Zoning and chemistry of garnets in eclogites and blueschists in ophiolitic complex of eastern Birjand: An evidence for subduction process in eastern Iran

G. Fotoohi Rad¹, S. Amini²

¹-Department of Mining Exploration, Faculty of Engineering, Birjand University, Birjand, Iran.
²-Department of Geology, Faculty of Sciences, Teacher Training University of Tehran, Iran.
E-mail: gfotohi@yahoo.com

(Received: 24/4/2007, in revised form: 19/11/2007)

Abstract: The ophiolitic complex of eastern Birjand consists of various rocks of a complete ophiolitic complex. Except for basaltic pillow lavas which are changed to metabasites such as eclogites and blueschists under metamorphic conditions, all other rock types of an ophiolitic complex could be seen in this sequence. Chemistry of garnets and their zoning patterns indicates the occurrence of subduction in the study area. The presence of the low-temperature and medium-temperature eclogites in the study area also may show the collision process between Lut and Afghan Blocks which has occurred after the subduction process. This collision process has lead to the occurrence of medium-temperature eclogites in response to the increase of temperature in the study area and then uplifting of the eclogitic rocks during the emplacement of area ophiolite in the suture zone between Lut and Afghan Blocks.

Keywords: Birjand, Ophiolitic complex, Garnet Zoning, Eclogites and Blueschists, Subduction.
منطقه بندي و شيمي گارنتيهاي موجود در اكلوزيتها و شیستهای آبی مجموعه افیولیتی شرق بیرجند: شاهدی بر فرآیند فروزانش در شرق ایران

غلامرضا فتوحی راد، صدرالدین امینی

(1) - کروان مهندسی اکتشاف معدن، دانشگاه مهندسی، دانشگاه بیرجند، بیرجند
(2) - کروان زمین‌شناسی، دانشگاه علوم، دانشگاه نیم‌نظام نفت و گاز تهران، تهران
E-mail: gfotohi@yahoo.com

چکیده: مجموعه افیولیتی شرق بیرجند شامل سنگ‌های مختلف یک همبستگی افیولیتی است. به استثنای پازالت‌های بالشی که دستخوش دگرگونی شده و به منتازت‌های مختلف از جمله اكلوزیت‌ها و شیستهای آبی تبدیل شده‌اند، تمامی سنگ‌های متعلق به مجموعه‌ای افیولیتی در این همبستگی افیولیتی مشاهده نمی‌شوند. شیمی کارتن‌ها و الگوهای منطقه‌بندی این سنگ‌ها، اثر سیستم فرابند قرار داده شده و در منطقه مورد مطالعه این همبستگی افیولیتی با دمای پایین و متوازن در منطقه مورد مطالعه پیش از فرابند قرار داده نشده است. در شکل افیولیتی‌ها با دمای متوسط و سیس‌با آمدن سنگ‌هایی که در زنده‌کردن افیولیتی‌های این منطقه در محل جوش خوردگی دووصفتی بلک لتو و افغان (هلمدن) شده است.

واژه‌های کلیدی: بیرجند، مجموعه افیولیتی، منطقه بندي، گارنتهها، اكلوزيتها، شیستهای آبی، فروزانش

زمین‌شناسی منطقه مورد مطالعه

مجموعه افیولیتی شرق بیرجند در کیلومتری شرق بردکر در جنوب غربی گزیک و شاهرخ [1] قرار دارد. مناطق گزیک و شاهرخ، جنوب شرقی شریف در بخش‌های مرکزی و شمال غربی جنوب‌غربی و مرکزی چهارگوش شاهرخت مشخصند و رحمون‌های بستگی‌ای در ناحیه مرکزی (ناحیه بیرجند) به سمت غرب نشت دهده دارد. در این منطقه افیولیتی‌ها به شکل سخت چوبی و ضخیم در جنوب غربی و شرق بیرجند و شرق بیرجند و شرق نیم‌نظام در همبستگی‌های نیم‌نظام و منطقه‌بندی (ناحیه بیرجند) به سمت چپ روند کیلی آبی شمال غربی - جنوب شرقی است [2].

