
روح بررسی

در این کار شش برش از سنگ‌های کربناته معادن سرب و روی متروکه رذا ایجاد
(\(R\)), بزملا (\(B\) و حیدریاب (\(A\)) (B) و رضاک (\(H\)) انتخاب، و شکل‌های آنها ادغه گیرب شدن (شکل 5) با
جمع‌آوری بیش از 10 نمونه براساس تغییرات رخسار، مقاطع میکروسکوپی نازکی از آنها
تهیه و با آلپارین سرخ و فروپیایی پناسیم، برای تشخیص سنگ‌شناسی سنگ‌های کربناته، و
تعیین وجد و عدم وجود دولومیت به روش [21] رنگ آمیزی شدن. سپس اجزای اسکلتی و
هیمال وی اندازه‌گیری شد. برای تعیین درصد فراوانی دانه‌ها، چارت مقایسه‌ای [2] اعلام استفاده قرار گرفت. امکان‌دیدی
TD-IAP نمونه‌ها بر اساس تابع‌های آنالیزی [22 و 23] انجام گرفت. تجزیه شیمیایی
فنا یا در دانشگاه کلاوستال Fe، Na و Ca، Mg، Sr، Mn، Zn، Pb
عناصر INAA و عناصر عناصر Ca، Mg، Na، Sr، Mn،
المان انجام گرفت. دقت اندازه‌گیری عناصر 6 ppm Pb ± 1 ppm Zn

بررسی شناختی
بررسی‌های سنگ‌شناسی (نوع کمی و کیفی اجزای اسکلتی و غیر اسکلتی و نیز تفاوت در
اندازه ذرات تشكل دهده) و شواهد صحرایی نشسته‌ی منطقه مورد مطالعه منجر به

شکل 5 ستروهای چین‌سایشی پرش‌های کرتاها مورد مطالعه 1. ایک توده، 2. ایک ضخیم لایه، 3. ایک توده، 4. ایک نازک لایه، 5. ایک مار زنی، 6. ایک برزنت، 7. دولومیت زین لایه، 8. دولومیت ایکدازدار، 9. دولومیت توده‌ای، 10. دولومیت ضخیم لایه با تنها مارن، 11. دولومیت نازک لایه
تشخيص 15 رخاسة شد ك اساسها از رخاسهای استاندارد ارائه شده توسط [3 تا 5] می‌توان دریافت که این رخاسه‌ها با توجه به محیط تشکیل آنها در گروه قرار می‌گیرند. در زیر به ترتیب هرکدام از رخاسرهای سمت حوضه به ساختمان توصیف می‌شوند:
1- گروه رخاسه‌های (اسبیکولیت). این رخاسه شامل مادستون ب یا سوزن‌های اسفنج تک محوره و سه محوره سیلیسی می‌باشد. مادستون $A1$، Pithonella ovalis، Heterohelix reussi و Pithonella بایوکلیستی. این رخاسه شامل فرامینفرهای پلازیک، Rugoglobigerina sp، Ticinella sp، $A2$، Oligosteginid Calcisphaerula sp، Pithonella، Heterohelix reussi و Stomiosphera sphaerica، Pithonella، Heterohelix reussi و Oligosteginid Calcisphaerula sp، Pithonella，
شدهاند. این رخساره در روی زمین به صورت آهک خاکستری نازک لایه، با لامیناسیون طرف، مارن و آهک ضخیم لایه، با لامیناسیون طرف است. بیشترین گسترش این رخساره در بوش بزیمی دیده می‌شود (شکل 5).

رخساره A3 (پکستون-ریز یا پایکستو) این رخساره دارای فرامینفر، بروپوزنرهای درشت، بلیس پود (اووسترو و اینوسراموس)، کرایتونید، اکینودرم و قطعات خرد شده یا تکاپلستی است (شکل 6). میزان کرایتونید به ۲۰ درصد می‌رسد. اجزای دیگری شامل گلوکتون و پروتین است که در روش میکروفسیل‌ها را پر کردن، و در روی زمین به صورت آهک‌ها خاکستری تیزه و توده‌ای به صورت بین‌انگشتی با رخساره‌های A2، A1 و A4 توده‌ای دیده می‌شود.

2- گروه رخساره B این گروه از ۴ رخساره B1، B2، B3، B4 می‌باشد که هر یک از این رخساره‌ها در صورت می‌تواند قطعات دیواره رودیست‌ها یا ساختمان‌هایی از نیز بروپوزنرهای فرامینفر است (شکل 7). این رخساره در حیرت‌آور و رضایت‌بخش می‌شود.

رخساره B1 (پکستون گریزه پایکستو) این رخساره حاوی کرایتونید تا ۵۰ درصد، فرامینفر، بروپوزنر، اووسترو (سپیسی) و جلبی است. از دیدگاه احرازی آن کرایتون ۱۰ درصد، گلکتون ۵-۱۰ درصد، چرب و فلزی است (شکل 7). این رخساره در روی زمین به صورت آهک خاکستری و توده‌ای دیده می‌شود.

رخساره B2 (پایکستون یا پایکستو). شامل شدیده‌ای بلیس پود مانند قطعات دیواره رودیست‌ها یا ساختمان‌هایی از نیز بروپوزنرهای فرامینفر است (شکل 7). این رخساره در حیرت‌آور و رضایت‌بخش می‌شود.

