Crystal chemistry and comparison of mineralogical composition of Eocene volcanic rocks and their basic enclaves in north of Anarak (NE of Isfahan province)

M. Sayari¹, I. Noorbehesht¹, GH. Torabi¹, A. Davoudian Dehkordi²

¹) Department of Geology, Isfahan University
²) Faculty of Agriculture, Shahre-Kord University
E-Mail: m.sayari@gmail.com

(Received: 12/4/2006, in revised form: 23/10/2007)

Abstract: Eocene volcanic rocks of north Anarak area are as scattered as masses. These rocks cross the Anarak schists and Ashin-Zavar ophiolites but had not metamorphosed them. Their outcrops follow the direction of within the area faults. Mineralogically, these rocks are limited in composition from Andesi-Basalt and Andesite to Dacite. These rocks have phenocrysts of amphibole and plagioclase in microcrystalline and microlitic matrix. The andesitic and andesibasaltic rocks in the study area have a lot of enclaves that contain many amphiboles. Type of the amphiboles is Magnesiohastingsite. Similarity of composition of amphiboles and biotites in the volcanic rocks and their enclaves indicate that these volcanic rocks and their enclaves are possibly cogenesis. There are three types of feldspar in these rocks that are andesine-oligoclase, alkali feldspar and bytownite. Bytownite is found only in certain enclaves. Geothermometry studies on phenocrysts of plagioclase and amphibole, that are in equilibrium, indicate that crystallization temperature of these phenocrysts is 835°C to 925°C.

Keywords: Eocene volcanic rocks, Enclave, Anarak, Microprobe analysis, Geothermometry.
شیمی بلوارها و مقایسه ترکیب کانی‌شناسی سنگ‌های آتش‌نشانی آنوس و برونبوهمای آذرین باری آنها در شمال اثره (شمال شرق استان اصفهان)

محمدرضا ساعی، ایرج نوری‌پشت، قدرت ترابی، مهدی زمانی، دکتر بهروز تبریزی

گروه زمین‌شناسی دانشگاه اصفهان
دکتر کشاورزی دانشگاه شهید کردن
m.sayari@gmail.com

(دریافت مقاله ۳۱/۱۳۵/۵/۱۳۹۳، تاریخ بهبود ۱۳۹۳/۵/۲)

چکیده: سنگ‌های آتش‌نشانی به سن آنوس در شمال منطقه آثار به صورت پراکنده در طول سطح و در نگاه‌های اسپیتیک و افیولیت-های عشیان - زوار را قطع کرده‌اند ولی آنها را در دکترین ساختاری. رنگ‌های آن سنگ‌ها بیشتر از رنگ‌های سایر منطقه پیروی می‌کنند. از نظر ترکیب کانی‌شناسی، سنگ‌های مورد مطالعه در گستره‌ای بازالت و آندزیت، نا دستی قرار می‌گیرد. این سنگ‌ها بیشتر حاوی فتوکرست‌های آمفیبول، پلاژیوکلاز هستند که در زمینه‌های میکروبیک و میکروکیستی قرار دارند. سنگ‌های آندزیت و آندزیتی بیشتر نسبت به سنگ‌های آنوس و در منطقه مورد مطالعه به رونویز سیاست‌گذاری هستند. شکل‌ها ترکیب آمفیبول و پلاژیوکلاز موجود در این سنگ‌های آتش‌نشانی با آمفیبول و پلاژیوکلاز موجود در برونبوهمای آنها مشابه که احتمالاً سنگ‌های آتش‌نشانی مورد مطالعه با برونبوهمای هم خاستگاه‌های قدیمی‌تری هستند. این سنگ‌ها عبارتند از فلل‌سیتی‌های قلبی، پلاژیوکلاز با ترکیب آندزیت-ایلیت و پلاژیوکلاز نیز بیشتر در کوه‌های برونبوهمای دیده می‌شوند. بررسی‌های زمین‌شناسی در سه بخشی در دستاوردهای آنوس و برونبوهمای یکسان می‌باشد که همه‌ها به دریاچه تبلور این درشت بلوارها در حدود ۱۳۵ تا ۱۲۵ میلی‌متر سانتی‌متر است.

