Microfacies, Depositional Sedimentary Environment and Primary Carbonates Mineralogy of the Cretaceous Succession in Bashm Mountain, South of Central Alborz

K. Bazargani-Guilani, M. Faramarzi

School of Geology, University College of Science, University of Tehran, Tehran, Iran
Email: kbazargu@khayam.ut.ac.ir

Abstract: Cretaceous succession of Bashm mountain, located in south of Central Alborz, is a part of Alpine-Himalayan orogeny belt. In this paper, Cretaceous at the age of Albian-Turonian which consists well-beded dolomite and limestone, cherty limestone and massive limestone and which have become host rock for Lead and Zinc deposits is studied. 6 profiles of this Cretaceous were selected from Reza-Abad, Heydar-Abad and Reza-Barak abandoned mines, and Bozmolla occurrence. Their outcrops thickness varies between 290-540 m. Petrography of the studies area revealed that the sediments are consist of 15 carbonate facies. Most likely this facies have been deposited in inner, outer and mid ramp. Beside this, tectonic characteristics of forland basins which is dominant in Cretaceous time for this area, has revealed the presence of carbonate ramp. The most important diagenetic processes in these studied facies were biogenic processes, compaction, dissolution, cementation, neomorphism, dolomitization, dedolomitization and silicification. The most important mineralization processes related to porosities were found in intergranular, intercrystalline (in dolomite), joints, faults and karsts. Formation TD-ICP chemical analysis of Ca, Mg, Sr, Mn, Zn, Pb elements and INAA chemical analysis of Fe, Na elements for 6 samples of Cretaceous showed decreasing in Sr and Na and increasing in Fe and Mn elements. These result may suggest, the comparison of aragonites of warm areas and calcites of recent temperate during diagenes process. Comparing values of these elements with warm water Ordovician Gordon Limestone (Tasmania) and Mozduran carbonates (Upper Jurassic) showed mineralogy similarity between shallow carbonates of studied area and those which is mostly observed as an indicator of mineralogy of primary aragonite.

Keywords: Cretaceous, Central Alborz, Bashm Mountain, facies, depositional environment, diagenes, primary aragonite mineralogy.
چکیده: توالی کرخانه کوه یشم در جنوب البرز مرکزی، جزئی از کمربند کوه‌ریزی آلپ-هیمالایست. در این کار یوزهای توالی کرخانه با سن آلی‌نتورونی، شالی دولومیت و آهن با لاینندی خوب، آهن‌های جریه و آهن‌های توده‌های مورد مطالعه قرار گرفتن‌اش که سنگ میزان کاسارهای سرب و روی هستند. ضخامت بیرون‌گیری‌های کرخانه در شش برش ادامه-گیری شده در معاون بزرگ‌سازی سرب و روی رضایی، حیدرآباد، و رضاییک از ۱۳۰ تا ۵۴ متر در تغییر بوده‌اند. بر اساس مطالعات سنگ‌شناسی، تنها‌های مورد مطالعه شامل ۱۵ میلی‌متر از بسته‌های انتهایی می‌باشد. خارجی برای این که داشته‌شده. همچنین در بخش‌هایی که در کرتاسه این منطقه حاکم بوده‌اند، حضور یک ریز کرخانه‌ای از قبیل از متون‌های فراپان‌پذیری در رخساره‌های مطالعه شده عبارتند از: فراپان‌پذیری ریزی، فشردگی، انحلال‌های اپتی‌کاتی، دوکوپالم‌های نازک، دوکوپال‌های نازک، از میلی‌مترین تخلخل‌های مرتبط با کاتانزایی می‌توان از تخلخل‌های بین دانه‌ای، بین باوری (در دولومیت‌ها) در ریزه‌ها. شکستگی‌ها (کسل) و کاراکترهای نام‌بر. تجزیه شیمیایی عناصر Ca, Mg, Sr, INAA و فراپان‌های ذرتی و آلی از میلی‌مترین تخلخل‌های اپتی‌کاتی (دیسپسر ۸/۶/۱۳۸۵) و کاراتر اپتی‌کاتی (دیسپسر ۱۶/۱۱/۱۳۸۵) با مقایسه کرخانه‌های آراگوئی در کاتها و مسیری و کلستری ناحیه معدن عهد حاضر در طول دوی‌زیاب بیشتر می‌کند. در مقایسه‌های بین عناصر با آهن‌های بیشتر آراگوئی آهن‌های گرم ازدیسپسر ناسمایا و زوراکتی‌های قوی‌تر بهبود افتادن نشان‌شده که شناسی کرخته‌های کم عمق گسترده مورد مطالعه با این آهن‌های دیده می‌شود که بیشتر بر کاتن‌شناسی اولیه آراگوئی دلالت دارد.

واژه‌های گلی: کرخانه، البرز مرکزی، کوه‌یشم، رخساره، محیط رسوبی، درون‌زدایی، کاتون‌شناسی 

کمال‌الدین بارگانی گیلانی، مزین فرامرزی
نامک: زمین‌شناسی، پردیس علوم، دانشگاه تهران
پست الکترونیکی: kbazargu@khayam.ut.ac.ir

دریافت مقاله ۸/۶/۱۳۸۵، دریافت نسخه نهایی ۱۳/۸/۱۳۸۵

شماره ۱، بهار و نیسان ۸۶ از صفحه ۹۱ تا ۱۱۶
مقدمه

انواع سنگهای کرتانه کرتانه که در ناحیه کوه بشم (شمال سمنان) به وجود می‌آیند دارای ناحیه کریک بالا و اثر پیوسته حفر و ریز این دشت‌ها شامل تغییرات موضعی تغییراتی هستند که آن‌ها را تحت تأثیر قرار داده‌اند. جهت اینکه این قسمت‌ها از مهم‌ترین ناحیه‌های کرتانه این گل‌گون‌کاری‌ها، هم‌اکنون و مدل‌های، اهمیت‌های جزئی گذشته‌ای که زمین‌شناسی در منطقه کرتانه و محیط‌شناسی توصیف شده است. در ناحیه کوه بشم (شمال سمنان) [1] شکل‌های از ناحیه‌های سرخ رنگ آهک‌های در ناحیه کوه بشم (شمال سمنان) [1] شکل‌های از ناحیه‌های سرخ رنگ آهک‌های گل‌گون‌کاری و مدل‌های، اهمیت‌های جزئی گذشته‌ای که زمین‌شناسی در منطقه کرتانه و محیط‌شناسی توصیف شده است. در ناحیه کوه بشم (شمال سمنان) [1] شکل‌های از ناحیه‌های سرخ رنگ آهک‌های در ناحیه کوه بشم (شمال سمنان) [1] شکل‌های از ناحیه‌های سرخ رنگ آهک‌های