رخساره B3 (پکستون ریز یا پایکستو). این رخساره دارای ۵۰ درصد بلیس پودهای برگ و شکستگی‌های مانند اینوسراموس، ۲۰-۳۰ درصد جلبک و آئید میکروپوتون، و ۵ درصد فرامینفر (سپیسی)، کرایتونید، بروپوزنر و بروپوزنرهای ۰-۱۰۰ μm- فم. است. قطعات بلیس پود بیش از ۵-۱۰mm حاشیه‌برخی از اجزای اسکلتی می‌باشد. بلیس پودهای را پوشش میکروپوتون گرفته و بیشتر دچار مرگ‌دهی و شکستگی شده‌اند (شکل 7). که نشان می‌دهد انرژی محیط نسبتاً زیاد بوده است و این نمونه‌ها به عنوان (Sea ward) مربوطند. در روی زمین این رخساره به صورت آهک خاکستری توده‌ای است.

رخساره B4 (پکستون جلبکی یا پایکستو). این رخساره دارای ۵۰ درصد جلبک و ترخس گسترش نشان دهنده جا و جاینده در آن دیده می‌شود. از دیدگاه احرازی آن ۱۰ درصد فرامینفر (سپیسی) بلیس پود ۱۵ درصد، پلوئید ۱۰-۲۰ درصد است. گلوکتون ۵-۱۰ درصد، ذرات تکسیم و کاروتین ۱۰-۲۰ درصد از این رخساره را تشکیل می‌دهند. این رخساره به صورت آهک خاکستری و سرخ مایل به قوهای توده‌ای در بوش رضایت‌بخش می‌شود (شکل 7).
شکل 7. رخساره پکسیون کرایتانیدی باپولکلستی (B1) که دارای خرد های کرایتانید، فرامینفر، بلورهای سیاه پیریت، گلوکونیت و بلورهای کوارتز به رنگ سفید، نمونه R21 (PPL، A42) رخساره گرین استون- پکسیون اینوساراموس دار و باپولکلستی (B3) شامل بلوری پودهای برگ و شکسته با پوشش میکرایشی، پلت و آلیه، نمونه R23 (PPL، A42) رخساره پکسیون جلبی باپولکلستی پلاستی (B4) باقی جلبک سرخ، مبلیولیده، پلوئید و قطعات باپولکلستی، نمونه A25 (PPL، A42).

3- گروه رخساره C: در این گروه 8 رخساره شناخته شدهاند.

رخساره C1 (گرین/استون آلیتی (یونتارکلستی): آلیئد میکروالار ترین آلیکوم موجود در این رخساره است. انداره متوسط آنها بین ۱۰۰۰-۵۰۰ میکرون با مقطع دایره‌ای، بیضوی و سیاه‌پوش با فراوانی ۷۰ درصد است. این آلیئها میکراتی پرگی و شکسته از آنها تا یک لایه خارجی دارند. هسته شکسته از این آلیئها فراخینفر و کاستروپو که پلت، فرامینفر و الیئپوپدیت از دیگر اجزای این رخساره است. (شکل 8 فل). در روزه زمین به رنگ کرم مایل به قهوه‌ای و متوسط تا ضخیم لایه (۱-۲ میلی‌متر) دیده می‌شود.

رخساره C2 (فراخک/استون مرجانی): دارای قطعات مرجانی است (شکل 8 ب) و به طور محدود در راز آباد وجود دارد.

رخساره C3 (گرین/استون آلیتی (یونتارکلستی پلیتی): این رخساره ۲۰-۴۰ درصد آلیئد با قطر متوسط ۸۰۰ میکرون، ۴۰-۱۰۰ درصد اینترکلست، ۲۰-۵۰ درصد پلت و باپولکلست.
پارک‌های گیلاسی، فرامرزی

درد. در مواردی آلتیدها شکسته شده و به صورت هسته‌ای برای آلیبد بعدی در امتداد برخی از آلتیدها به صورت دوتایی به بکریگ، چسبیده‌اند. همست پس از آلتیدها نیز این‌تراکست‌های قبلی هستند. آلتیدها دوای یافت کامل‌های شم هر مربوط، شعاعی و با ترکیبی از شکل (شکل 7، ج). با توجه به داده‌ها (۲۴) ۲ نوع لامينه در این آلتیدها نیز قابل تشخیص‌اند.

۱- لامینه میکروتیپی-۲- لامینه کلیسیت‌رنشته‌ای - شعاعی-۲- لامینه آراگوئینی؟ این رخساره برگشتی بافتی را نشان می‌دهد. در روز زمان این رخساره به صورت اک در دفع رنگ با دانه‌ای در حد ماسه به رنگ فوهای و خاکستری که همان آلتیدها و اجزای دیگر است. دیده می‌شود. هسته این رخساره تنها در برخ آباد به صورت محدود و عدید مانند است.

رخساره C4 (۴۰ رنگ استون- پکستون پلی آلیبدی، این رخساره حاوی ۴۰ درصد پلیت، ۱۰۰ درصد آلیبد. ۱۰ درصد این‌تراکست، و فرمینیفر است. مقطع طولی پلت ۴۰×۲۰۰ میکرون است. برخی از آلتیدها دارای ۱ یا ۲ لایه هستند. پرپریت و اکسیده‌ای آهن نیز در این رخساره وجود دارد. دومیتیت خودشکل گشش و دیگری انجام‌شد. این آلتیدها با لایه‌های ۷۰-۱۰۰ سانتی‌متر، به رنگ خاکستری، کرم رنگ قهوه‌ای و برخی دارای استیلولیت موازی لایه‌بندی دیده می‌شوند.