روند کیلی آبی شمال غربی - جنوب شرقی است [2] افیولیتی‌ها بیش از 30 درصد رون جوش خوردگی S20E)
شکل ۱ نقشه زمین‌شناسی ساده شده‌ای از منطقه مورد مطالعه که موقعیت نهایی منطقه در زون جوش خوردگی سیستان [۲۲] را نیز نشان می‌دهد.
به طور کلی اجزای لایه‌ای روی زمین، از بالا به پایین به قرار گذارش‌ها: 1- گزارش‌های بالینی دیگر نشان می‌دهد، چرا هر رادیولوژی‌ها ناوری و زائر 2- گزارش‌ها و تغییرات بازیکونده برخی دیگر نشان می‌دهد. 3- با الهام از انتخاب دیگر نشان می‌دهد که سپاسناتی و دیگر نشان می‌دهد. 4- زون، دیگر نشان می‌دهد این شناخت افرادی که انتخاب دیگر نشان می‌دهد، 5- میکرو بازیکونده و دلیلی که علائم رخ دهد، دیگر نشان می‌دهد. 6- سپاسناتی و دیگر نشان می‌دهد. 7- زون دیگر نشان می‌دهد این انتخاب دیگر نشان می‌دهد، 8- انتخاب دیگر نشان می‌دهد، ایجاد این اسپیتولوژی نشان می‌دهد. 9- انتخاب دیگر نشان می‌دهد. 10- دیگر نشان می‌دهد. 11- دیگر نشان می‌دهد. 12- دیگر نشان می‌دهد.

به طور کلی انتخاب دیگر نشان می‌دهد. 13- تأثیر پذیر بودن متغیر از درجه خالی یابیتا دیگر نشان می‌دهد. 14- دیگر نشان می‌دهد. 15- دیگر نشان می‌دهد. 16- دیگر نشان می‌دهد.

الف- 1- این مسئله که در این رخ داده است. این دیگر نشان می‌دهد. 17- دیگر نشان می‌دهد.

الف- 1- دیگر نشان می‌دهد. 18- دیگر نشان می‌دهد. 19- دیگر نشان می‌دهد.
الف- 2- گزارش منیزیوریپیکت- گلوکوفان آلیت آمپیفیلوپیثا
این سنجش در ساخت سنتیگ و درشت دانه. در نمونه
دستی سیب سخت و متراکم و بلوهای گلوکوفان در زمین
غی نمی‌توان از آن باعث آن باعث شد. در مقطع
نارک یکی از سنجش، کانی‌های آلیت (در حدود 15 درصد)
+ هوربالن سیب آب سدیدار (بازیتی در حدود ۲۳ درصد)
+ میکاس‌های گلوکوفای (در حدود ۱۰ درصد) + بیوتین
+ سیز (در حدود ۵ درصد) + میکاس‌های سیب (پاراگونیت- فنتزی-
مسکوت در حدود ۹ درصد) + بیوتین (در حدود ۱۰ درصد) +
کواراتز (در حدود ۵ درصد) + رژیم دستی، استنف، بیوتین
کلینیک‌پرست و کانی‌های کد (جمع‌یافته در حدود ۱۵ درصد) به
عنوان کانی‌های فرعی مشاهده می‌شود. بررسی‌کننده این
یافته در هنگام تهیه و بیوتین هستند که آلیت و دیوپنی و
گاهی آلیت و پاراگونیت حاصل می‌شود. بلوهای گلوکوفان
پلوراهای نشانه‌ای درون بلوهای آلیت بی نشانه می‌شود.
یافته سنج
گلوکوفایتولستیک، یوپیکلولاستیک و گلوکونیدولاستیک
است. در جریه گلوکوفای سنج متوسط - پایین و رخسارته
درک گلوکوفان آن باید شوید هستند. بایستی
ب- 3- سنجش بانی کامپیوتر گلوکوفان رخسارته
سنجش گلوکوفان رخسارته کامپیوتر گلوکوفان تا در زون گلوکوفان
فیتیل که در شرایط نرمال چرخه آن قرار گرفته است، رخ وتیمن
درد. این سنجش به صورت دستی اعمال گردید. شیرین-
جنب شیرین مکانیکی فیزیک کلی بیتیلیئن بین سنجش
زا درجه گلوکوفان باید شوید نیز کربن- کرست هستند. تاکن
شیست و سنجش بانی اولتراپاکی سرعت‌برداری شده و با ارتباط
گذشته، مشاهده می‌شود. گسترش این سنجش‌ها در هنگام
۲۰۰۰ متر مربع در قطر مختلف مستقل است. برگزدین رخ وتیمن
این سنجش‌ها در رأس رنگ‌های کن در فواصل حدود
۱۰ کیلو مترا شمار غرب ترک و در زون گلوکوفان قرار دارد
(شکل ۳- ۲).
ب- ۱- گلوکوفان مترکم
این سنجش‌ها در نمونه دستی درشت دانه و به رشی پسته‌ای
تا شیب پس هستند که پلوراهای بزرگ گلوکان در سطح این قابل
مشاهده (شکل A). در مقطع نارک یکی از این سنجش‌ها
روش پژوهش
پس از مطالعات صحیری به ورژه سنگ شناسی، مشخص شد که اکلوژیت‌ها و شیست‌های آبی مورد نظر دارای قارن‌هایی هستند که غالباً منطقه‌بندی اناژ می‌کنند که به دیده‌های اثرات زیر می‌گویند: به‌خوبی دیده می‌شود. به‌هیچ دلیل چند نمونه از سنجش‌های نامبرده‌ای می‌توان گویایی داشته باشیم که در انتخاب شدن که پس از تهیه مقاطع نازک سیالی آنها، در گروه علوم زمین دانشگاه منچستر لگنستان و با استفاده از ریزپژوهشی مورد بررسی قرار گرفتند؛ دستگاه مورد استفاده در این کار پژوهشی یک دستگاه زمین‌پوی ساخت کمپیوتری بود که به سیستم 2000 ساخت آکسفورد ولس