شکل 1 ناحیه‌های دسترسی و موقعیت منطقه مورد مطالعه در ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر. از ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر. از ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر. از ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر. از ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر. از ناحیه کریک بالا: 1- جاده خاکی، 2- جاده اسفلتی درجه ۳، 3- جاده اسفلتی درجه ۴، 4- رستنا، 5- شهر.
زمن شناسی و موقعیت چینشناسی
منطقه مورد مطالعه، در واحد زمین ساختی- تنشستی البرز قرار گرفته است که بخشی از کمربند کوه‌های آلب- هیمالی است. این مجموعه کوه‌های حاصل فروشان پوسته آتیکوسی بالموتیس به زیر حاشیه جنوبی اوراسیا و معاف آن برخورد میان خرد و رق ایران و توران در ترسیم پسیست. البرز به صورت حوضه فورلند با عدم تقارن در عمق وارد دوره کرتانش شده است [16]. در البرز جنوبی، رخساره چندی سنگ‌های کرتانه پایین. سنگ‌های ارتیولین-در است. رده‌های کرتانه بالایی البرز جنوبی در شرایط تنشستی متفاوت نهشتند و به هر دودی، تغییرات‌هایی در حور توجه است و تاکنون رفتگی که ناشناخته ویژگی‌های عمومی کرتانه کتالی برز جنوبی باشد قابل تامل‌گذاری و معرفی نیسته است [17]. مقاپسه سونی چینینه شناسی از جمعیتی برز های مورد مطالعه و سایر برز های مورد کرتانه بالایی نواحی دلبرن سمنان، فرورزگو، لار، و سپهی در البرز مرکزی، نشان دهنده ویژگی‌های سنگی متغیر است (شکل 2). تولید مورد مطالعه با توجه به تعداد چند نمونه‌های با فسیلهای Simpleorbitolina sp., Pfenderina sp., Dicyclina sp., Cuneolina sp. cf. C. pavonia, Heterohelix reussi, Calcisphaerula sp. cf. C. innominata, Pithonella ovalis, Nazzazata gyra, Stomiosphera sphaerica, Hedbergella delrioensis, Ticinella sp. cf. T. roberti, Rugoglobigerina sp., Pithonella, Planomalina sp., Whitenella sp., Praeglobotruncana sp., Rotalipora sp. cf. R. cushmani, Rotalipora ticinensis, Coskinolinoides sp. cf. C. Texana, Favreina, Hensonina sp., Nezzazzatella picardi, Chrysalindia sp., Trochospira sp., و دولومیتی شدن گسترده، احتمالاً دارای سن آلی-نورونی Sabaudia sp., Oligosteginid و است.

از نظر موقعیت چینشناسی، تولید کرتانه مورد مطالعه با نابلیس‌های هم شیب رود سازند. تا قرار گرفته است. در مرز بالایی به یکسره گسل انزاب کنار آب‌های کوانتری یا سازندگی شماشک و الکا قرار می‌گیرد. این تولید با راستای کلی N 45° E و عالیاً در یکی از جنبه‌های ناحیه مورد مطالعه بین ۲۰۰ تا ۲۲۰۰ متر ضخامت دارد. در این کار پژوهشی ۵۴۰ متر از این تولید شکل دولومیت و ابک خاکستری تا کرم با لایه‌ای خوب و با ابک توده‌های خاکستری روش، ابک و ماربین با لایه‌ا. بندی نازک و عدم‌پوشان برگ خاکستری تا سرخ و ابک‌های توده‌ای و ابک‌های کرتانه تا چرتر کرتانه که سنگ‌های کاتی‌سازی سروب و روی در منطقه هستند مورد مطالعه قرار گرفته‌اند. شکل‌های ۱ تا ۳ نمایی از برخ‌های چین‌شناسی انتخاب شده را نشان می‌دهد.
روش برسی:
در این کار پدیده‌ای از سنگ‌های کربنات معدنی در روش سنگرسانی (R)، نیکل (H)، آهن (A) و رضاک (B) به‌عنوان روش‌های انتخابی برای سنگ‌های کربنات معدنی در شرایط مختلف به‌عنوان معیارهای اندازه‌گیری شدند. با جمع‌آوری نمونه از 10 نمونه مورد بررسی رخ‌دارها، مقاطع میکروسکوپی نازکی از آنها تهیه و با آلپارین سرخ و فروشانید پتاسیم، برای تشخیص سنگ‌شناختی سنگ‌های کربناته و تعیین وجود یا عدم وجود دولومیت به روش [21] رنگ‌آمیزی شدند. سپس اجازه اسکلتل و غیر اسکلتل، سیمان، ماتریکس و دیگر آواره آنها شناخته شد. برای تعیین درصد فراوانی دسته‌ها، چارت مقایسه‌ای [22] مورد استفاده قرار گرفت. انگل‌زایی TD-ICP نمونه‌ها به اساس طبقهبندی‌های [22 و 23] انجام گرفته است. تجزیه شیمیایی عناصر Fe، Na، Ca، Mg، Sr، Mn، Zn، Pb و InAA عنصر Ca، Mg، Fe، Na، Sr، Mn، Pb، Ca، Mg، Fe，Na به‌معنی GTF. در این‌جا به‌رغم عناصر Ca، Mg، Fe، Na به ویژه است. 1 ppm Pb ± 0.1 ± و 0 ppm Zn ± 0.3 5: سنگ‌های جنگل‌شناسی برخی خدمات در مورد مطالعه شیمیایی و سایر سایت‌ها و نیاز تفاوت در اندازه‌زنی و تراکم شکل دهنده و گسترش بزرگ‌تر نسبت به مطالعه منجر به شکل 5:

تشخیص 15 رخساره شد که با استفاده از رخسراهای استاندارد ارائه شده توسط [3 تا 5] می‌توان دریافت که این رخسراهها، با توجه به محیط تشکیل آنها در گروه قرار می‌گیرند. در زیر به ترتیب هر یک از رخسراهها از سمت حوضه به سالح توصیف می‌شوند:

1- گروه رخساره A، این گروه از سه رخساره A1، A2، A3 تشکیل شده است. رخساره A1 رخساره شامل ماده‌های سوزنی اسفنجی وسیلای محوره و سه Calcisphaerula sp. ، Pithonella ovalis ، Heterohelix reussi محوره سپیکولیت می‌باشد. و رو تالیا در این میکروفاسیس حضور دارند. احتمالاً دیگر آن گلوکونیت 3-5 درصد، کوارتز 15 درصد و پیریت است (شکل 6). از جمله زمین این رخساره به صورت آگه خاکستری توده‌ای با لوله‌ای چرخش صورت پیدا می‌کند (شکل 6).