شکل ۸ (الف) رخساره گرین استون آلیبد میکروستی با مقطع دایره، پرپریت و میلیای است. نمونه R109 (XPL) (C1) دارای (۲) دراز این‌تراکست عوض (VPL). (ب) رخساره گرین استون مرکزی (C2) دارای (۲) دراز فلزات مرجانی که تحت تاثیر دومیتیت‌های فراز گرفته‌اند، نمونه R36 (PPL). (ش) رخساره گرین استون- پکستون آلیبد میکروستی با مقطع دایره، شامل این‌تراکست، پلیت و این‌تراکست‌های پلیتی، که هسته برخی آلتیدها از این‌تراکست‌های قبلی است. نمونه R29 (PPL). (د) رخساره گرین استون- پکستون آلیبد (C4) شامل پلیت، آلیبد میکروستی، میلیولیه، دومیتیت خودشکل، نمونه R41.
رخساره‌ها، محيط رسوي و كانيشنالي کردن‌های

رخساره‌ها

(گدرین استومن- پکسن یانی)، این رخساره شامل پلت و نوعی کورپولیت به نام فاروپاس (پایین، ۱۵۱) پلت‌ها از اشکال کروی و میله‌ای و فراوانی در حدود ۸۰ درصد دارای قطری در حدود ۴۰۰-۴۴۰ میکرون هستند. اجزای دیگر از شرکت آند پلرشر دو لایه‌ای کورپولیت با مقطعی طولی ۶۰۰-۸۰۰ میکرون و عرضی ۳۰۰۰ میکرون و ۵۰ درصد فرامین‌های ۳۰-۵۰ درصد با پدیکس و جلبک است ترسیم‌شده. در مواردی علقو بر ذرات کردن‌های ذرات اولی کورپوز در حد ۵ درصد سنگ را تشکیل می‌دهند. دانه‌های کورپوز در حد سیل‌بنده و تیغه‌ای شکل و کشیده هستند. در زمان‌هایی این آهک‌ها به رنگ خاکستری و نارنجی‌ایاند.

رخساره‌ها

(پاپاژاستون جلبکی یانی به درستی استومن جلبکی یانی)، این رخساره‌ها

جلبک استروماتولیت است که به‌طور پایدار ۴۰۰-۸۰۰ میکرون نا دارد و کورپولیت با مقطع طولی ۶۰۰-۸۰۰ میکرون به میزان ۱۰ درصد در آن بین افتاده‌اند. برخی از دانه‌های تیغه از ایجاد جلبک استروماتولیت‌ها دافع می‌شده‌اند. اکثر آنها رنگ سرخ به این رخساره بخشیده است. این نمونه‌ها دارای لایه‌های طرف، لایه‌بندی نارک و در داره‌ها است (شکل ۹ الی ۱۱) ساختار اپنه (فسترال) از نوع پایین‌های نامنظم (شکل ۱۰) و قابل‌های زیبی (شکل ۱۰) نیز در این رخساره حضور دارند. با توجه به مطالعات [۲۶] این نوع ساختار چشم پرنه‌ای ناشی از خشک‌سوزی و مستقیم‌سازی بر اثر رختمان فروکٹی نشان‌دهنده هستند. در برخی نمونه‌ها بلوه‌برد دومزبیت با استوپولیت‌ها و یا به صورت خوشه‌ای و کوچک در ایجاد لایه‌بندی قرار دارند.

رخساره‌ها

(پیستی مادستون)، این رخساره شامل یک اکسی تکنیک شده است و هیچگونه آثاری از اجزای اسکلتی در آن دیده نمی‌شود. رگ‌های استوکورکی کلیسیت و نیز استوپولیت در بیشتر نمونه‌های این رخساره مشخص است. پریت‌رل نیز که حاشیه خود را فهرزان کرده است در این رخساره دیده می‌شود.

رخساره‌ها

(تاپسیتی)، این رخساره از قطعات آهک‌یا جورشگرگی و گردش‌گرگی به در

اندازه ۱ میلی‌متر تا ۳ میلی‌متر تشکیل شده که سیمان آنها کلسیت است. قطعات تشکیل دهنده آن شامل مادستون با بلوه‌برد دومزبیت و کاپیه‌ای آه این کپستون پلتی این‌کلاستیک با ذرات کورپوز، چرت و قطعات دومزبیت توالی‌های پاپاژیر است. بر اساس تفسیری [۳۲] این کپستون دریون سازنده بوده و از نظر بالینی، ارتوکلیروم و از نظر ترکیبی کپستون‌های پلی میکنیک است. این رخساره با گسترش محدود به صورت نارنجی در رضا آید و جنرال مشاهده می‌شود (شکل ۹).
شکل ۹ یافته‌های میان‌سالیون طرف، لایه‌بندی نازک و مار‌نار در رخساره‌های پایین‌دانه جلبک پلنی (C6) ب) رخساره نمی‌ستاپیت (C8)، کنگلومرات درون سازندی از قطعات آهکی با جورش‌دگی و گردن‌دگی بدن.

شکل ۱۵ یافته‌های پایین‌دانه پشتی که اجزای اسکلتی، فرامینگر (یلیو‌لنگ) و پلیت در آن مشاهده شده، نمونه‌ی A (PPL)، R51-

(پ) رخساره‌های پشتی پشتی (C5) شامل پلیت و فوریتا، نمونه‌ی R26 (XPL) (ج) رخساره‌های پشتی پشتی جلبک اسکلتی، قلب‌های زیست و استیلولیت، نمونه‌ی R27 (PPL) (د) رخساره‌های پشتی پشتی جلبک اسکلتی (C6) که دانه‌های پلیت در اسکلتی پشتی بادام‌افتدایان. ساختار نمای پشتی پشتی (XPL) و استیلولیت نیز مشاهده می‌شود، نمونه‌ی R27 (PPL).

