Mineralization, alteration and geochemistry of Hired gold-tin prospecting area, South Khorasan province

M. H. Karimpour¹,², A. Malekzadeh¹, M. R. Hidareian, A. Askari³

¹- Geology Department, Ferdowsi University of Mashhad
²- Department of Geological Sciences University of Colorado Boulder Co,USA
³- Geological Survey of Iran (E. Branch)

(Received:25/11/2006, received in revised form:14/6/2007)

Abstract: Exposed rocks at Hired gold-tin prospecting area are mainly Mesozoic and Paleocene sedimentary and Eocene volcanic rocks. Oligo-Miocene Granitoids are intruded the Eocene and older rocks. Based on petrology and physical characteristics of rocks, granitoids are two types: 1) S-type and 2) I-type. Mineralization is seen as stockwork, fault mineralized zone, skarn and in replacement. Stockwork mineralization is exposed in the eastern part of target (1) and it is found within S-type granite and silicified – tourmaline rich shale. Hypogene minerals are: pyrite, arsenopyrite, pyrrhotite, chalcopyrite, ± galena, ± sphalerite, tourmaline, quartz, chlorite, calcite and sercite. Gold is mainly found in veinlets contain sulfide, quartz and tourmaline. Based on S-type granite, stockwork mineralization, tourmaline alteration and Sn anomalies (581 ppm), Hired is a Tin – Gold mineralized system. Geochemical data from drill holes in target (1) and (3) indicate that the high value of Au, Ag, Cu, Zn, Pb, As and Sb are found mainly between depth of 50 to 100m in eastern part of target (1), therefore this area is close to the source of fluid. Tin – Gold mineralized system at Hired is associated with S-type granite.

Keyword: Hired, S-type Granitoid, Stockwork, Tourmaline, Tin, Intrusion-related gold system.
کانی سازی، دگرسانی، و زئوشیمنی منطقه اکتشافی طلا - قلع هیرد، استان خراسان جنوبی

محمدرضا کریمی‌پور۱، آزاده ملکزاده شفرودوی۲، محمد‌رضا حیدریان۳

۱- گروه زمین‌شناسی دانشگاه فردوسی مشهد
۲- گروه علوم زمین، دانشگاه کرمان شریف، ایران
۳- سازمان زمین‌شناسی کشور (شعبه شرق کشور)

چکیده: زمین‌شناسی منطقه طلا - قلع هیرد شامل سنگ‌های رسوبی، رسوبی-پالئوسی و پالئوسی سنگ‌های کتیبه‌دار نزاری و دگرسانی‌های انسان است. توده‌های نفوذی در این مجموعه، دارای سه‌گروه پیوندی و پیوندیکی، طول‌های نفوذی را می‌توان به دو دسته S و T تقسیم کرد. کانی سازی منطقه قلع هیرد، در جنوب شرقی سیلیسیک شده در بخش شرقی منطقه اکتشافی ۱ همراه با دگرسانی غنی از تورمالین مشاهده شد.

کانی‌های اولیه این منطقه شامل آرسنی‌بوده، بوته، پیریت، کالکوپاتی، اسلافایت، سیلیسیت، تورمالین، کوارتز، جلیلیت، و سرسبز است. طلا در رنگ‌های سولفوریت، سیلیسیت، تورمالینی و چکریت وجود دارد. وجود سنگ‌های خاتم‌گره‌ز دارای کانی‌های اکتشافی ۱ S کانی سازی داراستی، در ۸۱ دلیل، می‌توان در سطح کانی‌های اکتشافی ۱ S کانی سازی داراستی، در ۸۱ دلیل قطع می‌تواند در منطقه هیرد است. مقیاسی زئوشیمی گمانه‌ها در منطقه اکتشافی ۱ (۲) و ۳ تشکیل دهنده که در هر سه نوع بال‌سپر M سبز، سبز، طول‌های هیرد با توده‌های گرانولیتی به راک‌های کلیدی هیرد، دگرسانی و نفوذی گرانولیتی نوع S داراستی، تورمالینی، قلع، سیلیسیت و طلاهای دیگر با چکریت و سبز، سبز، طول‌های هیرد با توده‌های گرانولیتی نوع S وابسته است.
مقهیه
گسترگ اکتشافی طلا-قلم‌های با مساحتی برابر با ۹۷ کیلومتری جنوب برنجد (فاضل‌هایی) و ۸۰ کیلومتری شمال غرب نهستان در استان خراسان جنوبی، بین طولهای جغرافیایی ۴۹°۰۸' و ۳۹°۱۵' و عرضهای جغرافیایی ۵۹°۰۹' و ۵۰°۵۹' واقع شده است (شکل ۱). این ناحیه در نهض‌های ۱۰۰۰۰۰۰۰۱ به مرز قرار می‌گیرد، که از نظر تقسیمات ساختاری در منتهی به بلوک‌های فرآیندهای فلش شرقی ایران و مرز‌های ایران بین نهستان حوضه فلشی شرق ایران و مرز‌هایی که به سیستم انتقال طلا و نهض‌های زمین ساخت ایران از میان می‌گذارند، می‌باشد. به فروشگاه جنوب کشوری چنین بررسی‌هایی انجام پذیرفت.

کانی‌های ذوب‌پذیری در میان ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۱ روز ورده زمین‌شناسی بسیاری در غالب نمونه‌برداری آب‌های و مطالعه می‌باشد این ناحیه که در زمین‌شناسی و اکتشافات معدنی کشور و یافته‌ها مهم این ناحیه در کاپ و ژهوشی شامل بررسی دقیق آب‌های ذوب‌پذیری منطقه خصوصاً منطقه‌ای که واحدهای فنیهای کانی‌های کاپ و ژهوشیان با هدف جریان و شکل‌گیری کنی‌های ذوب‌پذیری غیر از ان‌حوای منطقه طلا و

روش مطالعه
پس از جمع‌آوری و بررسی اطلاعات، گزارش‌ها و نتایج‌های روش مربوط به منطقه، بررسی‌های صحراوی در غالب موارد انجام گرفت:

۱) برداشت‌های زمین‌شناسی در ارتباط با شناسایی زونه‌های دگرسانی، کاپ سازی، تفکیک و شناسایی انواع توده‌های نفوذی و موارد دیگر.

شکل ۱ موقعیت جغرافیایی منطقه اکتشافی هیرد.
توضیحات

(1) برداشت بیش از ۷۰ نمونه از توده‌های نفوذی مختلف و زنده‌ی کالیسازی، در مناطق اکتشافی (۱) و (۲).

(2) برداشت نمونه‌های زنوشیمیایی به روش خرده سنگی از سطح منطقه اکتشافی (۱) به
منظر تجزیه طلا و عناصر خاص دیگر.