Hedbergella رخساره A2 (پیتونا باپلکستی) این رخساره شامل فرامینفرهای پلازیک، Rugoglobigerina sp. ، Ticinella sp. و T. roberti delrioensis و Oligosteginid ، Calcisphaerula sp. ، Stomiosphera sphaerica و Pithonella اکبتودین است (شکل 6). می‌تواند پیش تا است سپیکولیت شده‌اند. آشفتگی سیستمی نیز در تعادلی از منویها دیده می‌شود. احتمالاً دیگر این رخساره شامل گلوکونت 1 درصد، کوارتز و فلدسپات 2-1 درصد است. فرامینفرهای پلازیک این رخساره بیشتر به وسیله بیرپر یک

شکل 6: اکبتودین خاکستری توده‌ای با لوله‌ای چهار مربوط به رخساره اسفیکولیت، A1، B1، PPL، R20، C، G) رخساره اسفیکولیت (A1) با سوزن‌های اسفنجی محوره و سه محوره، نمونه R20. PPL (P) و پیتونا باپلکستی (A2) شماره فرامینفرهای پلازیک که بیشتر با پیریت پر شده‌اند، نمونه B45. بر روی این رخساره بیشتر با پیریت پر شده‌اند، نمونه R21. A3) دارای فرامینفره، اپسیکولیت، کراونولید، شکلات خرد شده پیتونا باپلکستی، XPL، R21، (XPL).
شدهان. این رخساره در روز زمین به صورت آهن خاکستری نازک لایه، با اینسان‌های طرف، مارن و آهن ضخیم لایه، با اینسان‌های طرف است. بیشترین گسترش این رخساره در برش بزیم دیده می‌شود (شکل 5).

رخساره A3 (پکستون–گرین استون باپلستی‌کنگی)، این رخساره دارای فرامینفر، برونزه‌ها درشت، بلیس پود (ویستور و انپروساموس). گرینویت، اکینورده و قطعات خرد شده باپلستی است (شکل 6). میزان کربنات به 20 درصد می‌رسد. اجزای دیگر آن شامل کوارتز و پیریت است که درون میکروفسیل‌ها را بر کردند، و در روز زمین به صورت آهن‌های خاکستری نیبره و توده‌ای به صورت بین انگشت با رخساره‌های A2، A1 و A3 تشکیل شدند که عبارتند: 

- گروه رخساره B1 این گروه از 4 رخساره بر روی گرینویت-کربنات باپلستی‌کنگی، این رخساره خاکستری کربناتی به 10 درصد، فرامینفر، برونزه‌ها و جلبک است. از دیگر اجزای آن کوارتز به 10 درصد، گلکوئن‌ها به 10 درصد، چرت و فلدسیت است (شکل 7). این رخساره در روی زمین به صورت آهن‌های خاکستری و توده‌ای دیده می‌شود.

رخساره B2 (پاق استون باپلستی‌کنگی). شمای تک‌فته بلیس پود گردن قطعات دیواره رودسیت‌ها با ساختر منشوری و نیز برونزه و فرامینفر است (شکل 7). این رخساره در حیدرabad و رضاک پتول دیده می‌شود.

- گروه رخساره B3 (پکستون-گرین استون انپروساموس دار و باپلستی‌کنگی، این رخساره دارای 20 درصد بلیس پود (ویستور و انپروساموس، 30 درصد بلیس پود جلبک، 10 درصد بلیس پود (ویستور و گرینویت، اکینورده، فرامینفر، برونزه‌ها و قطعات خرد شده باپلستی است (شکل 7). پی برخی از اجزای اسکلتی مثل بلیس پود داروسیت و گرافت و بیشتر دچار گردشگی و شکستگی شدیدان که شناس می‌دهد ارزی می‌تواند زیاد بود است و این نمونه‌ها به منطقه (sea ward) مربوطند. در روز زمین این رخساره به صورت آهن خاکستری توده‌ای است.

- گروه رخساره B4 (پکستون جلبک باپلستی‌کنگی، این رخساره دارای 10 درصد جلبک سرخ است که اثر جه‌ای نشان می‌دهد. این رخساره به صورت اکثریت را تشکیل می‌دهند. این رخساره به صورت آهن‌های خاکستری و سرخ مایل به فله‌ای توده‌ای در برش رضاک پتول دیده می‌شود (شکل 7).
رخساره‌ها، محیط رسوبی و کاتیشن‌سی کربناته‌ای

شکل 7. رخساره پکستن کربناته‌ای باپولکلستی (B1) به دلایل خرد‌های باپولنید، فرامینفر، پلوره‌های سیاه پیریت، گلگونان و پلوره‌های کوارتز به رنگ سفید، نمونه R21. (PPL، A42، R23، (PPL، A25) رخساره گرین استون-پکستن اینسراموس دار و باپولکلستی (B3) شامل پلی‌پوده‌های زرگر و شکسته‌ای با پوشش میکراینی، پلت و الیاف، نمونه R23. (PPL، A25، (PPL، A25) رخساره پکستن جلیکی باپولکلستی پولنیدی (B4) حاوی جلبک سرخ، میلیولیده، پلوئید و قطعات باپولکلستی. نمونه A25، (PPL، A25).

شناختی C8، C7، C6، C5، C4، C3، C2، C1

3- رخساره C به باعث 8 رخساره 1

شده‌اند.

رخساره C1 (گرین استون آلیتی/ايتراکلستی)؛ آلت اثر فراوان ترین آلومین موجود در این رخساره است. انداره متوسط آنها بین 100-1000 میکرون با مقف دارهای، پیشی، و میلی‌های با فراوانی ۷۰ درصد است. این آلیت‌ها میکرایی هستند و برخی از آنها تنا به بی‌گرو خارجی دارند. هسته برخی از آنها فرامینفر و کلاستروپود است. پلت، فرامینفر و کلاستروپود از دیگر اجزای این رخساره است (شکل 8 الف). در روی زمین به رنگ کرم مایل به قهوه‌ای و متوسط تا ضخیم لایه (1-2 متر) دیده می‌شود.

رخساره C2 (فریم استون مرجانی)؛ دارای قطعات مرجانی است (شکل 8 ب) و به طور محدود در رزا آباد وجود دارد.

رخساره C3 (گرین استون-پکستن آلیتی/ايتراکلستی پلیتی)؛ این رخساره ۳ درصد با قطر متوسط ۲۰۰ میکرون، ۱ درصد با قطر متوسط ۲۰۰-۴۰ میکرون و ۱ درصد با قطر متوسط ۲۰۰-۴۰ میکرون
دار. در مواردی آلیدها شکسته شده و به صورت هسته‌ای بر گذشته بی‌سازی در می‌آیند. در برخی از آلیدها به صورت دوتنویس به بکری گیچیده اند. همین بر خی از آلیدها نیز اینترلاکس‌های قبلی هستند. آلیدها در این یافته تماماً حفظ شده و با ترکیبی از هر دو هستند (شکل ۸، ج). با توجه به داده‌ها [۲۴] ۳ نوع لامینه در این آلیدها نیز قابل تشخیص‌اند:
۱- لامینه میکروماتیت-۲- لامینه کلسیت رشته‌ای- شاعی ۳- لامینه از اکسیدها؟ این رخساره بی‌شماری پایتی را نشان می‌دهد. در روز زمان این رخساره به صورت آهن کرم رنگ با دایه‌ای به حامه آن‌ها و اجزای دیگر است. دیده می‌شود. گسترش این رخساره تا نهایی در هر رضا آباد به صورت محدود و عدید ماند است.