واژه‌های کلیدی: سنگ‌های آتش‌نشانی آنوس، برونبوهمای آذربایجان، زمین‌شناسی

افیولیت مالاتر عشیان - زوار به سن موزون‌یک [۲] را قطع کرده‌اند. این سنگ‌ها اغلب مقرار به مقدار زیادی افیولیت دارند. همچنین در حوالی عشیان - زوار سنگ‌های آتش‌نشانی به مقدار زیادی دارای برونبوهمایی هستند که گونه‌های افیولیت که جزء بخش زیر روسی‌تری هستند. هدف از این نمایه شناسایی و تعیین فرمول‌سازی‌های کانی‌های موجود در سنگ‌های آتش‌نشانی آنوس در شمال اثره و مقایسه آنها از نظر ترکیبی با کانی‌های موجود در برونبوهمای همراه است.

 مقدمه
فعالیت آتش‌نشانی آنوس، یکی از مهم‌ترین پدیده‌های زمین‌شناسی ایران است. اثره ایران در زمان آنوس ساختاری است. آثار آن در اغلب مناطق ایران به غیر از زاگرس که داشته‌ای که چشم‌های خوراکی، در منطقه اثره اثره فعالیت آتش‌نشانی آنوس به صورت تکانه کوچک، گدازه و گذیرت به ابعاد چند متر تا چند متره با روند تقریبی شرقی غربی، به چشم‌های خوراکی هم‌بین از روند گسل‌های منطقه بیشتر می‌کنند. این آتش‌نشانی‌ها، قبلاً ترین سنگ‌های آتشفشانی به منطقه، به نشانه‌هایی به بست پراکنده‌اند.
روش کار
نخست بررسی‌های صحرایی و نمونه‌برداری از منطقه سود مطالعه صورت گرفته، بسیار نمونه‌ها مناسب برای تهیه مقاطع نازک و مقاطع نازک - صفحه با استفاده از بوشقی رژیم انتخاب شدند. مطالعات سنج شناختی با استفاده از میکروسکوپ قطعی پالسیر یا نور عبوری مدل BH2 انجام گرفت. آنالیز‌های نقشه‌ای انجام شده روی کالی از استفاده از رهبرپردازه الکترونی مجله 9800 X/A و نوار شتاب‌دهنده ۲۳ کیلو ولت و اجرا شده در آزمایشگاه کاتاراژا زاین صورت گرفت.

زمین‌شناسی منطقه انارک
منطقه انارک در فاصله ۲۰۰ کیلومتری شمال شرق اصفهان و ۷۳ کیلومتری شمال شرقی شهرستان نهبندان قرار گرفته است. این منطقه در حاشیه جنوبی دشت کویر (کویر مرکزی)، بین طول‌های جغرافیایی ۴۳–۴۵ درجه شرقی و عرض‌های جغرافیایی ۳۳–۳۷ درجه شمالی قرار داشته است. ارتفاع شهر انارک از سطح دریا ۱۲۰۰ متر است. این منطقه در تقسیمات زیرهای زمین‌شناسی ایران در زون ایران مركزي قرار دارد [۲] و شکل ۱ نشانه‌های زمین‌شناسی گروه انارک و موقعیت سنجش‌های مورد مطالعه را نشان می‌دهد [۲] این منطقه خود بخشی از ناحیه چین خوردگی آبی با کمربند چین خوردگی الپه‌های هیمالیا (میدیترانسی) است. منطقه انارک از نظر، جنگل - شناسی، انقشافی و کاساریاسی بسیار متنوع و از نظر زمین

شکل ۱ نشانه‌های زمین‌شناسی منطقه انارک (تزاید ۱۳۸۳)
مدل سنگ زایی

از آنجایی که منطقه مورد مطالعه جزئی از رون ازهمیه - دختر
نیست و رون سنگ‌های آتش‌نشانیان از نیز با ازهمیه - دختر
مطالعه ندارد، بنابراین ممکن است وضعه به‌جا مانده‌اند
احتمالی حاصل از بویه ازتونسی نارس برامون خردف تاریخ
ایران مکری باشد و از آنجا که فرسودگی نشاند نیز به
سمت شمال شرق است. نمی‌توان آثار فرسودگی نشاند در
راسته‌گرفت.

سنگ شناسی سنگ‌های آتش‌نشانیان

بافت سنگ‌های آتش‌نشانیان مورد مطالعه پورفری،
هایپورفری، و ریز بلو و پورفری است. برای مطالعات
میکروبوکسیکی، سنگ‌های مورد مطالعه از نظر کمی شناسی،
به طور کلی به سه دقیقه می‌شوند.