بررسی‌های آزمایشگاهی نیز به صورت زیر انجام گرفت:

(1) بررسی دقیق گیم‌های که از نظر کالی‌سازی (به ویژه گیم‌های B۶ و B۷) از اهمیت
بیشتری برخوردار بودند.

- برداشت بیش از ۴۰ نمونه برای بررسی‌های سنگ‌شناسی، دگرسانی و کالی‌سازی.
- برداشت ۸ نمونه زنوشیمیایی به روش خرده سنگی از مغزها به منظور تجزیه طلا و دیگر
عناصر خاص.

(2) تهیه ۳۷ مقطع نازک به منظور بررسی‌های سنگ‌شناسی - دگرسانی از نمونه‌های سطحی و
مغزه.

(3) تهیه ۱۸ مقطع نازک صیقلی و سیلی به منظور بررسی‌های دگرسانی - کالی‌سازی از
نمونه‌های مغزه.

(4) ارسال ۱۳ نمونه زنوشیمیایی از سطح و مغزها (منطقه اکتشافی (۱)) برای تجزیه و
عناصر دیگر به روش فعال سازی ترورن به کشور کانادا و در آزمایشگاه ACME.

(۵) تجزیه ۱۳ نمونه زنوشیمیایی از سطح و مغزها (بخش شرقی منطقه اکتشافی (۱)) برای
تجزیه Sn و W به روش XRF در گروه زمین‌شناسی دانشگاه فردوسی مشهد.

(6) اصلاح نقشه زمین‌شناسی با مقیاس ۱:۲۰۰۰۰۰ هیرد در سامانه GIS با تأکید بر توده‌های
نفوذی.

(7) تهیه نقشه دگرسانی - کالی‌سازی با مقیاس ۱:۲۰۰۰۰۰۰ هیرد در سامانه GIS.

(8) بررسی انواع رگ‌هایا به لحاظ نوع کالی‌سازی و سن نسبی.

(9) ترسیم انواع نمونه‌های زنوشیمیایی مناسب برای عنصر و

(10) با استفاده از دستاوردهای تجزیه زنوشیمیایی سازمان زمین‌شناسی کشور از مغزها و

(11) شناسایی

ناحیه اکتشافی هیرد بخش از دنباله شرکی یکی لوت است. به‌خاطر برگزی از بلوق لوت را
سنگ‌های آتش‌شناختی دوران سوم تشکیل می‌دهند. تکیه بر یکی از تحقیقات اولیه دوران
اول و مختصاً تحقیقاتی دوران دوم نیز به طور پراکنده در آن رخ می‌دهند. توده‌های
سازمانی

زمین‌شناسی

ناحیه اکتشافی هیرد بخشی از دنباله شرکی یکی لوت است. به‌خاطر برگزی از بلوق لوت را
سنگ‌های آتش‌شناختی دوران سوم تشکیل می‌دهند. تکیه بر یکی از تحقیقات اولیه دوران
اول و مختصاً تحقیقاتی دوران دوم نیز به طور پراکنده در آن رخ می‌دهند. توده‌های

گرایش‌نامه‌ی بسیار زوران‌سایی بالایی و ترشیاری نیز در جنوب مناطق سنگهای قدمی‌تری را تحت تاثیر قرار داده‌اند. به غیر از اینها، هر چه بین زمین و سطحِ خاک‌یاب‌خاکی بیشتر گذر کرد، همواره‌ی بزرگ‌ترین و بود‌ترین سطح‌های نمایان‌گرِ گرایش‌نامه‌ی باقی مانده‌اند. این نشان‌دهنده‌ی گرایش‌نامه‌ی نسبی بوده و نیز می‌تواند از طریق جویانه‌ی مداری سطوح، به‌طور استحکام‌آمیزی شود.

رویکردهای اصلی در این مقاله، بیشتر در زمینه‌ی گرایش‌نامه‌های تدوین‌یافته در منطقه و مدل‌های تدوین‌برداری است. در این مقاله، مدل‌های تدوین‌برداری به‌طور گسترده‌ای مورد بررسی قرار گرفته و بیان شده اند. این مدل‌ها در شرایط مختلفی به‌شکل‌هایی مختلفی به‌دست می‌آورند. در این مقاله، این مدل‌ها به‌طور گسترده‌ای بررسی و توضیح داده شده‌اند.

در مورد گرایش‌نامه‌های تدوین‌برداری، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان داده شده است. در این مقاله، بیشتر در زمینه‌ی تدوین‌برداری نشان D [1].
درگاسانی
درگاسانی، گستره گسترده‌ای از منطقه اکتشافی هیرد را تحت تاثیر قرار داده است که از همه مهم‌ترین و پژوهش‌های بحثی که در بخش کانه‌های شبه‌ساز که صورت بودید بحث می‌گردد. برداشت‌های صحرایی و بررسی‌های آزمایشگاهی جهت نوک درگاسان در واحدهای سطحی را نشان می‌ده که در نقشه درگاسانی کانی‌های منطقه (شکل ۳) نشان داده شده‌اند. این درگاسانی‌ها به شرح زیرند:

الف - زون بروپیتیک ± سیلیسی ± سرسپتی
بیشتر سنگ‌های آنفیسی و توده‌های نفوذی منطقه، دارای زون بروپیتیک ± سیلیسی ± سرسپتی هستند ولی شدت درگاسانی در نقاط مختلف متفاوت است. کانه‌های تانویه این زون شامل کلریت (تا ۱۰ درصد), که بیشتر از درگاسان شدن کانه‌های این و منیژیت‌های (گاهی تا ۸۰ درصد) مثل هورنلیند و بیوتیت، کلسیت (تا ۱۰ درصد) از درگاسان شدن هورنلیند و گاهی پلاژیولارها و کانه‌های کم تانویه (تا ۱ درصد) که بیشتر شکل دارد و نیروی ۱۷ درایه می‌باشد از درگاسان شدن کانه‌های این و منیژیت‌های به همراه کلریت است. یکی از ویژگی‌های مهم این زون در منطقه هیرد عدم وجود یا کم‌تعداد و کانی بیپیدور است. فقط در برخی از نمونه‌ها مقدار بیپیدور تا ۵ درصد می‌رسد. کم‌تعداد و کانی‌بیپیدور در زون بروپیتیک منطقه‌های هیرد، حکایت از شرایط احیای محلول کانی‌ساز دارد. کوارتز تا ۳ درصد و سرسپت تا ۵ درصد در بعضی نقاط در داخل این زون وجود دارد.
ب- زون تورمالین - سرسیت
این زون در یک بیوپتی گراینیت (توده نفوذی نوع S) در شرق نقشه هیرد در جنوب شرقی روستای هیرد (شکل ۳) مشاهده می‌شود. تورمالین به شکل شعاعی پیشتر از نوع شورل و کمی دراپت ۲ تا ۳ درصد در منطقه دیده می‌شود. بالازوکلاژها در بخشی نقاط تا ۱۰ درصد به سرسیت تبدیل شده‌اند و در کل ۱۵ درصد سرسیت در منطقه دیده می‌شود. فلدسپات‌های آلکالی کمتر به سرسیت تبدیل شده‌اند. کانی‌های آهن و مسیمی‌در نیز تا ۵۰ درصد به کلریت با میره‌سیزه‌ای تبدیل شده‌اند و در کل ۲ تا ۳ درصد از این کانی در منطقه وجود دارد. کلریت نیز تا ۰.۵ تا ۱ درصد می‌باشد.