رخساره C۴ (کریم استون- پیکستون پلی آلیپتیک) این رخساره حاوی ۲۰۰ تا ۴۰۰ درصد یلرت میگروان است. بیشتر از آلیدها در این کریم ۱ یا ۲ کره هستند. پرپری و اکسیدها آهن نیز در این رخساره وجود دارند. دومیت خودکار جانشین سیمان آلومینیا شده است (شکل ۸). اجزای بی‌خی از این نمونه‌ها میکروماتیت شده‌اند. این آهن‌ها با لایه‌هایی ۴۰۰ سانتی‌متر، به‌صورت آهن کرم ۷۰ تا ۴۰ دستگاه، اجزای دیگر است. دیده می‌شود.

(الف) رخساره گرین استون آلیپتیک اینترلاکستی (C۱) حاوی آلیپتیک میکروماتیت با مقطع دایره، پیکستون و شیمیای استون نمونه ۱۰۹ (R.XPL، B) رخساره فرم استون مرحله‌ای (C۲) درای قطعات مرحله که تحت تأثیر دومیت‌های قرار گرفته‌اند، نمونه ۳۶ (R.PPL، R) رخساره گرین استون- پیکستون آلیپتیک الیپتیک (C۳) شامل آلیپتیک اینترلاکستی، یلرت و قطعات با پپولوکتی، الیپتیک که هسته بی‌خی از آلیپتیک اینترلاکستی قابل است. نمونه ۲۹ (R.PPL، R) رخساره گرین استون- پیکستون الیپتیک (C۴) شامل یلرت، آلیپتیک میکروماتیت، فصل پپولوکتی و دومیت خودکار، نمونه (PPL، R۴۱)
رخساره C5 (گرمین استون- پکستون پلتی): این رخساره شامل پلت و نوعی کوبولیتی به نام قاروناس (۱۳۱) پلت‌ها اشکال کروی و میلیایی و فراوانی در حدود ۱۰۰ درصد دارای قطری در حدود ۴۴۰-۴۴۰ میکرون هستند. اجزای اکسیژن به شکل ازدحام بیشتر و قدیمی تر کوبولیت با مقدار طولی ۱۲۰۰-۱۲۰۰۰ میکرون و عرضی ۱۰۰-۱۰۰۰ میکرون و ۵ درصد قرموین‌های ۲-۵ درصد با پکتولسکی، کستروپود و جلبک افزوده می‌شوند. در مواردی علاوه بر ذرات کربنات ذرات آوی کوارتز در حدود ۵ درصد وسیع را تشکیل میدهند. دانه‌های کوارتز در حد سیلت بوده و تیغی شکل و کشیده هستند. در روز زمین این آهکها به رنگ خاکستری و نارنجی لاشه‌اند.

رخساره C6 (پایدارساز جلبکی پلتی با مادستون جلبکی پلتی): این رخساره حاوی جلبک استرومانولیت است که دانه‌های پلت با اندازه ۴۰۰-۴۰۰۰ میکرون و کوبولیت با مقدار طولی از ۱۰۰۰ تا ۴۰۰۰ میکرون به میزان ۱۰ درصد در آن هستند. برخی از دانه‌های بیچ در اتمداد لیامبندی استرومانولیت ها ریف شده‌اند (شکل ۱۰). اکسی‌آمت آهک زیر رنگ سرخ به این رخساره بخشیده است. این نمونه‌ها دارای لامیناسیون طرف، لیامبندی نارک و مارون دار هستند (شکل ۹). ساختار چشمه پرندانی (فسترال) از نوع لیامبندی و نامنظم (شکل ۱۰) و قابلیت زیپس (شکل ۱۰ ج) نیز در این رخساره حضور دارند. با توجه به معادلات [۲۶] این دو نوع ساختار چشم پرندانی ناشی از ترکیب دو پشتی و سنجش‌گری اثر رخممون فرورفته تهیه‌شده‌است. در برخی نمونه‌ها پلورهای دولومیت با استپولیتیها و یا به صورت خودکشک و کوچک در اتمداد لیامبندی قرار دارند.

رخساره C7 (پایدارساز مادستون): این رخساره تماماً از گل آهکی تشکیل است و هیچگونه آثاری از اجزای اسکلتی در آن دیده نمی‌شود. رگه‌های استوکورکی کلیسیتی و نیز استپولیت در بیشتر نمونه‌های این رخساره مشخص است. پریت نیز که حاشیه‌های خود را بهبودی قرار دارن. درکه است در این رخساره دیده می‌شود.

رخساره C8 (تمپوراتی): این رخساره از قطعات آهکی با جوهرشکلی و گردشگری به دنبال اندازه ۱ میلی‌متر تنک‌شکل نشده که سیستان آنها لکسم‌های ساختمانی است. قطعات تشکیل‌دهنده آن شامل مادستون با پلورهای پراکنده دولومیت و کاتیای آهک یاس پکستون پلتی است. این کورانتی با ذرات کوارتز، چرخ و قطعات دولومیتی تواله‌های پایین‌تر است. بر اساس تقسیم‌بندی [۲۷] این کونگلومار در زنبور صندلی به‌ویژه از نظر بیانیات ارتوکنگلومرا و از نظر ترکیبی کونگلوماری یکی می‌کنیم است. این رخساره با گسترش محدود به صورت عدسی در رضا آباد و حیدر آباد مشاهده می‌شود (شکل ۹).
شکل ۹ (الف) اهک با لامیناسیون طرفین، لایه‌بندی نازک و ماربدار در رخساره باپتستامون جلیکی یلند (C6) (b) رخساره نمیست‌ایت (C8)، کنگلومرات درون سازندی از قطعات آهکی با جورش‌دگی و گردش‌دگی بد.

شکل ۱۰ (الف) رخساره گرین استون- پکستون یلند (C5) که اجرای اسکلتی، فرامینیفر (میلیوید) و پلت در آن مشاهده می‌شود، نمونه A (PPL.R).R51-ب) رخساره گرین استون- پکستون یلند (C5) شامل پلت و فورینا، نمونه B (XPL.ج) رخساره باپتستامون جلیکی یلند (C6) حاوی جلبک استروتولیت، قلب‌های زیاد و استیلولیت، نمونه C (PPL.R).R26 (د) رخساره باپتستامون جلیکی یلند (C6) که دانه‌های پلت در استروتولیت بدام افتاده‌اند. ساختن جسم پرندلای (فسترال) و استیلولیت نیز مشاهده می‌شود، نمونه D (PPL.R).R27.