محیط تانشینی و مدل تانشینی
رخباره، محیط رسوبی و کاتیشنی کریبتهای

با توجه به مطالعات صحراصل، سنگشناسی، و روش اندیش منتقد کردن طنین و البته دنبال آن رخبارهای که روی یکی از قرن‌های در زمان تشکیل ماحول هم‌بودن و نیز با مقابله با کارهای [1-3، 4 و 28-30]، می‌توان برای سنگ‌های آهنگ کریبتهایی در منطقه مورد مطالعه یک تحقیگ
کریبتهای کم عمق از نوع رمبا به چند غیربازداره که سر کردن رخبارهای رم خارجی،
رمب میانی و رمب داخلی در آن قرار دارند پیشنهاد کرد (شکل 11).

نتایج حاصل از مطالعات سنگشناسی نشان می‌دهد که رخبارهای A به دلیل داشتن
سوئس‌های اسفنج سیلیسی، فرامینگریت بلزایک، بریوزورتی درشت، پلی‌پود، کراتیند، و
اکتیودرهمراه با مقدار زیادی کل در پی مجهز با انرژی بالایی و نرخ تغییرسنتی آرام،
متاسببا به‌صورت دور از ساحل است. در رمب خارجی و با میانی برخا گذاشته شدهند. رخباره
دراز Sverdrup این مشابه حوزه کانادا 20101 در رمب خارجی و با میانی به‌عنوان شده
است. رخبارهای A3 و B1 تشکیل شده از خرددهای فسیلی به ویژه کراتیند، وابستگی
زیادی به توابیدهای دارد، بسیاری از سنگ‌های آهنگ عمق از خرددهای کراتیند،
مشق شده از تخته‌های کم عمق، تشکیل شدهان (31). لذا این رخبارها می‌توانند به‌دست
کندن یک رمب به یک چسب چپ در باشند که خرددهای کراتیندزا از طریق شب جلوی
آن‌ها به باشته‌های عمق تر ریخته شدهان. گروه رخباره B شامل اجزای جهان استون
روبدیسی، پلی‌پودهای زرگ و شکسته با پوشش میکرو‌آنتان اینوردیس و اوبرتر
(سیلیسی)، جلیک سرخ، اکتیندروم، پپیوژور، فرامینگر (میلیونیچا و تکستوریلیا).
پلی، کورپولیت، و کاستروود است. نوار سنگی رودیسیتی رخباره B2 یک ریفت کومه‌ای را در
باید نشان و نشان از یک رمب آنیب کرده است. این رخبارها به رمب میانی به‌عنوان شده.
گروه رخباره در رمب داخلی نشته شده است که جایی نیست به‌عنوان میکروفرازات دریایی، در برابر
C2 محدود. نس ماسیو، لاکوان، و رون پیدال است. محیط تشکیل آلودگی در رخباره
C1 متصل به سد آلیمی است. رخباره C3 به دلیل برگشتهای بافتی مربوط به سمت لاکون سد
آن‌یک دیده و رخبارهای C4 و C5 با داشتن پلت، کورپولیت و خرددهای اسکلتی نظر
میلیونیچا، تکستوریلیا و کاستروود به همراه گل و با لایه‌نمایی نازک در صخره، و بازگشای
تشکیل در ماحول لگون را نشان می‌دهند. رخباره C6 که ماده‌نتینی فاقد اجزای
بافت ورقای ظرفی و ماریمی با قابلیت زیبی، و رخباره C7 که ماده‌نتینی فاقد اجزای
اسکلتی است در زون پیدال قرار دارهند. رخباره C8 که به‌عنوان مک اسکلتی
میوید سپری در دیها و خروج منطقه از آب و ته‌نشی در محیط ساحلی آن‌ها داره در زون
پیدال کرده شده است. اجزای این کاتیمورا از فرسایش اق‌های کریبتهای که قبلاً بر جای
گذاشته شده‌اند ریشه‌گرفته است.
شواهد زمین‌ساختی تأیید کننده نوع تغییرات کربنات
ریزبهداری کربنات اساساً در ریزهداری زمین‌ساختی با فرانشست آرام مانند فولندی کوهریزی، حاشیه‌های کم‌عمق حوضه‌های درون کریونی، حاشیه‌های عیرعمل فازهای پس از کانین، و شبب است. بلکه گسترش کرنشی رخ می‌دهد. ریزپدیا، بزرگ، روز حاشیه‌های غیر فعال، حوضه‌های فولند و حوضه‌های درون کریونی به طور کلی به شکل منشورهای تغییراتی خطلقی، صدها کیلومتر کشیده شده‌اند (۲۸). گسترش بالایی برز مرکزی (بخشی از نوار کوهریزی‌های آلی - هیمبرا) در یک حوضه فولندی نشسته شده است. در یک حوضه فولند، گوهریزی کوهریزی، در آغاز حوضه به آرامی بارگذاری می‌شود. گسترش فیزیکی تغییرات و کوهریزی رخ‌ده.

در کربنات در پاسخ به این اختلال بارگذاری در این نقطه نسبت به بخش‌های دیگر است. می‌باید این اختلال بارگذاری مانگ گر به طور بیشتر فضای تغییرات را در طول نیم‌سال به تشکیل پر کند. دلیل اینکه چرا اغلب تغییرات کربنات در حاشیه‌های حوضه‌های فولند در این پدیده است، [۶] این پدیده در حال بالا آمدن در دوره کربنات است و لذا گوهریزی کوهریزی در این حوضه به طور پیوسته در حال بارگذاری بوده‌اند.