ب- زون تورمالین - کلریت
اين زون در یک بیوپتی گراینیت نوع S هورنبلند دیویتی در شرق نقشه و گستره منطقه اکتشافی (۲) مشاهده می‌شود (شکل ۳). تورمالین به اشکال تقریباً گر و شعاعی نوع شورل از تا ۳ درصد در این زون وجود دارد. کلریت حاصل دگرسان شدن کانی‌های آهن و مسیمی‌در از ۱ تا ۸ درصد در بخشی نقاط دیده می‌شود. مقدار اندازی سرسیت (۱ درصد) نیز از دگرسان شدن فلدسپات‌های کلریت از دگرسان شدن هورنبلند و بیوپتی (۰.۵ تا ۱ درصد) و کوارتز به صورت رگه‌ای و یا شعاعی نیز در این زون وجود دارد.

شکل ۲ نقشه دگرسانی- کانی-زا ی منطقه اکتشافی هیرد

(After and Mineralization Map of Hired Gold Prospecting Area)
ت- زون کوارتز - تورمالین - سرسیت

این زون ممکن است در گستره اکتشافی هیدروهیال و همراه اصلی کانی مسی انرژی‌منشی است. به طوری که کانی‌های کوارتز، تورمالین، سرسیت، کلسیت و کریت با مقادیر منفی در اعماق مختلف در بالغ رگه‌های به کانی‌های سولفیدی مشاهده می‌شوند. عمدتاً این زون در بخش شرق منطقه اکتشافی (1) و در گمانه‌های B7 و B6 در محل نوهداری گرانیت‌نوردی نوع S، شریک‌سیلیسی شده و گاهی میان لایه‌های اکستینی شده وجود دارد. در بخش سطحی همین منطقه نیز درگیری کوارتز-تورمالین-سرسیت دیده می‌شوند (شکل 3). در بخشی از گمانه‌های دیگر (در منطقه اکتشافی (2)) نیز به طور محدود این زون در نفوذ نوع S و میان لایه‌های اکستینی شده مشاهده شده است.

در گمانه B6 این زون به صورت رگه‌هایی به عرض 1 میلیمتر تا حدود 3 سانتیمتر، همراه با کانی‌های سولفیدی منطقه مشاهده می‌شود. کانی شناسی رگه‌ها عبارتند از:

1) رگه کوارتز + تورمالین + سولفید ± کریت ± کلسیت: در این رگهها 65 درصد آن‌ها تورمالین (نوع شور و تکه‌ای درایوس)، 20 درصد کوارتز و 10 درصد را گانئهای سولفیدی تشکیل می‌دهند. در بخش‌هایی از آن کانی‌ها به الکتراید به فلزات هفته‌ها و کمی آبی در حدود 2 درصد و کمی سرسیت مشاهده می‌شود.

2) رگه کلسیت ± کوارتز + سولفید ± کریت ± کلسیت: در این رگهها 85 درصد کریت و 10 درصد را کلیت 10 درصد و حدود 5 درصد را کانی سولفیدی به عرض حداقل 74 میلیمتر تشکیل می‌دهند.

3) رگه کلسیت ± کوارتز ± کریت ± کلیت ± تورمالین: به‌شناخت این رگه‌ها کلسیت، کوارتز، کلیت، کریت، تورمالین و کانی سولفیدی شامل می‌شوند.
۴ رگه‌کارتن ± سولفید ± تورمالین: بیشتر این رگه‌ها از کوارتز (۹۰-۸۵ درصد) تشکیل شده است.

تمام این رگه‌ها خود به وسیله رگه‌های باریک و طولی در حد چند صدم تا دهم سلول‌یک‌ت نسبت دارند. بیشتر این رگه‌ها در حد ۶۵ تا ۷۰ درصد، تورمالین (نوع شورل) در حد ۳۵ تا ۵۰ درصد در بخش‌های مختلف و سرسخت حاصل در تکسیت کامل فلدسفات‌ها در حد ۱۵ تا ۴۰ درصد، در بخشی اعظم کلیت حاصل از دگرسانی کانی‌های کانی‌های سولفیدی سیستم بزرگ مشاهده می‌شوند.

دارای کانی‌های آهن و منیزیم/آهن و کانی‌های سولفیدی به صورت یکپیاندگان مشاهده می‌شوند.

در گام‌های B7 تا B8 زنین زون به صورت رگه‌هایی به عرض ۱-۲ میلیمتر تا ۵ سانتی‌متر دیده می‌شود. کانی‌های تکسیت رگه‌ها را بیشتر تورمالین-کوارتز-کلسیت و یا کانی سولفیدی تشکیل می‌دهند. رگه‌های تحت‌رده از کوارتز-سولفید-تورمالین - کلسیت متشکل می‌شود که در برخی از آنها کوارتز کانی غالب است و ۸۰ تا ۸۵ درصد رگه‌ها به خود اخصاص داده است. ادراز کوارتزها از ۲ میلیمتر تا ۳ میلیمتر متغیر است. در بعضی دیگر از رگه‌ها کلسیت کانی شاخه‌ای بوده و ۵ تا ۷ درصد رگه‌ها به خود اخصاص داده است. کلسیت‌ها نیز اغلب درشت بلوئید و تا ۱۵ میلیمتر می‌رسند. تورمالین نوع شورل نیز در رگه‌ها دیده می‌شود که مقدار آن بین ۲ تا ۷۰ درصد در مکانهای مختلف متغیر است. ۵ تا ۱۵ درصد رگه‌ها را نیز می‌پوشاند.