محیط تانشنتی و مدل تعریفی
ب‌ا توجه به مطالعات صحرايي، سنگ‌شناسی، و براساس قانون والت‌ک‌ نسبت به اثر خاکی بر روی گذاری قرار می‌گیرد. در غرب تشکیل مجاری می‌باشد. به‌طور کلی، این‌گونه‌های پتول‌اولی، فرامین‌فیر نریجی، برپاری‌های دورین، پیش‌بینی‌های قرنطینه در منطقه‌های مختلف مشاهده می‌گردد. به‌عنوان یک نمونه، در این‌گونه‌ها، رحم می‌باشد که دارای گروه‌های مختلف در این‌گونه‌ها خاص است. در غرب، رحم می‌باشد که در این‌گونه‌ها خاص است. رحم رحم‌های A و B یا B1 و B2 مشابه شده‌اند و در خرده‌های فسیلی و گونه‌های کربن‌ای، زیادی به نوع بهبودیاد آنها، نمایش‌دهنده عمق بی‌خاکی در طبق شیب جلوی آن‌ها به دلیل رحم‌های آب‌زمینی در منطقه‌های مختلف مشاهده شده است. رحم‌های در رحم‌های آب‌زمینی در منطقه‌های مختلف مشاهده شده است. رحم‌های در رحم‌های آب‌زمینی در منطقه‌های مختلف مشاهده شده است. رحم‌های در رحم‌های آب‌زمینی در منطقه‌های مختلف مشاهده شده است.
شکل 11. طرح‌هایی از محیط تنش‌یابی کربناتی منطقه مورد مطالعه و تغییرات جانبی رخ‌هاره‌ها. در این طرح‌های دانه‌های موجود با خط منقطع و دانه‌های فراوان با خط ممتد در هر رخ‌هاره مشخص شده است. حروف لاتین رخ‌هاره‌ها را نشان می‌دهد.

شواهد زمین‌ساختمانی تأیید می‌کنند نوع تخته‌گیری کربنات

رب‌های کربناتی اساساً در زمین‌ساخت‌های فرودنده فنفلندی آرام ماند فنفلندی کوه‌زایی، حاشیه‌های کم عمق حوضه‌های درون کرآتوئی، حاشیه‌های غیرفعال فازهای پس از کانی و شبی بلوک‌های گل‌کشی کشی رخ می‌دهند. این ریشه‌های بزرگ روی حاشیه‌های غیر فعال، حوضه‌های فنفلند و حوضه‌های درون کرآتوئی به طور کلی به شکل منشورهای تنش‌یابی خاطر، صدای کیلومتر کشیده شده‌اند (۲۴). کرتاسه بالایی الحس مرکزی (بخشی از نوا قه‌های آلب- هیمالیا) در یک حوضه فنفلندی نهشت شده است. در یک حوضه فنفلند، کوه‌های کوه‌زایی در آن خورشیدی آرامی پارک‌های می‌شوند. تپوغرافی تنش‌یابی و کلید رخ‌هاره-های کربناتی در پایه با این اختلاف بارگذاری در این نقطه نسبت به بخش‌های دیگر گسترش می‌یابند. این اختلاف بارگذاری ماندگار به طور پیوسته به‌طور تنش‌یابی را در طول نیم‌انه‌ها نشسته کنن. در این اتفاق‌ها چرا اغلب تخته‌گیری کربنات در حاشیه‌های خارجی فنفلند رمایه‌ای احتمالاً نتیجه این بیداره‌است (۶). البته یک کم‌پر در حال بالا آمدن در دوره کرتاسه است و لذا گوهای کوه‌زایی در این حوضه به طور پیوسته در حال بارگذاری می‌باشد.
روزنامه کریبکارها

با توجه به مطالعات [3، 4، 7، 8، 31] مهترین فراخوانهای درون‌وزدایی در رخسارهای مطالعه

سخن‌پردازانی (شماره 12) عبارتند از:

1- فراخوانهای زیستی: این پدیده به شکل باب‌وپریشان یا اشکالی زیستی در تنفس‌نشسته‌های محیط بدنی دانشجویان که حاوی فعالیت موجودات حرف‌کار است. اشکالی زیستی در رخسارهای حاکم بر محیط بدنی منطقه‌ای کشنده، لگون و دریای باد دیده می‌شود. تشکیل پوشش میکروانیتروپ در اطراف دانشجویان به ویژه بخش‌هایی از آن در اثر فراخوانهای زیستی است. این پوشش‌ها بیشتر از سیلوان‌کریبکارانیون، تیره‌ها و... تشکیل می‌شوند. در برخی موارد میکروانیتروپ نا آباد می‌شود که یک دانه کاملاً میکروانیتروپ شده، پلوپید را تولید می‌کند. این فراخوان در محیط فراخوان دریایی صورت می‌گیرد (شکل ۷، ج، د).

2- فشردگی: پدیده‌ای که بدور از فیزیکی و شیمیایی است. در مرحله اول در اثر فشردگی فیزیکی، آرایش ذرات، و جفت و بستگی آنها تغییر می‌کند، و خصوصاً در مرحله دوم در اثر فشردگی شیمیایی، رگه‌های احلال فشار و استیلولیتی‌ها تشکیل می‌شود که می‌توان آن‌ها را به محیط تجویز نسبت داد.

3- انحلال: یک فراخوان اصلی در محیط‌های درون‌وزدایی تندیک بالا سطح است و ممکن است منجر به تشکیل کارست شود. ولی این عمل ممکن است در بستر دیرا و هنگام فراخوان دفن عمیق نیز انجام گیرد. کارست‌زایی را در توالی کرتن‌های صورت می‌گیرد که یا کارست‌های بزرگ می‌توان مشاهده کرد (شکل ۵).

<table>
<thead>
<tr>
<th>فرایندهای زیستی</th>
<th>مخلوط</th>
<th>تچه‌زی</th>
<th>تدریبی آب‌شنایر</th>
<th>زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش‌کردن</td>
<td>چرخش‌گر</td>
<td>دوستی‌های درون‌وزدایی</td>
<td>میکروانیتروپ</td>
<td>زمان</td>
</tr>
</tbody>
</table>

شکل ۲ فراخوانهای درون‌وزدایی و محیط تشکیل آنها را در رخسارهای مورد مطالعه در طول زمان.
4- سیمان شدن: دو نسل سیمان در این رخساره‌ها دیده می‌شوند. نسل اول سیمان حاشیه‌ای هم ضخامت که بالا‌شده پس از تنش‌سنج تشکیل شده و محيط فراتیک دریایی را نشان می‌دهد (شکل 8 الف). نسل دوم، کلسیم اسپیروودن سیمان حاشیه‌ای هم محور پرآموم قطعات خارپوستان که در محيط فراتیک آب شریان اشباع تشکیل می‌شود، و سیمان فراتیک‌بندی یا پوپیکتوبیکی که در محيط فراتیک آب شریان اشباع یا تخلفی ایجاد شده است، را شامل می‌شود.

5- نوشکلی: این پدیده به شکل حل‌شدن و تبلور میکرات به میکرواسپارایت- اسپار دروغین (نوشکلی افزایشی) در باریکی از نمونه‌ها قابل مشاهده است. همچنین کلسیم شدن سکل‌ها، آیین و سیمان ارگونیتی اولیه از انواع متناول نوشکلی افزایشی است. این پدیده به محيط فراتیک آب شریان نسبت داده می‌شود.