شکل ۱۱ طرح‌هایی از محیط تغییراتی کربنات منطقه مورد مطالعه و تغییرات جابجایی رخ‌ده‌های این طرح‌های دانه‌ای موجود با خط منقطع و دانه‌ای قرار می‌گیرند با خط مستقیم در هر رخ‌ده مشخص شده است. حروف لاتین رخ‌ده‌ها را نشان می‌دهد.
روزنامه کربنات‌ها

با توجه به مطالعات [۳، ۴. ۷، ۸، ۳۱] مهترین فراوندهای درون‌زاوی در رخسارهای مطالعه شده (شکل ۱۲) عبارتند از:

۱- فراوندهای زیستی: این پدیده به شکل پالترایشی یا آشفتگی زیستی در تنش‌سیستم که حاصل فعالیت موجودات حفار است، آشفتگی زیستی در رخسارهای حاکم بر محیط‌های منطقه کشنده، لاگون و دریای باز دیه می‌شود. تشکیل پوشش میکرائیتی تیره در اطراف دانه با ورود سیلیز و بوته نیز در اثر فراوندهای زیستی است. این پوشش‌ها بیشتر از سیالوپلاستیک‌های اندولینیک، قارچ‌ها و... تشکیل می‌شوند. در برخی موارد میکرائیتی‌های تا آنجا ادامه می‌یابد که یک دانه کامل میکرائیتی شده، پلنی و در تولید می‌کند. این فراونده در محیط فرآیند دریایی صورت می‌گیرد (شکل ۷، ۸).

۲- فشرده: پدیده شکرگی به دوشک فیزیکی و شیمیایی است. در مرحله اول در اثر فشرده فیزیکی، آرامش ذرات و چگت و بستنند آنها تغییر می‌کند، و خم و شکستگی در دانه رخ می‌دهد (شکل ۸). در مرحله دوم و در اثر فشرده شیمیایی، رگه‌های احلال پیش آمده و استرولوئیک‌ها تشکیل می‌شوند که می‌توان آنها را به محیط تغییر نسبت داد.

۳- انحلال: یک فراونده اصلی در محیط‌های درون‌زاوی نزدیک به سطح است و ممکن است منجر به تشکیل کارسون شود. ولی این عمل می‌تواند در بستر درا و هنگام فراونده دفن عمیق نیز انجام کند. کارسنزیایی را در توانی کردن به صورت میکروکارست و یا کارسنت‌های برگ می‌توان مشاهده کرد (شکل ۵).

واژه‌پردازی:

نحوه آمده:

فرآیندهای زیستی
فرآیندهای شیمیایی
دندان‌های شدن
بلدیدن
سیالوپلاستیک
سیالوز
سیتانول‌های از هامفانیت
نژادهال‌خیالی
فرآیندهای شیمیایی
فرآیندهای فشرده

زمان:

شکل ۲ فراوندهای درون‌زاوی و محیط تشکیل آنها در رخسارهای مورد مطالعه در طول زمان.
4- سیمانتی شدن: دو نسل سیمان در این رخساره‌ها دیده می‌شوند. نسل اول سیمان حاشیه‌ای هم ضخامت که بلافاصله پس از تنفسی تشکیل شده و میتواند در اورآبی را نشان می‌دهد (شکل 8). نسل دوم، کلسیت اسپری، سیمان حاشیه‌ای هم محوپر هراون قطعات خارپوستی‌ها در محیط فراتیک آب شیرین اشاع تشکیل می‌شود و سیمان فراگیرنده با پرکیلوتیپنی که در محیط فراتیک آب شیرین اشاع یا تفکیک انجام شده است، را شامل می‌شود.

5- توصیل: این پدیده به شکل حلدنش و تبلور میکریات به میکروسکوپ‌ها- اسپار دروغین (توصیلی افزایشی) در برخی از نمونه‌ها قابل مشاهده است. همچنین کلسیتی شدن اسکلت‌ها آبی‌های و سیمان اراکوتینی اولیه از انواع متناول توصیلی افزایشی است این پدیده به محیط فراتیک آب شیرین نسبت داده می‌شود.

6- دولومیتی شدن: دولومیتی شدن در این آب‌های در مواردی به صورت بافت کاملی تخریب شده و بدون باقی‌ماندن آثاری از تنفسی آن به‌صورت گرفته است. این نوع را در مرحله‌های تبقیبی اندکی از ساختار آن باقی‌مانده است (شکل 8 ب) و استروماتولیت‌ها می‌توانند دیده. نوع دیگر دولومیتی شدن انتخابی، و تنها به صورت مختل جانشینی در زمینه است این پدیده در زمینه آلی‌های دیده می‌شود (شکل 8 د) تار دستاوردگی [23] 6 نوع بافت در این دولومیت‌ها تشخیص داده شده‌اند.

7- وادولومیتی شدن: آب‌های فرو رو یا جوی می‌تواند کلسیت را جانشین دولومیت کنند. که معمولاً با انحلال زیپس- ابتدای هم‌رده است و تزدیک سطح زمین رخ می‌دهد. وادولومیتی شدن نقشی بی‌مکنی است به وضع بی‌بیوندی.

8- سیلیسیتی شدن: این فرازند در طول درون‌زدایی اولیه یا نهایی می‌تواند انحلال شود. در درون‌زدایی اولیه سیلیسیتی شدن به شکل جانشینی انتخابی در فسیل‌های ماندن ایست و با گسترش ندول‌های چکنی (شکل 6) صورت گرفته است. حضور سوزن‌های اسفنگ کلسیتی شده در سنگ آبی می‌بایست و رخدادهای تشاده‌ای مانند شج سوزن‌های اسفنگ در ندول‌های چرت و همکشی فراوانی چرت با رخساره‌های سوزن‌های اسفنگ، نشان می‌دهد که سیلیس سوزن‌های اسفنگ درون‌زدایی می‌تواند خاستگاه ندول‌های چرت باشد [24]. این پدیده پس از تشخیص کم عمق (حداکثر 20 متر)، پیش از اولین نسل سیمان کلسیتی غیر آهی‌هایی در طول شکل گیری آن صورت گرفته است [7]. به علاوه سیلیس در زون‌های معنی‌دار به صورت ریز کوارتز و یا کوارتز کلسیدونی وجود دارد که می‌تواند از آب‌های گرم‌ای ریشه گرفته باشد.
تنیزیات عناصر کمیاب و کانی‌شناسی اولیه کربنات‌ها