دگرسانی سولفیدی تشکیل می‌دهد که در بخش‌های مختلف از آهن اکسیدیت یافت می‌شود. اضافه بر رگه‌های سولفیدی در میان سهمک، کلسیت (۱-۱۰ درصد)، سرسخت حاصل در تکسیت کامل فلدسفات‌ها تا حد ۱۰-۱۵ درصد، کلیت حاصل در تکسیت کانی‌های کانی‌های کانی‌های سولفیدی/آهن و منیزیم/ آهن و منیزیم/داری مشابه در حد ۱-۲ درصد، ابتدای حاصل در حد ۲-۳ درصد و تورمالین شعاعی به شکل از نوع شورل در حاصل ۴-۵ درصد به صورت یکپیاندگان مشاهده می‌شوند.

در گام‌های B20 از منطقه آتش‌نشانی (۳) نیز این زنین به صورت رگه‌های باریک و پراکنده در میان مشاهده می‌شود. درشت بلورها سگین که از نوع آهن و منیزیم/داری پوداند بیشتر به تورمالین‌های شعاعی و گرد (پوداندر نیز شورل و کمی دروازه) حدود ۱۰ درصد، کلسیت با بی‌فریزان در حدود ۲ درصد و کلسیت حاصل تبدیل شده‌اند. رگه‌هایی از کلسیت به عرض ۳-۴ میلیمتر در این میان مشاهده می‌شود. مقداری کوارتز ناوتا به میان سنگ به چشم می‌خورد.

ب - روز پروپیشیک

این زنین در واحدهای نفوذی نوع ۱ و نیز سگین‌های آتش‌نشانی زیرزمینی دیده می‌شود. کانی اصلی این زنین کوارتز با بی‌فریزان بیشتر این است که کانی‌های دیگر با پروپیشیک، هورنیسند و
کاتی سازی
کاتی سازی در گستره اکتشافی هیرد در ۴ منطقه به همانه هدف و ۱ تا هدف ۴ مشاهده می‌شود که برگنرین و مهم‌ترین آن منطقه اکتشافی شماره (۱) است (شکل) بررسی‌های انجام شده قبیل و گزارش‌های ساختاری از زمان‌نونسی که تاکنون انجام گرفته که کاتی سازی را رگه‌گذاری و با زونهای گسی وابسته داستند، در بررسی‌های انجام شده در این مقاله نشان داد که کاتی سازی اصلی منطقه که در بخش شرقی منطقه اکتشافی (۱) و در گستره توده‌های گرانیوبنی‌های نوع S قرار دارد از نظر داربستی است. داربستی در این منطقه به خوبی در سطح زمین و در گامه‌ها این بخش (B7) قابل مشاهده‌اند. علاوه بر کاتی‌سازی داربستی کاتی‌سازی رگه‌گذاری و جانشینی در نقاط نیاز به جنگ و بحران‌الزمان رخت‌نمایی دارد که هم‌اکنون از بخش توده‌های خوشه S گرانیوبنی‌های سری S منطقه مربوط می‌شوند و به دلیل موضعی قرار‌گیری آنها نسبت به سنج خاستگاه و با آمدن محول کاتی‌سازی از طریق زون گسی نوع کاتی‌سازی متفاوت است.

• منطقه اکتشافی شماره یک
(۱) بخش شرقی منطقه اکتشافی (۱) کاتی‌سازی در بخش شرقی منطقه اکتشافی (۱) در جنوب گسل بزرگ و در گستره‌های بهینه بیش از یک کیلومتر مربع مشاهده شده و از نوع داربستی و افغان است (شکل). رگه‌های کاتی‌سازی در توده‌های نوع S و توده‌های سه‌ نفسی شهید و هم‌اکنون به کاتی‌سازی اکتشافی شده قرار دارد و در واقع این واحد سنگ میزبان کاتی‌سازی داربستی را تشکیل می‌دهند. کاتی‌سازی داربستی کاتی‌سازی اصلی گستره معتدل هیرد است و خاصیت محورهای اکتشافی S کاتی‌سازی توجه به یارانه کاتی شامل منطقه همان توده‌های گرانیوبنی‌های نوع S است. از آنجاکه در شرق منطقه اکتشافی (۱) توده‌های نوع S متشکل به خوبی در سطح رخت‌نمایی قرار دارد کاتی‌سازی اصلی منطقه (داربستی) نشان دهنده آن‌که در این گستره از نظر مطلوبیان مشاهده می‌شود که تنگ‌پیشین مکان به توده‌های اختشافی اصل است. در پی‌های هیراد با رگه‌های از نوع کاتی‌سازی توده‌های نوع S متشکل و در سطح و هم در عمق مشاهده می‌شود (شکل). در این هیراد با کاتی‌سازی داربستی، رگه‌های از کاتی‌سازی سولفیدی وجود دارد که در سطح و در اکتشافی آهی تنابنی تبدیل شده‌اند. ضخامت
در گچه‌ها از چند میلیمتر تا ۵ سانتیمتر متغیر است و مقدار آنها در مکان‌های کانی‌سازی در یک طول خاکی به ۲۰ گچه و حداکثر به ۸۰ گچه می‌رسد. کانی‌های ریشه‌های بسیار گوناگون از جمله چندگانگری قطع کرده‌اند. نشان‌دهنده مادری نرمال ریشه‌های مختلف کانی‌سازی و احتمال متفاوت از نظر ترکیب نرم‌پوشی است که هر از قطع‌شده‌ها سن نسبی آنها را تعیین کرده. کانی‌های ریشه‌های شباه‌الی ارس‌لی‌بریت، پروپنت، کالکوپیریت، اس‌فایریت و گیاه است که مقدار فراوانی آنها در نقاط مختلف متفاوت است. در برخی از گچه‌ها آرس‌لی‌بریت کانی غلاب است و واژه‌ای ۸۰ درصد به گچه‌ها را بیان خود‌اختصاص داده است. ارس‌لی‌بریت به صورت پرتوی به ترتیب شکل‌دار (لوزی و مثلث) تا نیمه شکل‌دار و تا نهاده ۶ میلیمتر می‌رسند. در بعضی گچه‌ها پرتوی کانی غلاب است و واژه‌ای ۸۵ درصد به گچه‌ها پرتوی می‌رسد. پرتوی نیز از شکل‌دار تا پیچش دیده می‌شود و واژه‌ای ۱۵ تا ۲۰ درصد در برخی گچه‌ها متفاوت است. مقدار کالکوپیریت در مجموع در گچه‌ها اندک است و مقدار نیز گاهی تا ۴۵ درصد به گچه‌های را بیان خود‌اختصاص داده و بافت اکتشاده بنای اس‌فایریت و کالکوپیریت در بیشتر مرادیده می‌شود که نشان‌دهنده هنوزمان تشکیل این دو کانی است. کانی نیز به مقداری در حدود ۱ درصد در برخی از گچه‌ها مشاهده شده. تصویری از کانی‌سازی دارستی در شکل‌های ۴ تا ۶ ارائه شده است.