6- دومینیتی شدن: دومینیتی شدن در این آهک‌ها در مواردی به صورت بافت کاملی تخریب شده و بدون باقیماندن آثاری از تنش‌سنج اولیه صورت گرفته است. این نوع را در مرجان که با موقعیت اندکی از ساختر آن باقی مانده است (شکل 8 ب) و استروملوتیت‌ها می‌توان دید. نوع دیگر دومینیتی شدن انتخابی، و نه به صورت مخرب جانشینی در زمینه است. این پدیده به زمینه آیین و سیمان ارگونیتی اولیه دیده می‌شود (شکل 8 گ). بنا بر دستاوردهای (27) ین نباید بافت در این دومینیت‌ها تشخیص داده شود.

7- وادولومینیتی شدن: آب‌های فرو رو یا جویی می‌تواند کلسیت را جانشین دومینیت کند. که معمولاً با انحلال زیب- اندرت همراه است و تزدیک سطح زمین رخ می‌دهد. وادولومینیتی شدن نفیز نیز ممکن است به موقع بیوبنده.

8- سیلیسیتی شدن: این فراگند در طول درون‌زایی ولیه‌ای یا نهایی می‌تواند انگش شود. در درون‌زایی اولیه سیلیسیت‌شنده به شکل چستینی انتخابی در فسیل‌های مانند اوست و با گسترش ندول‌های چرخی (شکل 8 ا) صورت گرفته است. حضور سوزن‌های اسفنگ کلسیتی شده در سنگ آهک میزبان و رخداده‌های پتاسیم‌های سوزن‌های اسفنگ در ندول‌های چرخ و هم‌خونی‌های فراوانی چرخ با رخساره‌های سوزن‌های اسفنگ، نشان می‌دهد که سیلیس سوزن‌های اسفنگ درون ساندی، می‌تواند خارج‌کننده ندول‌های چرخ باند (29) این پدیده پس از تنش‌سنجی گم عمق (حداکثر 25 متر)، پیش از اولین نسل سیمان کلسیتی می‌باشد، به طول شکل‌گیری آن صورت گرفته است (7). به علامه سیلیس در زونه‌های معدنی به صورت ریز کوارتز و یا کوارتز کلسیترو موجود دارد که می‌تواند از آن کاره‌های الرش گرفته باشد.
تغییرات عنصر کمپی و کاتی شناسی اولیه کربناها

در کربناها علاوه بر کاتی‌های اصلی، عنصری به میزان ۱۰٪ تا ۱۰۰٪ درصد وزنی و با حتمی کمتر وجود دارند که به آن‌ها عنصر کمپی گفته می‌شود. مهم‌ترین کاربرد این عنصر کمپی عبارت از تغییر در بیماری، تکثیر و تغییر در وضعیت میکرو‌بیماری‌کشی کم عمق در بافت، تغییر در امکان‌های بررسی و اقدام، مشابهی به فرآیندهای دست و دستور زاده‌کردن، شوری قدم، شناخت ترکیب اولیه ذرات کربنات، و ...[۳]

آراگونیت و به‌مدت کمتر کلسیت با منیزیم بالا در آب‌های گرم‌سری شکل‌گرفته است. شوند [۱۱] در مناطق مختلف، کلسیت با منیزیم بالا و میس کلسیت با منیزیم پایین به همزاد مقادیر اندک آراگونیت، کالی‌های اصلی کربنات هستند [۲۳]. در کربنات‌های موجود در آب‌های زبرمینی قطعی کلسیت با منیزیم پایین کالی کربناته اصلی است [۲۴]. تمرکز Fe و Mn در PPM آراگونیت به کم عمق دریاچه‌های گرم‌سری پایین در حدود ۲۵۰۰ NaPm انسی در حدود ۱۰۰۰۰ انسی، Fe و Mn انسی در حدود ۵۰۰۰۰ انسی. مقدار Na در آب‌های پایین را نشان می‌دهد [۱۱]. در تغییرات کلسیت‌های آب‌های کم عمق مناطق مختلف، تمرکز میان‌گین در Fe و Mn به حدود ۱۵۰ PPM NaPPm با بالا در حدود ۵۰۰۰۰ PPM NaPPm و Sr PPM نشان می‌دهد. [۱۲ و ۱۴]

۱۲۶ ppm متوسط Sr در آب‌های منطقه مورد مطالعه بین ۱۴۱ تا ۱۷۳ ppm با میانگین ۱۶۰ ppm می‌باشد. در آب‌های مناطق دیگر، Fe و Mn به حدود ۱۴۰ ppm افزایش یافته است. از منابع کلسیت‌های آب‌هایی با آراگونیت‌های نواحی از میان‌گین NaPPm و Mn افزایش در درون‌زایی و غلظت آن‌ها در محلول‌های درون‌زایی بستگی دارد. تمرکز Fe و Mn از منابع افزایش در درون‌زایی و غلظت آن‌ها در محلول‌های درون‌زایی بستگی دارد. 

۱۵۰ ppm Mn به‌مدت در آب‌های گرم‌سری شکل‌گرفته است. شوند [۱۱] در مناطق مختلف، کلسیت با منیزیم بالا و میس کلسیت با منیزیم پایین به همزاد مقادیر اندک آراگونیت، کالی‌های اصلی کربنات هستند [۲۳]. در کربنات‌های موجود در آب‌های زبرمینی قطعی کلسیت با منیزیم پایین کالی کربناته اصلی است [۲۴]. تمرکز Fe و Mn در PPM آراگونیت به کم عمق دریاچه‌های گرم‌سری پایین در حدود ۲۵۰۰ NaPm انسی در حدود ۱۰۰۰۰ انسی، Fe و Mn انسی در حدود ۵۰۰۰۰ انسی. مقدار Na در آب‌های پایین را نشان می‌دهد [۱۱]. در تغییرات کلسیت‌های آب‌های کم عمق مناطق مختلف، تمرکز میان‌گین در Fe و Mn به حدود ۱۵۰ PPM NaPPm با بالا در حدود ۵۰۰۰۰ PPM NaPPm و Sr PPM نشان می‌دهد. [۱۲ و ۱۴]

۱۲۶ ppm متوسط Sr در آب‌های منطقه مورد مطالعه بین ۱۴۱ تا ۱۷۳ ppm با میانگین ۱۶۰ ppm می‌باشد. در آب‌های مناطق دیگر، Fe و Mn به حدود ۱۴۰ ppm افزایش یافته است. از منابع کلسیت‌های آب‌هایی با آراگونیت‌های نواحی از میان‌گین NaPPm و Mn افزایش در درون‌زایی و غلظت آن‌ها در محلول‌های درون‌زایی بستگی دارد. تمرکز Fe و Mn از منابع افزایش در درون‌زایی و غلظت آن‌ها در محلول‌های درون‌زایی بستگی دارد. 