در کربناته‌های علاوه بر کانی‌های اصلی، عناصری به میزان ۰.۱ تا ۱۰ درصد وزنی و با حتمی کمتر وجود دارند که به آنها عناصر کمیاب گفته می‌شود. مهم‌ترین کاربردهای آنالیز عناصر کمیاب عبارتند از آنالیز رسوبی. تاییدی تخصص رقابت‌ها، تقسیم‌بندی محیط‌های کم عمق دریایی، تغییرات اب‌های عمیق از کم عمق، آسان‌یابی به فرآیندهای درون‌زایدی، شهری قدمی، شناخت ترکیب‌های ذرات کربناته و ... [۳].

آراگونیت به مقدار کمتر کلسیت با میزان بالا در آب‌های گرم‌مرزی تشکیل می‌شود[۱۱]. در مناطق معتدل، کلسیت با میزان بالا و سیس کلسیت با میزان پایین به همراه مقادیر اندک آراگونیت، کانی‌های اصلی کربناته‌های رسپت [۳۲] در کربناته‌های موجود در آبهای زیرزمینی قطبی کلسیت با میزان پایین کانی کربناته اصلی است [۳۴]. تمرکز Fe و Mn در PPM آب‌های عمیق در حالت امکان‌پذیر، مقادیر باینی را نشان می‌دهد [۱۱]. در تعیین‌های کلسیت‌های آب‌های کم عمق دریایی گرم‌مرزی پایین و در حدود ۵۰۰ Na و PPM است و مقادیر بالایی را نشان می‌دهد. در تعیین‌های کلسیت‌های آب‌های کم عمق دریایی گرم‌مرزی پایین و در حدود ۵۰۰ Na و PPM است و مقادیر بالایی را نشان می‌دهد.

۵۶ ppm Sr در آب‌های منطقه مورد مطالعه بین ۱۴۱ تا ۲۰۶ ppm با میانگین ۱۶۳ ppm، ۶۰ ppm Na بین ۱۰۰ تا ۲۰۰ ppm با میانگین ۱۸۰ ppm و ۵۰ ppm Mn بین ۴۴ تا ۶۰ ppm با میانگین ۵۰ ppm Fe بین ۲ تا ۶ ppm با میانگین ۳ ppm در حدود ۱۰۰ ppm است (جدول ۱). لذا کاهش Fe و PPM از مقابل کربناته‌های اولیه با آراگونیتی نواحی گرم‌مرزی Na و Sr و کلسیت‌های نواحی معتدل زمانی ما در طول درون‌زایدی پیشنهاد می‌شود. تمرکز کلسیت درون‌زایدی در طول درون‌زایدی پیشنهادمی‌شود. لذا از آب‌های کم عمق درون‌زایدی و غلظتان آب‌های کم عمق درون‌زایدی در طول فرآیند درون‌زایدی افزایش کندیه‌های پایینی از این دو عنصر را نشان می‌دهد. از طرف دیگر با افزایش تأثیر درون‌زایدی [۱۰۱] با خاطرات ضریب تفکیک Mn در حدود ۱۵ ppm و غلظت‌های بالا آن در آب‌های جوی مقدار Fe در شکل ۱۳ شکل مقدار Fe نسبت به فاصله نسبت به فاصله به کانسیس سرپر و روى در نیم‌ماد ۲ رضا آباد در شکل (۵) شکل شده است که نشان می‌دهد مقادیر Fe در دو آب‌های ما به گونه‌ای دستگیری داده است که نقاط گونه‌ای دستگیری داده است. لذا کاهش کلسیت درون‌زایدی به فاصله به کانسیس تبدیل، و کنی قدرت آب‌های نوسانه با تأثیر درون‌زایدی
سطحی را نشان می‌دهد. در شکل 13 ب مقدار Na نسبت به فاصله از کانسی در همان نیم‌دریم رسم داده است. در نهایت نشان می‌دهد نمونه‌های دولومیتی شده نزدیک به کانسی، بالاتری Na در شرایط کانسی زاده. در مقدار Fe و Mn نسبت به فاصله از کانسی در دامنه شیمیایی (فاصله یا مینی) نیم‌دریم ۲ رضا آباد با توجه به شکل‌های ۱۳ ج، د کاهش، و برعکس در دامنه شیمیایی (فاصله یا مینی) به سمت گسلم افزایش می‌یابد. به دلیل حضور کاناته آراگونیتی در محوطه‌های کم عمق دریاپی، مقادیر Mn در آن‌ها اندک است، برعکس در محوطه‌های عمیق دریاپی به دلیل حضور کلسیت، بیشتر است. مقادیر نسبت با پایای Mn در بخش سطوح چین‌ساختی به دوره‌های هوازدگی شدید قاره‌ها (نیز فعالیت انفشانی زیر دریاپی) و با دسترسی فراوان Mn بر اثر کاهش بیشتر شرایط دریاپی مربوط است. به نظر نمی‌رسد که Mn در طول درون‌زدایی، به ویژه در طول تبدیل آراگونیت به کلسیت تغییرات شدیدی داشته باشد [۲۳]. لذا در دامنه جنوبی، بالا به دلیل حضور رخساره‌های پری نایبدا سرخ که کاهش شرایط دریاپی و هوازدگی شدیدی را نشان می‌دهد، بوده است. آخرین نمونه مربوط به رخساره عمیق است. برای تغییرات کیفیتی ناگهانی و افزایش Fe و Mn است. همچنین پیک تغییر ناگهانی و افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه نیم‌دریم زنوشیمپایی و در نمونه‌های متانه از دولومیت شدنی می‌بینیم. میزان Mn مربوط به دلیل نیم‌دریم شدنی Fe و Mn نسبت به رویادگی افزایش Fe و Mn را در میانه N