از تلفیق بررسی‌های حاصل از گچه‌ها و مقاطع میکروسکوپی زاکر صفحی و صفحی، ترتیب تشکیل کانی‌سازی به طور کلی به صورت زیر است:

۱) نخست گچه‌های تورمالین در پیکر شکل‌دار این گچه‌ها به صورت گچه‌های تورمالین + سولفید + سربسیت + تورمالین + دیسرسیت سولفید + تورمالین + کوارتز + سولفید + تورمالین + کوارتز + سولفید + کلسبیت سولفید مشاهده می‌شود.

۲) پس از آن رگ‌چه طرفینی از کوارتز و کلسبیت دیده می‌شود که گچه‌های تورمالین در را قطع کرد است.

۳) سپس رگ‌چه‌های کانها و سولفیدی درون تورمالین تشکیل شده‌اند که شباه‌الی کانی‌های کوارتز + سولفید + کوارتز + سربسیت + کوارتز + سولفید + کلسبیت سولفید هستند.

۴) رگ‌چه‌های کوارتز ظریف که رگ‌چه‌های قبلی را قطع کرده‌اند.

۵) رگ‌چه‌های کوارتز + سولفید.

۶) بخش غربی منطقه اکتشافی (۱) کانی‌سازی بخش غربی منطقه اکتشافی (۱) در استماد بخش غربی گسل بزرگ در راستای تشکیل شده است. کانی‌سازی از نوع اسکارین وایستین به زون گسلی است (تشکل ۲). N65E.
در این منطقه، محلول کانی ساز که خاصت آن همان توده‌های گرانولیدی نوع S (در بخش شرق منطقه (1)) است، از طریق گسل منطقه به سطح راه یافته است، و از گسل در داخل واحدگرلوراست و به انگلورا دارای قله‌هایی از جنس چرت، سنگ آهک، شیل سپلیسی شده که کاراگ فری رنگ گرانیت و سنگهای آتشمایی با تکیه‌گیری آن در جایگاه است. در بخش‌هایی که قله‌های آن سنگ آهک بندگی، از طریق فرآیند کهیه‌داده، کاتیهای کالک سیلیکات‌ها با کلریت، کلریت ،آمفیبول و لاژوئباتونی به وجود آمده و تشکیل اسکارن موضعی و نابی‌پوششی در دامنه آست. در نتیجه، در این بخش کانی ساز به‌طور سکاچی و صورت اسکارنی و به‌صورت چرگاهی است. تفاوت نوع کانی سازی در بخش‌های مختلف منطقه به‌عنوان شده که کانی سازی حالتی به‌نظیر دادهNR و دارای عبارت نام‌بندی‌گر یگانه‌ای است. بخش از کانی سازی نیز شامل پریت‌آرسنیپریت ± کالکوپریت ± سیست‌ها + تورمالین + کوارتز ± سریت ± کوارتز ± ایدویت ± لاژوئباتونی ± آمفیبول است. دکترسال غالب ع برا ی این کانی سازی پرپای‌تیک + سپلیسی تا پرپای‌تیک + اسپرسیت و کانی‌های حاصل از اسکارنی شدن هستند.

- منطقه اکتشافی شماره (2)
کانی سازی در این منطقه از نوع رگه‌های وابسته به زون گسیلی است (شکل 3)، برگنگرین زون گسیل‌ای گسترده به طول 200-300 متر و ضخامت 20 سانتی‌متر با راستای شمال-غربی - جنوب شرقی درون توده‌های دیوریتی و S و سپلیسی آتشمایی در حد اندیز و لاین است که کانی سازی مس به صورت کرناخانه و سیلیکانه مس در اولین مشاهده به‌چشم می‌خورند. ۲) کانی‌های سولفیدی پریت، ارسنی‌پریت، کالکوپریت و اکسیدهای ترکیب‌گذاری آهن نادیه در منطقه وجود دارند. دقیقه‌ای این منطقه تورمالین ± کوارتز ± آمفیبول ± کالکوپریت ± پرپای‌تیک ± السته و هیدروکسیدهای آهن نادیه به صورت سیلیسی است (شکل ۳)، به‌عنوان در شمال غرب این گسل در فاصله یک کیلومتری آن نزدیکی دیگر وجود دارد که در این نوع کانی سازی نوع رگه‌های همرسم با دگرگویی پرپای‌تیک ± سپلیسی مشاهده می‌شود. در منطقه اکتشافی (3) نزدیک محلول کانی سازی برخاسته از بخش توده‌های نفوذی S که بخشی از آنها در بخش شرقی منطقه اکتشافی (1) مشاهده می‌شود) از طریق گسل به سطح زمین راه یافته و موجب تشکیل کانی سازی مسی شده است.

- منطقه اکتشافی شماره (3)
کانی سازی در این منطقه از نوع رگه‌های درون زون‌های گسیلی و به طور محدود جانشینی است (شکل ۳). کسلی‌های این منطقه درون سنگهای آتشمایی پرپای‌تیک آنبازیت و کوارتز لاینیت با میان لایه‌هایی از اهک قرار داده که به علت رختن‌کردن کم‌اهم که در مقیاس نشان‌گیری شانسی
قبل نمایش نیوه است. محلول ماکمایی - گرما‌ی کاتی‌سازی چک از همان توده‌های گرینتوندی نوع S منشا گرفته است در این منطقه نیز از طریق گسل به سطح راه بیدا کرده و باعث کاتی‌سازی رگ‌های شده است. و در جاجاتکه یک میان لاپا آهکی بوده به طور محدود جانشینی درگاه‌های رخ داده است. دگرسانی این منطقه برپایشیک - سیلیسی شدید بوده و کاتی‌سازی

کلیه، ایبودوت، کلسیت و کوارتز هرها با کاتی‌های سولفیدی اکسید شده مشاهده می‌شوند.

• منطقه اکتشافی شماره (۳) در جنوب گستره معدنی هیرد در امتداد گسلی با راستای شرقی - غربی منطقه اکتشافی شماره چهار قرار گرفته است (شکل ۳). دگرسانی رسی - سیلیسی همراه با اکسیدهای آهن ناپیون در بخش‌هایی از آن مشاهده می‌شود و بخش بزرگی از آن با واریزه و آب‌بز روشیده است. با وجود این در مسیر ابزاره رخی‌منون زون سورد و نقره‌ای آر در کمی از خاک‌دارهای قدمی روی آن مشاهده می‌شود [۲۳]. کاتی‌سازی در این منطقه نیز باعث به‌رون گسلی و نورش تیک‌نک آن مشابه منطقه اکتشافی (۲) است. کاتی‌های هپرئت، کالکوبرپت، کربنات‌های مس و اکسید و هیدروکسیدهای آهنی در آن دیده شده‌اند [۳۲].