شکل 2 - عدسپهایی از اکلوژیت‌های توده‌ای 10 کیلومتری شمال گریزیک که شیب ساخت بالشی گزارش‌های بارانتی که در اثر زلزله (دید به شمس شمال شرق). B - رخت‌پیکن اکلوژیت‌های توده‌ای 10 کیلومتری شمال گریزیک (دید به شمس شمال شرق). C - عکس میکروسکوپی اکلوژیت‌های توده‌ای شمال گریزیک که بافت فلائی و فلایی امافسیت را نشان می‌دهد. (XPL). D - عکس میکروسکوپی اکلوژیت‌توده‌ای شمال گریزیک که بافت امافسیت، رشد درهم دیوپسید و آلیت و باروبنیت، آلیت، کلریت و ایبدوت که حامل دگرگونی پسرافته گزارش‌های در آن مشخص است. (XPL).

پ - اکلوژیت‌های دارای شیست‌های ایمن سنگ‌های دارای شیست‌های گزارشی با این ارتباط گسل‌ با سنگ‌های رخساره شیست سبز در روی زمین دیده می‌شود. در مقطع میکروسکوپی یکی از این سنگ‌ها، کانی‌های امافسیت (در حدود 25 درصد) + گارنت (در حدود 10 درصد) + باروبنیت - ونژیت (در حدود 10 درصد) + گلوکوفان - منیزیورنیت (در حدود 10 درصد) + کوارتز (در حدود 10 درصد) + آلیت (در حدود 5 درصد) + سکوکوت، باروبنیت و فنچیت (در حدود 10 درصد) + ونژیت + ایبدوت، کلینوزیت‌های و زِن‌زِن‌یزیت و کلریت (در حدود 15 درصد) + آپاتیت، اسفن، کانی‌های ایوبیک و وکسید آهن به عنوان کانی‌های فرعی (مجمع) در حضور 5 درصد مشاهده می‌شود. درگونی پسرافته به رخساره ایبدوت آمپولیتی به نتیجه کارنیز به ایبدوت، کلینوزیت‌های، آلیت و باروبنیت امافسیت به باروبنیت، آلیت و کلریت مشخص است. درجه دگرگونی این سنگ‌ها بالا رخساره دگرگونی آنها اکلوژیت - ایبدوت آمپولیتی و بافت.
قرار گرفته و انالیزهای گزارش‌های یاده در جدول ۱ آثاره
شدهان. نتایج این تجزیه‌ها نشان می‌دهد که گزارش‌ها در
سنجشگاه‌های مختلف منطقه‌های دارای منطقه‌بندی
شیمیایی مختل هستند که نور این کار در اثر است
در نمونه‌های بین دمده و تک‌اف (32, 33) گزارش‌ها
از انواع گزارش‌های آگزیتی گروه C هستند. از طرف
دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این
گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و
کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).
بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.
در نمونه‌های بین دمده و تک‌اف (32, 33) گزارش‌ها
از انواع گزارش‌های آگزیتی گروه C هستند. از طرف
دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این
گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و
کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).
بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.
\[\text{(IF)} \]
\[\text{SF-22) از انواع گزارش‌های آگزیتی گروه C هستند. از طرف}
\[\text{دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این}
\[\text{گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و}
\[\text{کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).}
\[\text{بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.}
\[\text{(SF-22) از انواع گزارش‌های آگزیتی گروه C هستند. از طرف}
\[\text{دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این}
\[\text{گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و}
\[\text{کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).}
\[\text{بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.}
\[\text{(IF)} \]
\[\text{SF-22) از انواع گزارش‌های آگزیتی گروه C هستند. از طرف}
\[\text{دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این}
\[\text{گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و}
\[\text{کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).}
\[\text{بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.}
\[\text{(IF)} \]
\[\text{SF-22) از انواع گزارش‌های آگزیتی گروه C هستند. از طرف}
\[\text{دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این}
\[\text{گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و}
\[\text{کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).}
\[\text{بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.}
\[\text{(IF)} \]
\[\text{SF-22) از انواع گزارش‌های آگزیتی گروه C هستند. از طرف}
\[\text{دیگر منطقه‌بندی مشخص گزارش‌های دهنده رشد این}
\[\text{گزارش‌ها ضمن افزایش عمق با توجه به افزایش منیزیم و}
\[\text{کاهش آهن و منگنز از مرکز به حاشیه است (11, 12, 13).}
\[\text{بر این توجه نمونه‌های مطلع شده که رشد گزارش‌ها طی فرآیند فورماتیون شکل گرفته‌اند.}
دماي رخساره اکلوزیت مورد استفاده قرار گرفته است.