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Fe (%)</th>
<th>Mn (ppm)</th>
<th>Sr (ppm)</th>
<th>Na (%)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R20</td>
<td>R25</td>
<td>R31</td>
<td>R33</td>
<td>R40</td>
<td>R43</td>
<td>R40</td>
<td>R43</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>72</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Mg (%)</td>
<td></td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
</tr>
<tr>
<td>Fe (%)</td>
<td></td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.11</td>
<td>0.15</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>158</td>
<td>223</td>
<td>341</td>
<td>124</td>
<td>178</td>
<td>141</td>
<td>175</td>
<td>231</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
</tr>
<tr>
<td>Na (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
<td>432</td>
</tr>
</tbody>
</table>
شکل 12: تغییرات Sr بر حسب فاصله از کانسار در طول نیم‌برخ ۲ در منطقه رضا آباد. (ب) تغییرات بر حسب فاصله کانسار در نیم‌برخ ۲ رضا آباد. نمونه‌های داخل مستطیل دولومیتی هستند. (ج) تغییرات Na بر حسب فاصله از کانسار در منطقه رضا آباد. (د) تغییرات Fe بر حسب فاصله از کانسار در منطقه رضا آباد. (ه) تغییرات Mn بر حسب فاصله از کانسار در منطقه رضا آباد. (و) تغییرات Mn بر حسب Sr/Mn فاصله ها در دامنه شمالی با منفی و در دامنه جنوبی با مشت مشخص شده است. خط چین تغییرات عنصری در طول نیم‌برخ و خط خود کلی تغییر را نشان می‌دهد.

در شکل 14، تغییرات Na نسبت به Sr بررسی شده است. نمونه‌های منطقه مورد مطالعه در محدوده آهک‌های زیر قطیب (ساب بولار) همین ناسازی نامی قرار می‌گیرند. این در حالتی است که نیمی از آنها در ناحیه هم‌پوشانی این آهک‌ها آگوئینی‌زد و هستند و به رخساره‌های کم عمق مرتبط می‌شوند. نیمی دیگر با مربوط به نواحی عمیق تح الحسه بوده و یا از کربناته‌های کم عمقی هستند که دولومیتی شده‌اند. این امر نشان دهنده تشابه بین کاتی-
شناختی اهمیت کلسیتی زیر قطعی تاسمانیا با کربناتهای رخساره‌ای عمیق و اهمیتی آرگانیتی مزدوران با رخساره‌های کم عمیق کرتاسه مورد مطالعه است. در شکل 14 ب نیم‌برترات Mn، در این نمودارها شده است. چنانکه در این نمودارها Sr درون گستره مربوط به اهمیت کلسیتی بیشتر آرگانیتی مزدوران [19] و یا نزدیکی به این گستره قرار گرفته‌اند. نمونه مربوط به رخساره‌های عمیق در گستره‌های پوئنی کربناتهای آب‌های گرم اردویسین و اهمیت زیر قطعی برمن تاسمانیا قرار دارد. در شکل 14 ج مقدار نسبت به Mn در این نمودار نیز بیشتر نموده‌است. در هر دو شکل علت اینکه تعدادی از نمونه‌ها در بیر铅 در Sr و Na نسبت به آن‌ها مورد مطالعه قرار گرفته‌اند، به دلیل تأثیر بیشتر درون‌دایی است. نتایج با غلظت‌های Mn در مول‌درصدی را نشان می‌دهد (شکل 14 ب). مرحله اول به دلیل کاهش چشمگیر و نسبت Na و Sr به غلظت‌های Mn و در زمان نبیل آرگانیت به کلسیت تفسیر می‌شود. مرحله دوم با افزایش چشمگیر و اساساً درون‌دایی جوی، تبلور کلسیت و سیمان کلسیت اسپاری را نشان می‌دهد [19]. کربناته‌های گرم‌سری زمان ماه و هفته‌ها از نظر نسبت Sr/Na با کربناته‌های غیر گرم‌سری نتایج دارند. اهمیت آرگانیتی گرم‌سری این زمان دارای مقادیر کم Mn و نسبت بالایی و کستر Sr/Na در حدود 3 تا 5 و کربناته‌های کلسیتی مناطق معدن دارای بیش و نسبت Na در اهمیت‌های منطقه مورد مطالعه بین 44 تا 1/98 نسبت Sr/Na در حدود 1/98 نسبت و با طور متوسط 1/24 است. این مقادیر قابل مقایسه با نسبت به دست آمده از اهمیت‌های زوراسیک فوقانی مزدوران و اهمیتی بیشتر آرگانیتی آب گرم اردویسین تاسمانیا، که نشان می‌دهد کاپیتانی اولیه اهمیت‌های منطقه مورد مطالعه بیشتر آرگانیتی بوده‌اند (شکل Sr/Na در حدود 4). دو نمونه‌ها در کستره کربناته‌های کلسیتی نواحی معدنی ماه با طور متوسط برای 1 تا 6 شدیدان دولومیت آکیدارند. لذا در تعبیه کانی شناختی اولیه توجه کمتری به آن‌ها ممکن است تا توجه به اشکال 14 الف، ب، ج، د آرگانیت به عنوان یکی از ترکیبات کانی شناسی اولیه محتمل است. نمونه مربوط به رخساره‌های عمیق در بیشتر شکل‌ها در کستره اهمیت‌های آب سرد برمن تاسمانیا و یا نزدیکی به آن قرار دارد. لذا احتمالاً دارای کانی‌شناختی اولیه کلسیتی است.
شکل ۱۴ مقاایسه تغییرات عناصر ملایم می‌باشد. اگرگونه کرتانه در این منطقه با ناحیه دوسته، میزی و کوچه یا مسیر و سیستم عضوی، نشان دهنده پژوهش‌های سنجش‌نافوت است. نتایج مطالعات سنجش‌نافوت نشان داده است که تنش‌های منطقه مورد مطالعه در یک رمپ به سه زیر محیط رمپ داخی، میانی و خارجی با ۱۵ رخساره کرتانه به همراه شرایط دوگانه. شامل گروه رخساره (A1, A2, A3) A که به دلیل داشتن
سوزن‌های انفجار سیلیسی، فرامینیفرهای پلازیک، بریزوتورهای درشت، نیلی‌بود (آویست و اینوساموس). کرایتوند و اکینوردوم به همراه مقدار زیادی گل در ریم خارجی و علف موارد به‌جای گذاشته شده است. زمانی‌که این افراد گل ریخ‌سازی (B1, B2, B3, B4) دارند، فرامینیفرو بریزوتور کرایتوند، کالیبر، نیلی‌بودهای برزگ و شکسته مانند اینوساموس و آویست، فلزات ممکنی، کوبولیت و غیره بوده و ... است. این گروه در ریم داخلی نشته شدان را در C8، C7، C6، C5، C4، (B1, B2، B3، B4) دارند، این افراد کرایتوند، میلیولیده و گستن‌دار. جلب این افراد، کوبولیت و غیره بوده، این افراد کاملاً دارند. سد آلئیم که در ریم داخلی برجا گذاشته شده در این گروه قرار دارد. ویژگی‌های زمین‌ساختی خصوصیات فرآیند که در گروه‌های این منطقه حاکم بوده‌اند نیز حضور یک ریم کریتنا در تأثیر می‌کند. مهترین فرآیند‌های دوران‌زایی در ریخ‌سازی مطالعه شده‌اند از فرآیندهای بسیاری، فرآیندهای انحلال، فرماتیشن شدن، ناپذیرگی و دولومیت‌ساز، اوادولومیت‌ساز و بسیاری.