1- آنیزیت‌ها و آنیزیت‌های پالازیت‌ها: این سنگ‌ها با اثر
فروکریست‌های پالازیت‌کلاز (شکل: 2) آمپیبول (شکل: 3) و
کم‌کیلوپروکسک (شکل: 4) است که در وسایل شیشه‌ای و ریز
پلستیک از پالازیت‌کلاز قرار گرفته‌اند. آمپیبول‌ها خود در
وری از پالازیت‌کلاز به کربنات تشکیل شده و
تا انتزاع‌های به کربنات تجزیه شده و فلدسپات‌ها به سرسبز و
کاتالیتیک دهم‌سانت وسایل. فراوانی آمپیبول در این سنگ‌ها به
اداره‌های است که می‌توان آنها را در کل‌سیتی و آمپیبول
اندوزی پالازت‌کلاز.

کلی‌های فرعی موجود در این سنگ‌ها شامل اسنف،
آنیزیت و زیرک است که به درن اس‌پرا کم‌می‌ردد.

2- داستی‌ها: این سنگ‌های خالی پالازیت‌کلاز، کوارتز و سلیسین
بندی در متن سنگ آتش‌نشانیان (شکل: 1).

شکل 2- تصویری از فرونکریست‌های پالازیت‌کلاز (و. PPL).

شکل 3- تصویری از فرونکریست‌های آمپیبول‌های با منطقه
(و. XPL).

شکل 4- محله‌هایی کلینوپروکسک (و. PPL)
آنتیفیتی میزبان کامل متعادل بوده و انتظاری از حوادث واکنشی نداشته (شکل 9 و 10). این پرونیوژها از نظر کاتی-شناختی نشانه‌گذاری به سنج میزبان خود دارند ولی از نظر بقایی کامل‌ای با آنها مشابه‌تر پرونیوژهای آدرین بزریک نیز به فراوانی حاصل آمیفیبولیند (شکل 11).

علاوه بر این پرونیوژها، پرونیوژهایی از شیست‌ها و افیولیت‌ها نیز در نمونه‌ها وجود دارند که بر اساس اندازه‌گیری بررسی‌های مورد نظر نبودند. پرونیوژها مورد مطالعه (آدرین بزریک) نیز به فراوانی حاصل آمیفیبولیند کلیسک از نوع منیزیوهاستنگسیت‌های تهدیدی، پلازیکلاستر از دیگر کاتی‌های موجود در پرونیوژها هستند. برخی از این پلازیکلازها کلیسک و از نوع پتیونت بوده و برخی نیز فیلنیوند. پلازیکلازهای پرونیوژها، بافت‌هایی دگرگوشی را نیز نشان می‌دهند.

شکل ۵ فنوزیست‌های کوارتز با خوردگی خلیجی و حاشیه‌گی‌های فاش در اندو همراه با پلازیکلازهای اسفیولیند (نور PPL).

شکل ۶ فنوزیست‌های کوارتز‌ها با حاشیه واکنشی (نور XPL).

شکل ۷ فنوزیست بوئزیت به همراه آمیفیبولیند که در حالت تجزیه به کلیت‌های هستند (نور PPL).

شکل ۸ فنوزیست پلازیکلاز در حال تجزیه به سرتیت، همراه با نفوذ آمیفیبولیند (نور XPL).

سنگ‌شناسی پرونیوژها
سنگ‌های آدرینی و آدنزی بازالتی مورد مطالعه اغلب حاوی پرونیوژهای قراوندند. محل تکمیل برخی از پرونیوژها با سنگ‌های آدرینی و آدنزی بازالتی مورد مطالعه اغلب حاوی پرونیوژهای قراوندند.
شیمی بلوه‌ها
کالی‌های سنگ‌های آتش‌نشانی مواد مطلوب در شمال آنار نیز مورد نیاز ریز برای کوارتز گرفتن و دستیابی به فرمول
ساختار آنها با استفاده از نرم افزار *PET (جدول [10] [11] انجام

محاسبه فرمول ساختار کلسیم‌های آلی در شیمی سنگ نشان
می‌دهد که همه آنها دارای گستره بانی‌شویی بوده و در
فرمول‌های اکسترا در مورد سنگ‌های آلی بالایی (جدول [12] این
کمیابی‌های از فوق مینی‌یوسته‌سازی هستند که همراه با
پاراژنت در یک گسترده قرار می‌گیرد (شکل 12).