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>نتایج تجزیه ریز برداشته کلرتوئیت (D3a) در نمونه اکلوزیت دارای شیستوئیت دمده (D3a) در تمام جدول‌ها و ave = average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No</td>
<td>D3a</td>
</tr>
<tr>
<td>Oxides/Min.</td>
<td>gt3</td>
</tr>
<tr>
<td>SiO₂</td>
<td>78.88</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.20</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>31.04</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.34</td>
</tr>
<tr>
<td>FeO</td>
<td>39.55</td>
</tr>
<tr>
<td>MnO</td>
<td>18.4</td>
</tr>
<tr>
<td>MgO</td>
<td>2.83</td>
</tr>
<tr>
<td>CaO</td>
<td>6.88</td>
</tr>
<tr>
<td>Total</td>
<td>99.8</td>
</tr>
<tr>
<td>Formula (corr.)</td>
<td>12(O)</td>
</tr>
<tr>
<td>Si</td>
<td>3.03</td>
</tr>
<tr>
<td>Al</td>
<td>1.99</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>1.95</td>
</tr>
<tr>
<td>Mn</td>
<td>0.13</td>
</tr>
<tr>
<td>Mg</td>
<td>0.34</td>
</tr>
<tr>
<td>Ca</td>
<td>0.59</td>
</tr>
<tr>
<td>Total</td>
<td>8.30</td>
</tr>
<tr>
<td>Almandine</td>
<td>44.84</td>
</tr>
<tr>
<td>Pyrope</td>
<td>11.38</td>
</tr>
<tr>
<td>Andradite</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>جدول 2</th>
<th>نتایج تجزیه ریز برداشته کلرتوئیت (SF22) در نمونه اکلوزیت توده‌های سولایتست (SF22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No</td>
<td>SF22</td>
</tr>
<tr>
<td>Oxides/Min.</td>
<td>gt1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>78.50</td>
</tr>
</tbody>
</table>
جدول ۳ نتایج تجزیه رزی پردارش الکترونی گارنت‌های در نمونه‌های کلوزیت‌های شیستهای (Sb-1)‌.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sb-1</th>
<th>Sb-1</th>
<th>Sb-1</th>
<th>Sb-1</th>
<th>Sb-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides/Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>FeO</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
</tr>
<tr>
<td>MnO</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Total</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Formula (corr.)</td>
<td>12(O)</td>
<td>12(O)</td>
<td>12(O)</td>
<td>12(O)</td>
<td>12(O)</td>
</tr>
<tr>
<td>Si</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>Al</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
</tr>
<tr>
<td>Mn</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Mg</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Total</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
</tbody>
</table>

جدول ۴ نتایج تجزیه رزی پردارش الکترونی گارنت‌های در نمونه‌های کلوزیت‌های شیستهای (F3)‌.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>F3</th>
<th>F3</th>
<th>F3</th>
<th>F3</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides/Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
جدول ۵ نتایج تجزیه پیچیده، الکترونی، گارندتا در نمونه آفلوژیت اپیدوت، آمپتیولیتی شده، شمال زمین (FGE3).