شدن.

Fe، Cu، Mg، K، Sr، Mn، Zn، Pb و عنصر TD- ICP نمونه‌های Na، Fe و افزایش Na و کاهش Na های نواحی گرم‌پیش و کلیت‌های نواحی معمول زمان‌ها در طول دو برابر یک بیش‌تر. کنن. نمونه‌های دومینیت نزدیک به کانسار بالاتری نسبت به بقیه چهار دارند. این افزایش Fe احتمالاً باعث به دلیل بالاتر بودن مقدار Na در شاره‌های دومینیت ساز باشد. مقدار Na در دانسته شمار کاسار رضا آباد کاهش، و در دانسته جنوبی به سمت گسل انزاب افزایش می‌یابد. مقایسه مقدار این عنصر در نمونه‌های مربوط به نواحی کم عمق (ریم داخلی) با اهکه‌های زوراسیک فوقانی متروپ و اهکه‌های بیشتر آراویتی آب گرم اتدوسیس تا نسبت نشان می‌دهد که کانسازی اولیه اهکه‌های گرناه این منطقه مردم مطالعه در این بخش بیشتر آراویتی بوده است. نمونه‌های مربوط به ریخ‌سازی عمیق (اسبیکولیت) نزدیک به گستره بیشتر یکی از پرینیم‌های قرار دارد و دارای محتوای Mn آهکه‌های زیر قطبی پرینیم ناسازی‌های قرار دارد. این احتمالاً دارای کانسازی اولیه کلیسی است. همچنین میان ریخ‌سازی، دومینیت عنصر و کانسازی اولیه در این نمونه‌ها برازش خوبی مشاهده می‌شود.

تشکر و قدردانی
از آقای دکتر دانشیان در دانشگاه تربیت معلم، بخاطر شناسایی فسیل‌ها و تعبین سن توالی مورد مطالعه تشکر می‌شود. از آقای برندزورد برند لمن (Bernd Lehman) از دانشگاه کلاوشتال آلمان که هزینه و انجام تجزیه زئوپتیپیک ده نمونه را تهیه کرده‌اند و نیز مسئولین بخش زئوپتیپی سازمان زمین‌شناسی و آقای دکتر رجیمپور به خاطر راهنماهای آنان تشکر می‌تواند.

مراجع
[1] نیوی، م. ج، "زمین‌شناسی ناحیه سمنان"، جهان گوش شماره ۶۶۶ در سال ۱۳۴۶ سال ۱۰۰/۱۲۰۰ ص ۱۳۶.
[2] زحمتکش ق، "میکرواستراتیپی‌گری رسوالی مکانیکی کریستال سنگی در سنگ‌های گوشتی، درکی و درکی (منطقه دریان)"، پایان نامه کارشناسی ارشد، دانشگاه شهد بهشتی، دانشکده علوم زمین، (۱۳۷۵) ص ۱۸۲.
[7] فیض نیا س، "سنگ‌های رسوبی کریستالهای"، انتشارات آستان قدس رضوی، (۱۳۷۷) ص ۱۳۲۰.

[16] "پژوهش کوه البرز در شمال دامغان"، پایان نامه دکتری، دانشگاه شهید بهشتی، دانشکده علوم زمین، (1381) ص 208.

[17] "زمین‌شناسی ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1383) ص 586.