شکل ۴ تصویری از کاتی‌سازی داربستی از گمانه بخش شرقی منطقه اکتشافی (۱)

شکل ۵ تصویری از کاتی‌سازی داربستی از گمانه بخش شرقی منطقه اکتشافی (۱)
پس از اکتشافات زئوشیمیایی ناحیه‌ای و کشف منطقه معدنی هیرد، بررسی‌های زئوشیمیایی تفصیلی سطحی و زیرزمینی (حفاری و ترانش) از سوی سازمان زمین‌شناسی کشور [3، صورت گرفت. منطقه هیرد تاکون نبنا به عنوان یک گستره اکتشافی طلا در نظر گرفته می‌شده است و همچنین در تلاش‌ها در جهت دستیابی به عنصر طلا و چند عنصر همراه (مثل فلزات پایه) بوده است. طلا در منطقه با مقدار زیادی دسترسی همراه است که لازم است در پهپاد‌های آینده برای استحصال طلا مورد توجه قرار گیرد. در بررسی اخیر، احتمال وجودگریزش‌های ناحیه‌ای در منطقه و ارتباط آنها با کالی سازی، نوع کالی سازی داربستی و نیز درگیری غنی از نورمالین به عنوان زئوشیمیایی، این مسئله توسط پژوهشگران مورد توجه قرار گرفت که ضرورت دارد سیستم‌های احتمالی، تنگستن و عناصر کم‌بیاب مورد بررسی قرار گیرد که خوشیخته‌تیز نمی‌شود. مطالعه قطع بالایی را در منطقه نشان داد که در ادامه مورد بررسی قرار می‌گیرد. در این مقاله نخست به بررسی نتایج زئوشیمیایی بی‌زیمینی عنصر Au، Cu، Ag، Zn، Pb، Sb، As و B شروع می‌شود و سپس تیزی بی‌زیمینی عنصر قلیع، تنگستن، نمودهای سطحی و برخی نمودهای زئوشیمیایی مربوط به این مقاله ارائه می‌شود. در این مطالعه منطقه کالی سازی اکتشافی (1) دو گمراه (B1) و (B2) (78 متر)، (B3) (98 متر) و بقعه B7 (105 متر) و B6 (100 متر)، از بخش غربی منطقه B8 اکتشافی (11) هشت گمراه (B1) (70 متر)، B2 (128 متر)، B3 (98 متر)، B4 (79 متر)، B5 (116 متر) و B6 (98 متر)، B7 (89 متر)، B10 (133 متر) و B11 (133 متر) و در منطقه اکتشافی (3) چهار
گرانه 12 (۹۵ متر)، B13 (۸۰ متر) و B19 (۷۵ متر) برای بررسی در نظر گرفته شدند. تجزیه‌ها در کانادا و به روش ICP انجام گرفته است [۱].

در منطقه شرقی مرز اکتشافی (۱)، به‌شرح مقادیر طلا در مقدار ۸۰۷ تا ۸۱۷ ppm در گرانه B7 با مقدار ۵۱۸۰ ppb و کمترین مقدار آن در اعماق ۱۰ تا ۴۰ متری B7 مشاهده می‌شود. به‌شرح مقادیر میزان طلا در مقدار ۷۱۹ ppm در B6 در اعماق ۳۵۰ تا ۴۳۰ است. بی‌لنگی میزان کربن از طلا از سطح تا عمق ۱۰ متری و نیز از اعماق ۱۰۰ تا ۱۱۰ متری کربن مقدار نهو در حد ppm امکان دارد می‌شود (شکل ۵). بی‌لنگی مقدار نهو در حد ppm امکان دارد می‌شود (شکل ۵). بی‌لنگی مقدار نهو در حد ppm امکان دارد می‌شود (شکل ۵). بی‌لنگی مقدار نهو در حد ppm امکان دارد می‌شود (شکل ۵). بی‌لنگی مقدار نهو در حد ppm امکان دارد می‌شود (شکل ۵). بی‌لنگی مقدار نهو در حد ppm امکان D8 ppm منطقه، هم‌سیستمی خویی نشان می‌دهد. بی‌لنگی مقدار سرب در اعماق ۲۰۵۳ ppm در مقدار ۸۴۳ ppm در اعماق ۱۰۰۸ ppm در مقدار ۸۳۴ ppm در اعماق ۱۹۸ ppm در اعماق ۲۰۰۸ ppm در اعماق
در منطقه آتشکاذی (۲)، بیشینه‌جاتی با سطح تا عمق ۴۰ متری مشاهده شد. بیشینه‌جاتی طولا ۴۴۰ ppm در عمق ۳۴ تا ۳۵ متری، که نشان می‌دهد این عمق‌ها در دره‌ها و در هم‌سانی‌ها با B13 وجود دارد (شکل ۱۹). بیشینه‌جاتی تقریب با طلا هماهنگی داشته و بیشینه‌جاتی آن در همان عمق و در هم‌سانی‌ها با B13 یکسان است. مقدار مقدار سرب در عمق ۸۰ تا ۹۰ متری B13 است (شکل ۱۳). در عمق ۱۲۰ ppm روی با سرب هماهنگی داشته و بالاتر از آن در عمق ۱۸۰ ppm با پشت قرار گرفته است. بیشینه‌جاتی B fait ۳۲ متری (شکل ۲۰). عمق بیشینه‌جاتی خوبی نشان داده و در هر دو گام‌های بالاتر، بالاترین عیار سرب در عمق ۳۸ تا ۳۹ متری B13 است (شکل ۳۰). در آرسنیک و آنیمیون، عمق ۴۰ متری بیشینه‌جاتی خوبی دارد. یکانی آرسنیک در آن بخش این سرب را لایه‌بندی می‌کند. B13 ۵۵۵ ppm که با مقدار بالای طلا و نقره هماهنگی دارد (شکل ۲۰). بالاترین مقدار آنیمیون در عمق ۲۳ تا ۲۴ متری B13 است.

نتایج تجزیه قلع، نگستن تعدادی از نمونه‌های سطحی و زیر زمینی از بخش شرقی منطقه اکتشافی (۱) به روش XRF در جدول‌های (۱) و (۲) ارائه شده‌اند. قلع در نمونه‌های زیر زمینی و ۵۸۱ ppm نمی‌رسد که مقدار انقباضی است. می‌توان گفت که قلع پیک از عناصر مهم هما به طلا در بخش کنار سازی داربستی بخش شرقی منطقه اکتشافی (۱) همراه با نتایج نوع S است. ضرورت دارد تا منطقه‌های هیرد علاوه بر طلا برای اکتشافی قلع مورد توجه قرار گیرد.