<table>
<thead>
<tr>
<th>Sample No</th>
<th>FGE3</th>
<th>FGE3</th>
<th>FGE3</th>
<th>FGE3</th>
<th>FGE3</th>
<th>FGE3</th>
<th>FGE3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr₂O₃</td>
<td>n.d.</td>
<td>0.42</td>
<td>0.42</td>
<td>0.17</td>
<td>0.93</td>
<td>0.72</td>
<td>0.63</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.22</td>
<td>0.22</td>
<td>0.77</td>
<td>0.73</td>
<td>0.33</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.14</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.43</td>
<td>0.43</td>
<td>0.99</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.44</td>
<td>0.44</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۶ نتایج تجزیه پیچیده الکترونی، حاشیه، گارندتا در نمونه آفلوژیت اپیدوت، آمپتیولیتی شده، شمال زمین (F2).

<table>
<thead>
<tr>
<th>Sample No</th>
<th>F2</th>
<th>F2</th>
<th>F2</th>
<th>F2</th>
<th>F2</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides.Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F2 = Fe²⁺/Fe⁺

FGE3 = Fe²⁺/Fe²⁺ + Fe³⁺
جدول 7

<table>
<thead>
<tr>
<th>نتایج تجزیه و تحلیل جایگزینی کربنات از ریز بردارش الکترونی</th>
<th>گزارش‌های شیمیایی موجود در سایت‌های غیررسانایی</th>
<th>شیمیایی</th>
<th>بی‌شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No</td>
<td>FSD8a</td>
</tr>
<tr>
<td>Oxides/Min.</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>32.8</td>
<td>32.9</td>
<td>32.8</td>
<td>32.7</td>
<td>32.9</td>
<td>32.7</td>
<td>32.8</td>
<td>32.7</td>
<td>32.8</td>
<td>32.8</td>
<td>32.8</td>
<td>32.8</td>
<td>32.8</td>
<td>32.8</td>
<td>32.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>44.2</td>
</tr>
<tr>
<td>MnO</td>
<td>16.0</td>
</tr>
<tr>
<td>MgO</td>
<td>35.0</td>
</tr>
<tr>
<td>CaO</td>
<td>67.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

جدول 8

<table>
<thead>
<tr>
<th>نتایج تجزیه و تحلیل جایگزینی کربنات از ریز بردارش الکترونی</th>
<th>گزارش‌های شیمیایی موجود در سایت‌های غیررسانایی</th>
<th>شیمیایی</th>
<th>بی‌شکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No</td>
<td>GOF5</td>
</tr>
<tr>
<td>Oxides/Min.</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>24.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>40.6</td>
</tr>
</tbody>
</table>

(GOF5)
جدول ۳- نمودار شاخص گرتنته‌های انواع اکلوژیته‌ها به ترتیب در اکلوژیته‌های شیستوزیته‌های دهمه (D-3a) و اکلوژیته‌های توده‌ای سولابست (D-3b) و اکلوژیته‌های توده‌ای دیگر (D-3c) معرفی شده از نظر فیزیکی ترویجی و شیمیایی (نی‌کردن) در دو بخش اول و دوم از این شاخص با توجه به پیشنهادات و بررسی‌های قبلی و انتقال از یک نوع به دیگر نوع از دسته‌بندی بوده‌اند.

![Chart](https://via.placeholder.com/150)

![Chart](https://via.placeholder.com/150)

از طرف دیگر متعلق به منشأ گرانثهای اکلوزیتهای تودهای شمال گزیک مثل نمودار 3-2 با توجه به شکل 5 سمت راست، می‌توانند نشان دهند شد این گرانثهای ضمن افزایش عمق افزایش می‌بیند و کاهش می‌گردد از مرکز به حاشیه ایندکس (1181918191817191819). یک این نوع منطقه‌بندی نشان‌دهنده رشد گرانثهای طی فاصله فوتوکارایی است.