۱۵۰ ppm Mn به‌مدت در آب‌های گرم‌سری شکل‌گرفته است. شوند [۱۱] در مناطق مختلف، کلسیت با منیزیم بالا و میس کلسیت با منیزیم پایین به همزاد مقادیر اندک آراگونیت، کالی‌های اصلی کربنات هستند [۲۳]. در کربنات‌های موجود در آب‌های زبرمینی قطعی کلسیت با منیزیم پایین کالی کربناته اصلی است [۲۴]. تمرکز Fe و Mn در PPM آراگونیت به کم عمق دریاچه‌های گرم‌سری پایین در حدود ۲۵۰۰ NaPm انسی در حدود ۱۰۰۰۰ انسی، Fe و Mn انسی در حدود ۵۰۰۰۰ انسی. مقدار Na در آب‌های پایین را نشان می‌دهد [۱۱]. در تغییرات کلسیت‌های آب‌های کم عمق مناطق مختلف، تمرکز میان‌گین در Fe و Mn به حدود ۱۵۰ PPM NaPPm با بالا در حدود ۵۰۰۰۰ PPM NaPPm و Sr PPM نشان می‌دهد. [۱۲ و ۱۴]
سطحی را نشان می‌دهد. در شکل ۱۲ ب مقدار Na نسبت به فاصله از کاسپار در همان نیم‌مایه
رسم شده است که نشان می‌دهد نمونه‌های دولومیتی شده نزدیک به کاسپار، با بالاتری
Na در شرایطی کاسپار ساز باشد. مقدار Fe و Mn نسبت به فاصله از کاسپار در دامنه شیمیایی (فاصله‌های منفی) ۲ رضا آباد با
توجه به شکل‌های ۱۳، ۱۴ و یکهس و بررسی در دامنه جنوبی (فواصلی‌های مثبت) به نمود
گسل انزای آراویش می‌پایه. به دلیل حضور کانی‌های آراویشی در دامنه‌های کم عمق دریابی،
مقدار Mn در آن‌ها اندک است. بررسی در محیط‌های عمیق دریابی به دلیل حضور کلیسیت،
بیشتر است. مقادیر نسبتاً بالای Mn از دیگر سطوح چنین‌سانی به دوره‌های هوادگی شدید قاره‌ها (نپز فعالیت انفشانی زیر دریایی) و / یا دستری فراوان Mn بر اثر کاهش
بیشتر شرایط دریابی مربوط است. به نظر نمی‌رسد که Mn در طول درون‌زاویه، به ویژه در
طول تبدیل آراویشی به کلیسیت تغییرات شدیدی داشته باشد [۲۳]. لذا در دامنه جنوبی، بالا
بدین مقادیر به دلیل حضور رخساره‌های پی‌اینات سرخ که کاهش شرایط دریابی و
هوادگی شدیدی را نشان می‌دهند، پایه‌ای است. آخرین نمونه مربوط به رخساره عمیق
اسبیکولت است که دارای مقادیر بالای Fe و Mn است. همچنین یک تغییر ناگهانی و افزایش
Fe و Mn میزان R از میانه نیم‌مایه زنوشیمیایی و در نمونه‌های متاثر از دولومیتی‌ها نشان می‌دهد که نشان از آب‌های کرسایی است. در شکل ۱۲ ب مقدار Sr / Mn بر حسب
۲ رضا آباد نزدیک به دلیل تأثیر شدید درون‌زاویه بر کربنات‌های منطقة مورد مطالعه است.

جدول ۱ داده‌های زنوشیمیایی ۶ نمونه از آهک‌ها و آهک‌های دولومیتی در کنارس مورد مطالعه.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R20</th>
<th>R25</th>
<th>R31</th>
<th>R33</th>
<th>R40</th>
<th>R43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca (%)</td>
<td>۲۲۷</td>
<td>۲۱۱</td>
<td>۲۴۱</td>
<td>۲۸۲</td>
<td>۲۱۶</td>
<td>۲۳۲</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>۰۴۳</td>
<td>۰۴۱</td>
<td>۰۳۳</td>
<td>۰۴۱</td>
<td>۰۳۳</td>
<td>۰۳۳</td>
</tr>
<tr>
<td>Fe (%)</td>
<td>۰۴۳</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>۱۵۶</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>۶۷۳</td>
<td>۶۷۳</td>
<td>۶۷۳</td>
<td>۶۷۳</td>
<td>۶۷۳</td>
<td>۶۷۳</td>
</tr>
<tr>
<td>Na (%)</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
<td>۰۴۱</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>۵۴</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
<td>۴۸۲</td>
</tr>
</tbody>
</table>
شکل ۱۲ (الف) تغییرات Sr بر حسب فاصله از کانسی در طول نیم‌برخ ۲ در منطقه رضا آباد. (ب) تغییرات Na بر حسب فاصله کانسی در نیم‌برخ ۲ رضا آباد. نمونه‌های داخل مستطیل دولومیتی هستند. (ج) تغییرات Fe بر حسب فاصله از کانسی در منطقه رضا آباد. (د) تغییرات Mn بر حسب فاصله از کانسی در منطقه رضا آباد. (ه) تغییرات Sr/Mn بر حسب فاصله از کانسی در منطقه رضا آباد. در دامنه شماری با منفی و در دامنه جنوبی با مثبت مشخص شده است. خط چین تغییرات عنصری در طول نیم‌برخ و خط روند کلی تغییر را نشان می‌دهد.