شکل ۷ تغییرات طلا در شرق منطقه اکتشافی (۱).
83
کانی‌سازی، دگرگونی و زیست‌محیطی منطقه اکتشافی

شکل 8 تغییرات نقره در شرق منطقه اکتشافی (1).

شکل 9 تغییرات سرب در شرق منطقه اکتشافی (1).

شکل 10 تغییرات روی در شرق منطقه اکتشافی (1).

شکل 11 تغییرات مس در شرق منطقه اکتشافی (1).
دانلود شکل 12 تغییرات آرسنیک در شرق منطقه اکتشافی (1).

دانلود شکل 12 تغییرات آنتیمون در شرق منطقه اکتشافی (1).

دانلود شکل 12 تغییرات طلا در غرب منطقه اکتشافی (1).

دانلود شکل 15 تغییرات نقره در غرب منطقه اکتشافی (1).
مقاله ۱۶ تغییرات سرب در غرب منطقه اکتشافی (۱).

شکل ۱۷ تغییرات روی در غرب منطقه اکتشافی (۱).

شکل ۱۸ تغییرات مس در غرب منطقه اکتشافی (۱).

شکل ۱۹ تغییرات طلا در منطقه اکتشافی (۳).
جدول ۱: مقادیر قلع و تنگستن در نمونه‌های گمانه‌ای از بخش شرقی منطقه اکتشافی (1).

<table>
<thead>
<tr>
<th>W (ppm)</th>
<th>Sn (ppm)</th>
<th>شماره گمانه</th>
<th>عمق (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>45</td>
<td>B6</td>
<td>12-113</td>
</tr>
<tr>
<td>21</td>
<td>45</td>
<td>B6</td>
<td>3-8-29-8</td>
</tr>
<tr>
<td>4</td>
<td>37</td>
<td>B6</td>
<td>7-6-35-5</td>
</tr>
<tr>
<td>80</td>
<td>581</td>
<td>B6</td>
<td>119-20</td>
</tr>
<tr>
<td>21</td>
<td>40</td>
<td>B6</td>
<td>201-3-99</td>
</tr>
<tr>
<td>27</td>
<td>184</td>
<td>B7</td>
<td>8-8-64</td>
</tr>
<tr>
<td>13</td>
<td>184</td>
<td>B7</td>
<td>9-2-41-1</td>
</tr>
<tr>
<td>n.d</td>
<td>n.d</td>
<td>B7</td>
<td>100-98</td>
</tr>
</tbody>
</table>

جدول ۲: مقادیر قلع و تنگستن در نمونه‌های سطحی از بخش شرقی منطقه اکتشافی (1).

<table>
<thead>
<tr>
<th>W (ppm)</th>
<th>Sn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.d</td>
<td>358</td>
</tr>
<tr>
<td>n.d</td>
<td>555</td>
</tr>
<tr>
<td>25</td>
<td>n.d</td>
</tr>
<tr>
<td>5</td>
<td>165</td>
</tr>
<tr>
<td>41</td>
<td>146</td>
</tr>
</tbody>
</table>

بحث و برداشت
کانی‌سازی در شرق منطقه (1) اکتشافی هیبرد به‌صورت داربستی است و در این منطقه، گرانیتوئیدهای ۸ رخ‌مون دارند. پارامتربانیت، کانی شناسی شامل بیرپت، آرسنی‌وارتیت، بیریت، گالن، اسفلاریت، کالکوبیتریت، تورمالین، کلسیت، کوارتز، و سرسبیت است. کانی‌سازی در مناطق دیگر به‌صورت زکای است و در نفاصله گویان لایه‌های اهکی وجود داشته باشد. کانی‌سازی به‌صورت جانشینی در گره‌های (اسکارن) انجام گرفته‌است. تفاوت در نوع کانی‌سازی موجب
تغییرات در عیار طلا شده است. پارامتر کنترل‌شناصی و محدوده کنترل‌شناصی را نیز می‌کند. ترتیب تشکیل رنگ‌ها به طور کلی به صورت زیر است:
1) نخست رنگ‌های سولفیدی قطع‌کننده ترکیب شده‌اند; ۲) پس از آن رنگ‌های طرفین کوارتز و کلسیت دیده می‌شود که رنگ‌های ترکیب کوارتز، رنگ کوارتز و بدون ترکیب رنگ‌های طرفین تشکیل شده‌اند. ۳) بعد از رنگ‌های کوارتز طرفین تشکیل‌کننده کوارتز قبیل را قطع می‌کنند؛ و در پایان تعدادی رنگ‌های کوارتز + سولفید

نیز به وجد آمده است.

مقایسه زیست‌شناختی سه ناحیه (شرق و غرب و شرق اکتشافی) (1) و (۲) (۳) نشان می‌دهد که بیشترین مقدار طلا در گمانه B7 در شرق منطقه اکتشافی (1) است (180 ppm و پس از آن منطقه اکتشافی (۲) و بعد غرب منطقه اکتشافی (1) قرار دارد. نمونه در شرق منطقه اکتشافی (1) با پبش از ۱۵۰ ppm اکتشافی (1) را دارد. در غرب منطقه اکتشافی (1) با بیشترین مقدار (100 ppm و پس از آن گمانه B6 از شرق منطقه اکتشافی (1) است. بالاترین میزان رود در B6 در شرق منطقه اکتشافی (1) و بیشترین مقدار در شرق منطقه اکتشافی (1) با بیشترین مقدار انیمی و آنتیومین نیز در شرق منطقه اکتشافی (1) است. بالاترین مقدار آلیاژ در ۵۰۰ ppm در حذف (1) است. در مجموع از شرق منطقه اکتشافی (1) بالاترین مقدار ۱۰۰ ppm در اعماق ۳۵۰۰ صیغه سبز و As در ۱۰۰ متری مشاهده می‌شود. کانی سازی داربستی که اصلی‌ترین کانی سازی این گستره است در این بخش قرار دارد که تا پایان این منطقه نزدیک‌ترین مکان به پدیده‌های خاس‌گراف کانی سازی است. نیز با توجه به مقدار بالای آرسنیک مهم‌ترین طلا و تأثیر آن بر روید استحصال، لازم است که این مسئله از هم اکنون منظر قرار گیرد و در ظرف و فوری راه‌پیمایی کانسار لیزر همراه با طلا در حذف این مسئله، نتیجه تجربه قلی و نگاهی، مقدار و حذف مهم‌ترین را (تا ۵۰ ppm) در نمونه‌های سطحی و زیرزمینی بخش شرقی منطقه اکتشافی (۱) نشان می‌دهد. بیشترین مقدار قلی در گمانه B6 و نمونه‌های سطحی نزدیک آن دیده می‌شود.