در نمودار شیست آبی گرانثهای اکلوزیتهای (SFSD-3) نیز، منطقه‌بندی مشخص گرانثهای با توجه به [4-3 و شکل 5 سمت چپ، می‌توانند نشان دهند این گرانثهای از افزایش می‌بیند و کاهش می‌گردد از مرکز به حاشیه باشد (1181918191819).

در نمودار شیست آبی گرانثهای شمال گزیک (5-3)، گرانثهای از انواع گرانثهای شیستهای آبی متنگزدی‌اند که منبع [4-3 آن را تایید می‌کند که برای ای گرانثهای زیستی توجه به شرایط بالای میدان کوارتز و استپار یکی در

1- Active .exe
پیشرفت‌های کامپیوتر، امکان‌ها و نرخ رشد گزارش در P-T-Path سنجش‌های درک‌گره‌های حدایی گرانت در شکل 7 عناوین شده است.
با توجه به فاصله دلها در مکت نوار ناپذیر اکلوژی‌ها که
از پایداری، تغییر، زنگ‌سپریتی و ابتدای و کلید
تشکیل شده است (بخش سنج‌شناسی) و مجموعه کتاب-
رخ راختی ابتدای افیپولیتک را نشان می‌دهد و بر پایه نتایج
دما-فشارسنجی برای رخ راختی ابتدای افیپولیتک در سنگه‌ها
پایش شده و نیز نتایج دما- فشارسنجی رخ راختی ابتدای
افیپولیتک در سنگه‌ها و استریت آکلوژی‌ها (محل F-
A، این اکلوژی‌ها و قینه‌ها و استریت پس از
مرحله یا داده به سمت سنج حرفک کرده و با
کاهش فشار، مجموعه کتابی اکلوژی‌ها در انتهای شده
با مجموعه رخ راختی‌ای استفاده افیپولیتک بسیاری
است. در مرحله بالا آماده که احتمالی گر این سنگه‌ها
در واخر مرحله افرودونها و با طی مرحله برخورد به بلوک لود
و افتراق سنج گرفته است، این سنگه‌ها بر پایه نتایج دما-
فشارسنجی فوق الذکر از اعمال مختلف در ابتدای دمایی
متفاوتی به سمت سنج حرفک کرده‌اند [24].[7] زیرا
تعدادی از اکلوژی‌ها از انواع متنوع [6] و با نوع
هستن که بنا بر [64]، [22]، [14]، [25] خاص مناطق
فورودرو و برخوردی نمی‌شد.

بنا بر این اکلوژی‌ها، اکلوژی‌های ابتدای افیپولیتک
شبه، شیست‌های ابی و ابتدای افیپولیتک‌ها در مرحله
برگشت به سمت زنین سنج‌سازی متفاوتی را پی‌بود. به
عبارت درکی به صورت بلوك‌گاهی زنین ساختی و از سنج‌سازی
مختلفی بالا آماده، به صورتی که بعضی ضمن بالا آماده
و کاهش فشار، تحت تأثیر افزایش دمای ناهیدی نیز قرار گرفته‌اند که می‌تواند از واقعه‌ای اکثریت و تبدیل رخ
افیپولیتک ابتدایی افیپولیتک طی بالا آماده و گرمالی
اصطلاحی باند [34]. تعدادی نیز بدون هیچگونه افزایش با
کاهش دما و به صورتی چه درد بر بالا راه یافته‌اند. بعضی از
نمونه‌های اکثریت زنین سنجی والسین و فشار هم‌امن را پی‌بوده
اند (شکل 7).

به طور کلی مسیرهای فشار – دمایی متفاوت برای سنگ -
های یاد شده (شکل 7) نشان می‌دهد که این سنگ‌های از اعمال
متفاوت با گرادیان‌های زنین. دریافت مختلی ریشه گرفته و به
صورت بلوك‌گاهی زنین ساختی در مسیرهای متفاوت نیز به
سمت سنج زنیلاً آماده و نخست در مکت عادم 10 تا
کیلوپاسیوم سنج زمین جایگذاری کرده (گسترده تکیه کرده رخ راختی
ابتدای افیپولیتک با توجه به نتایج دما-فشارسنجی، و فشار
تشکیل نمونه‌هایی سنج زمین حرفک کرده‌اند. می‌باشد شکل 7 نشان می‌دهد که اوج دما و
فشار تعادلی کلیه سنگه‌ها مورد مطالعه در گسترده پایی‌میار
کوئن ستوت است.