در شکل ۱۳ ال فtg تغییرات Na نسبت به Sr برای نمونه‌های منطقه مورد مطالعه در محدوده آهک‌های زیر قطبی (ساب پولار) پرمر نام‌نام صورت گرفته است. این در حالت این که نمایشگر از آن‌ها در ناحیه نواحی همواره ان آهک‌های آراگونیتی مردولان هستند و به رخساره‌های کم عمق مربوط می‌شوند. نمایشگر دیگر یا مربوط به نواحی عمیق‌تر و حوضه بوده و یا از کربنات‌های کم عمقی هستند که دولومیتی شده‌اند. این امر نشان دهنده تشکیل بین کانی-
شناختی آهن، کلسیتی زیر قطعی تاسمانیا برا به گستره‌های عمیق و آهن‌های آرگونیتی مزدوران با رخساره‌های کم عمق کرتاسه مورد مطالعه است. در شکل 1 ب، نمودنیات در ترسیم شده است. چنانچه در این نمودنیات، نمودنیات Sr درون گستره مربوط به آهن‌های بکالی شناختی پیشین آرگونیتی مزدوران [19] و یا نتیجه‌های این گستره را قرار گرفته‌اند. نمودنیات مربوط به رخساره عمیق در گستره پیشین کرتاسه‌های آب‌های گرم اردونسین و آهن‌های زیر قطعی پرمین تاسمانیا قرار دارد. در شکل 14، نسبت Sr به Mn نسبت شده است. در این نمودنیات نیز پیشی در نمودنیات Na مزدوران [19] واژدیکی آنها قرار گرفته‌اند. این گستره تغییر آب‌های گرم اردونسین تاسمانیا هم‌خواهی دارد. نمودنیات مربوط به رخساره‌های عمیق به گستره‌های زیر قطعی پرمین تاسمانیا نتیجه‌ی است. در هر دو شکل علی تحت تعدادی از نمودنیات در برون از Sr گستره آهن‌های مزدوران قرار گرفته‌اند. به دلیل تأثیر پیش‌روی دندان. نمودنیات Sr نسبت که در شکل 14، نسبت Sr به Mn نسبت شده است. در این نمودنیات نیز پیشی در نمودنیات Na مزدوران [19] واژدیکی آنها قرار گرفته‌اند. این گستره تغییر آب‌های گرم اردونسین تاسمانیا هم‌خواهی دارد. نمودنیات مربوط به رخساره‌های عمیق به گستره‌های زیر قطعی پرمین تاسمانیا نتیجه‌ی است. در هر دو شکل علی تحت تعدادی از نمودنیات در برون از Sr گستره آهن‌های مزدوران قرار گرفته‌اند. به دلیل تأثیر پیش‌روی دندان. چنین نمودنیات درون دندانی است. نمودنیات با غلظت‌های Mn در مراحل درون‌زدایی را نشان می‌دهد (شکل 14، ب). مراحل اول به دلیل کاهش چشمگیر هم‌خواهی دارد و شکل Na به غلظت‌های Sr و Mn بدون تغییر غلظت‌های Mn، بدون افزایش چشمگیر هم‌خواهی دارد و یا خروجی از میکروسکوپی زمان می‌تواند از نظر نسبت Sr/Na در زمان نسبت بالا و نسبت کمتر Sr/Na در حدود 3 تا 5 و کرتاسه‌های کلسیتی مناطق معدن دارای بالا و نسبت کمتر Sr/Na در حدود 1 تا 2.98 (شکل 1) نسبت Sr/Na در آهن‌های مناطق مورد مطالعه بین 1/98 تا 1/124 است. این مقدار قابل مقایسه با نسبت Sr/Na به دست آمده از آهن‌های زوراسیک فوقانی مزدوران و آهن‌های بیشتر آرگونیتی آب گرم اردونسین تاسمانیا، که نشان می‌دهد کانال‌های اولیه آهن‌های منطقه مورد مطالعه بیشتر آرگونیتی به‌وجود (شکل Sr/Na) دو نمودنیات که در گستره کرتاسه‌های کلسیتی نواحی معدن داره، می‌تواند متوسط برای با 1 دیده شدن دوچرخه آهن‌های به آهن‌های منطقه شده است. با توجه به اشکال 14، الف، ب، ج، د آرگونیتی به نونه از ترکیبات کانی‌شناسی اولیه محتمل است. نمودنیات مربوط به رخساره‌های عمیق در پیش‌روی دندانی است. کرتاسه آهن‌های آب مربوط به نسبت پرمین تاسمانیا به یا نتیجه‌ی آن قرار دارد. لذا احتمال دارای کانی‌شناسی اولیه کلسیتی است.
مقایسه ستون چینه‌نشانی حاصل از جمع‌بندی برخی مورد مطالعه و برخی دیگر توالی کرتانه در این منطقه با نوایی دریای سمنان، قیزکه گو، لار، و سپاهه در البرز مرکزی، نشان دهندگی مدل‌های سبک متفاوت است. نتایج مطالعات سنگ‌شناسی نشان داده است که تنشی‌های منطقه مورد مطالعه در یک رمب‌سازی زیر محیط رمب داخیل، میانی و خارجی با (A1, A2, A3) A) که به دلیل داشتن

15 رخساره کرتانه نهشته شده‌اند. شامل گروه رخساره
سوزن‌های اسفنج سیلیسی، فرامینیفرهای بزرگ، بروزوترهای درشت، پلیس بود (ویستر و اینوسراموس). گرانیتوند و اکینودرم به همراه مقدار زیادی گل در رمپ خارجی و یا مباني بر جگذاشته شده است. گروه رخساره B، حاوی کرانیتوند، بروزوتر؛ جلبک، پلیس بودهای مزک و شکسته مانند اینوسراموس و اوسترس پلیس، آلتی میکراتی، کورپولیت، اکینودرمو گاستروپودو و... است. این گروه در رمپ مباني نهشت شده‌اند. ریف C8، C7، C6، C5، C4، C3، قومه‌ی موستانه‌ی در این گروه فار می‌گیرد. گروه رخساره (C2، C1 (میلپیلید و تکستوپلریا)، جلبک استروپولیتی، گاستروپود، اینتراکلست و بابکلست است. سد آلیتی که در رمپ داخلی بر جگداشته شده در این گروه فار دارد. ویژگی‌های زیم ساخته‌ای حوضه‌های فنولنک که در گرانیتوند به عنوان حاکم بوده‌اند نیز حضور یک رمپ کرانیتوند را تأیید می‌کند. مهترین فرابندهای درون‌زا در رخساره‌های مطالعه‌شده شامل از فرابندهای زیستی، فشردگی، اناخل، سیمی‌ای شدن، نوکسکی و دولومی‌شنن، وادولومی‌شنن، سیلیسی شدن.

Fe، Cu، Mg، K، Sr، Mn، Zn، Pb عنصر TD- ICP عناصر Na و Ca، Mg، K، Sr، Mn، Zn، Pb عنصر Na و Fe افزایش Na و Fe به‌طور گروه‌ی خاصی در کلیت نواحی و مرحله‌های نواحی معتدل زمان ما در طول روند‌زایی پی‌شنبه‌می‌کنند. نمودهای دولومی‌یکی به کانسپر Na بالاتری نسبت به تقیت توایی دارند. این افزایش Na احتمالاً باعث دریابیده به دلیل بالای بودن مقدار Na در شاره‌های دولومیت ساز پایش. مقدار Na در دامنه سطحی کاسار رضا آباد کاهش، در دامنه پایین به سمت سیستم گسل انزاب افزایش می‌یابد. مقایسه می‌تواند این عناصر در نمونه‌های مربوط به نواحی گرم معمول رمپ داخلی با آهک‌های روسیه‌ای، منطقه‌ی مورد مطالعه در این پیشتر گرفته شده که کاساری اولیه آهک‌های کرانی‌های منطقه شیره مقاوم تر می‌باشد از آهک‌های بیشتر آراگوئیتی بوده است. نمونه مربوط به رخساره‌های عمیق (اسبیکولنی) نزدیک به گسترش آهک‌های زیر قطعی بریمی ناسمالیا قرار دارد و دارای محتوای Mn بالایی است. این واقعیت دارای کانسپهای نواحی اولیه کانسپهای نواحی در این نمونه‌ها به‌طور خوب مشاهده می‌شود.

تشکر و قدردانی
ارزشمندشان سیاسی‌گذاری می‌شود.

مراجع
[1] نوبی، م.ح., "زمین‌شناسی ناحیه سمنان", چهار گوش، شماره ۴۶۶۶ دی ۱۳۶۷
[2] زحمتکش ق., "میکرواستراکم‌گرافی رسوبات کربناتی، فوتوسیا شمال سمنان (منطقه دیر)", پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، دانشکده علوم زمین، (۱۳۷۵) ص. ۱۸۲
[7] قیبانی س., "سکه‌های رسوبی کربناته", انتشارات آستان قدس رضوی، (۱۳۷۷) ص. ۲۰۴

Downloaded from ijcm.ir at 2:06 +0430 on Monday June 7th 2021