- نکات مهمی که وجود کانی سازی قلی علاوه بر طلا را در منطقه تایید می‌کند عبارتند از:
  1- پدیده‌ای نفظی گرافیتی ندی S
  2- کانی‌های داربستی در بخش شرقی منطقه اکتشافی (1) به ویژه در سطح زمین و در 
جوهای حضوری شده (B6 و B7)
3- درگسازی تورمالینی؛ و
4- به هم‌جایی گیلن تا 081 گرم در تن در بخش شرقی منطقه.

بنابراین کانی سازی هیرد را می‌توان به عنوان یک کانی سازی طلا- قلقل معرفی کرد که
می‌بایست در آینده اکتشافات جدیدی مورد توجه قرار گیرد.

به منظور بررسی مدل کانی سازی منطقه هیرد، این منطقه با انتخاب مختلف کانی سازی‌های
طلایی دنیا مقایسه شد. این ذخیره شیشه‌های زیادی با سیستم‌های طلا و استیتی متعلق به توده‌های
نفوذی (Intrusion-related gold system) در این منطقه بیشتر، سرگچی کانی سازی طلا را توده‌های نفوذی تشکیل می‌دهد و این سیستم‌ها از نوع مکانیک- گرما‌های هستند.

متاهالی این ذخیره در آلاسکا، اسپانیا، پولندا و استرالیا وجود دارد. بیشتر این ذخیره
مرتبه فاتوروزوپک هستند. همگی این ذخیره مخفی شده‌اند [4، 5، 6، 7، 8، 9، 10، 11، 12، 13 و 14].

1 همراه با توده‌های سای آکالان متالومینوس حدوداً تا اسید احیایی (بیشتر در حد
گرانیت تا گرانیت بوریت) که تندیک مزر بین سری ایلمنیت و سری مگنتی (هستندا؛ 3) داشتنش
ایگوئنی گرمنی گرمنیک؛ (2) مجموعه فلزی شامل طلا و با خاصیت پرسیم، قلث، تنگستن،
آرسنیک، کربنات، گلوئوم، و (یا) نیترات‌ور (غمز) فلزات پایه (کمتر از 500 در تن)؛
4 مقدار کانی سولفیدی آنها کم و اغلب کمتر از 5 درصد است (بلعاست استنتله‌های شیشه و
دارند). مجموعه کانی نان احیایی و شامل آرسنیبیت، بیورونیت و بیوریت یوپ و مگنتیت و
همانند و وجود دارد؛ (5) درگسازی گرمنی معمولاً ضعیف است و اغلب در اعماق کمتر مشاهده
می‌شود؛ (6) چاگاک ژیمن ساخته آنها معمولاً مرزهای همگرای که شامل توده‌های ثانویه
متالومینوس کالک آکالان و ترکیبات پرآلومینوس است؛ و (7) مقایسه این کانی سازی‌ها معمولاً
در مناطقی است که کانی سازه‌ای قلث و تنگستن شکل کرده‌اند.

ریخت‌ساختارهای این ذخیره در اعماق کم (کمتر از یک کیلومتر) به صورت رگه‌های
صحنه‌ای، در اعماق متوسط (3 کیلومتر و کمتر)، در برخی موارد گرمنی و در اعماق
جاگزینی (2 تا 6 کیلومتر) به صورت کانی سازی رگه‌های کورت نویکی (چرازین با افشا
دهی می‌شود). اما اینها برقراری افشا و درستی نیز در آنها وجود دارد [10].

که شامل (Intrusion-hosted) کانی سازی از داخل‌نظر توده‌های نفوذی (Proximal)، (Imagery)
شامل استکری (2) کانی سازی در جاگزینی توده‌های نفوذی (Distal) کانی سازی در تن‌های دیگر و
شامل (۱) کانی سازی در داخل‌نظر توده‌های نفوذی (Proximal) با استفاده از گرما‌های
کانی سازی در توده‌های نفوذی (یا) کانی سازی در تن‌های دیگر و
(۱) کانی سازی در توده‌های نفوذی (Proximal) با استفاده از گرما‌های
شامل (۱) کانی سازی در توده‌های نفوذی (Proximal) با استفاده از گرما‌های
(۱) کانی سازی در توده‌های نفوذی (Proximal) با استفاده از گرما‌های

Au± Bi± Cu± W± Mo±Sn± Te± As± Sb± Hg
در مجموعی بیشترین شایعی که بین کانی‌های هیرد و سیستم‌هاي طلا و استثناء به توده‌های نفوذی وجود دارد، ارتباط کانی‌هایی با توده‌های نفوذی (در حد گرانیت تا موتودوریت) ماهیت احیایی توده‌ها (گرانیتونده‌های نوع S) و بی‌پروازی آن، ماهیت احیایی مجموعه فلزی کانی‌های آن و حضور یک هنجاری عنصر ناقل است. نیز ویژگی‌های کانی‌سازی درون سنگ میزان، مجاری توده و دور از توده‌های نفوذی در هیرد دیده می‌شود. بنده تفاوت‌های جنگلی در مقدار عدم وجود یا کم بودن رخی عنصر مثل بی‌پروازی، تلوریوم، تنگستن و مولبیدن و غیره، با بودن مقادیر کانی‌های سولفیدی و دگرسانی کوارتز- تورمالین + سرسیت ± گلوسیت چندین خانه زون اصلی دگرسانی هیرد با کانی‌های آن و تودن زون فلدسپاتیک در منطقه هیرد نیز مشاهده می‌شود که این شرایط به صورت انتقال از برخی ذخایر طلا و استثناء به نفوذی نیز گزارش شده است.

تشکر و قدردانی
از کارشناسان محترم سازمان زمین‌شناسی و اکتشافات معنی‌داری کشور (شمعه شرق) به خاطر همکاریهای آن و در اختبار قرار دادن اطلاعات کمال تشریح را داریم.

مراجع
[3] سازمان زمین‌شناسی و اکتشافات معنی‌داری کشور, "طرح اکتشافات مواد معنی‌دار جنوب خراسان", گزارش نفشه زنوشیمایی - معنی‌دار ۱۰۰۰۰۱ ناحیه آیین‌بخش معنی‌دار طلا هیرد شمال غرب نهیندان (۱۳۸۲).