به طور کلی نتایج دما- فشارسنجی شیست‌های ابی گارتن-
دار، انتخاب سنج، مهندسی لباسی راه حل‌های مورد مطالعه که به اختصار در
شکل 7 ترکیب شده است به سیستم فشار - گراف برای مناطق
فورودرو با پیش‌بینی می‌کند که مؤثر نتایج منطق‌هایی و
P-T ترکیب شیمیایی سینه‌هایهای. هرچند بخش اغلب سمری
به دلیل دو مجموعه کتابی اولیه این سنگ‌ها از فورودرو
تمام می‌تواند با تبدیل ترکیب شود. اما این می‌باشد از سیستم فشار -
داما در شکل 7 ترکیب شده است. در نهایت گرایدیان زمین
گرمالی با دما پایین خص مناطق فورودرو ترکیب ترکیب شده.

با توجه به نتایج دما- فشارسنجی شیست‌های ابی گارتن-
در یک زون بینیوف صورت گرفته است که مؤید نتایج حاصل از این نوشته است.

شکل ۵ سمت راست: منطقه بندي شيميابي در قطر ناحيه تجزيه شده گارنت در اکلوزيت تودهاي شمال گزيک (F-3) . سمت چپ: منطقه بندي شيميابي در قطر ناحيه تجزيه شده A گارنت در شيست اي گارنترد سولابست (FSD-8a).

شکل ۶ - A ترکيب حاشيه گارنتم به ترتيب در اکلوزيت گزيک (FGE-3) و اکلوزيت ابيوت آفغيوليتي شده گزيک (F-2) ; افتباس از [۱].

B - ترکيب حاشيه گارنتم به ترتيب در اکلوزيت گزيک (FGE-3) و اکلوزيت ابيوت آفغيوليتي شده گزيک (F-2) ; خط بين اکلوزيتراهای نوع C و B از [۱] افتباس از [۲].
پدیده‌شناسی نشان می‌دهد که در منطقه مورد مطالعه، بیضی‌های ترمیم شده میزان انحراف‌های فشار و دماً محاسبه شده با ترمولکلک را می‌دهد. پیک‌های سیاسی Pa به ترتیب همواره (عدسی سنتی) را نشان می‌دهند. میزان تعداد کوارتز- کلینیت و P-T Paths پیوسته، از ترمولکلک 3.1 محاسبه و به دست آمده است. این محتویات با انتقال میزان از تجزیه‌های ریز پدیده‌های کلینیت‌های مخلوط جامد پارکینت و Grt + Czo + Gln + Pa + Qtz + H2O امکانپذیر می‌باشد. محاسبه‌ی دست این انتقال داده مورد پدیده‌های محدوده پایداری Tdf و خط A-A1 حالت بازی اینکه روی مجموعه کلینیتی Hbl + Chl + Ab + Qtz + H2O و H2O افزایش‌مندی از آن [شکل (b)] است. در نتیجه، در منطقه مورد مطالعه و در نتیجه در شرق ایران باشید.

برداشت

1- افزایش میزان منابع از مکان به حاشیه گارتن‌ها مؤید

2- رشد گارتن‌ها می‌تواند منابع فشار و دماست (افزایش عمق).

3- عبور مانگ‌های کوارتز و دیگر اسپارتن و درصد کوارتز بالا هستند و اکتشاف‌های کوارتز‌های آن‌ها نیز تایید کننده فرآیند فوروانش در منطقه مورد مطالعه و شرق ایران است.

- خلاصة نتایج دمای نسبی سنگ‌های دی‌گِر (ECO) نیز کاملاً مؤثر نتایج حاصل از شیمی‌گرایی‌ها و الگوهای مربوط به آنها است.

تشکر و قدردانی

در این کار پژوهشی از راهنمایی و کمک‌هایی به دریغ دانشمندان و سرمربان زمین‌پژوهی بهره‌مند بوده‌ایم که از آنها به خصوص آقای دکتر جایلز دروب استاد سنت-شناسی دی‌گِرگونی دانشگاه منچستر انگلستان که استاد راهنمای مؤقت کارشناس اول در دوره کارشناسی پژوهشی بوده‌ایم تشکر و قدردانی نماییم. از استاد ارگانی که در مرحله داوری این مقاله با یادآوری اشتیاقهای نویسندان، این نوشته را برپرداز کرده‌اند سپاسگزاریم.

مراجع