شیپری، سنگ‌های آتش‌نشانی شمال
انادر
سنگ‌های آتش‌نشانی با پرپورتی دو مرحله تیلور را پشت
سر گذیش‌تکانه، یک مرحله در برون و یک دیگر در سطح زمین
و مرحله دیگر درع که با تیلور فوئریست‌های درشت
تیلور مشخص می‌شود. این نوعی تیلور فوئریست‌های سنگ‌های آتش‌نشانی از زمین دماسنجی
استفاده شده است که برای زمین دما سنگی از نرم‌افزارهای
کامپیوتری تخصصی به‌طور گسترده استفاده می‌شود. این بر
نسبتاً جامع، نرم‌افزار [10] است.

برای نمونه، سنگ‌های آتش‌نشانی، روز فوئریست‌های آمفی
کلسیم‌ها و پلاژیوکلز در تعداد بسیار زیادی از گروه‌های
نمونه‌های آمفی‌سیستم کلسیمی از روی شرایط به‌دنبال مشاهده
بوده و در این محور مدل‌های مورد نظر پلاژیوکلز
همزمان و مجاور خود هستند و به همین دلیل برای پراژنت
شرايط دمای سنگ‌ها در عمق در زمین زیست‌شناسی شده
است.

این روش زمین دماسنجی، یک روش زمین دماسنجی تبادلی کار
می‌کند که بر پایه واکنش‌های زیر صورت می‌گیرد:
edenite + 4 quartz = tremolite + albite
edenite + albite = richterite + anorthite

واکنش اول به شرایط مربوط است که کوارتز در سنگ‌های
دارند و واکنش دوم در شرایط است که کوارتز در سنگ و وجود
نادر.

همه‌تیم‌های زمین دماسنجی آمفی - پلاژیوکلز
برای نمونه، روش دماسنجی آمفی - پلاژیوکلز که توسط [12] انجام شده است، برای
سنگ‌های مانگیایی قبل استفاده است (شکل 16) [12]. این
محاسبه با استفاده از نرم‌افزار PET انجام شده است. برای
میانگین دما باین روش، نشان می‌دهد که در گستره فشارهای
متقارن بین 10 تا 10 کیلو بار - آمبیونال، پلاژیوکلز در
تشکیل سنگ‌های آلی بالایی (شکل 35) نا
حداکثر 925 درجه سانتی‌گراد بوده است (جدول 4).

منظر از فشار در این محاسبات، شارس سنگ‌های پلاژیوکلز
است که [14] در محاسبات خود از استفاده کرده است.
چونگی محاسبه دما با استفاده از این روش برای استفاده از
فرمول زیر است که در آن T به‌حساب درجه سانتی‌گراد برابر
است با

* Petrological elementary tools for Mathematica
شیبی بلورها و مقاایسه ترکیب کالیشناسی سیگه‌های آتش‌نشانی... 119

مقدار الیت پلاژیوکلاز بیش از ۵۰ باند صفر در نظر گرفته می‌شود. ارتباط فشار با دمای محاسبه شده به ترکیب هر دو زوج فنوکریست امفیبول و پلاژیوکلاز بستگی دارد، و مستقیماً از رابطه بالا بستگی می‌یابد.

\[
T(\pm40{^\circ}C) = \frac{-76.95 \times 0.79 P + Y_{\text{nbo}} + 39.4X_{\text{nbo}}^{\text{obs}}}{0.0650 - RLH(27X_{\text{nbo}}^{\text{obs}} - X_{\text{nbo}}^{\text{obs}}X_{\text{nbo}}^{\text{obs}}/(256X_{\text{nbo}}^{\text{obs}}X_{\text{nbo}}^{\text{obs}}))} - 273
\]

در این فرمول P فشار (بر حسب کیلوبار) ضریب R برای با Yab ۸۳/۴۴۴ کیلوپاسکال و Yab نیز در صورتی که

جدول ۱ نتیجه آنالیز ریزپایدارش فنوکریست‌های امفیبول و محاسبه فرمول ساختاری آنها بر یک صفحه ۲۳ آکسیلن ساختاری (اسیدهای حسب دصرد).

<table>
<thead>
<tr>
<th>کاتین</th>
<th>نام</th>
<th>تعداد</th>
<th>کاتین</th>
<th>نام</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>سیلیس</td>
<td>۵۸۹۹</td>
<td>Ti</td>
<td>تیلیوم</td>
<td>۲۷۷۲</td>
</tr>
<tr>
<td>Al</td>
<td>آلیوم</td>
<td>۱۸۴۴</td>
<td>Cr</td>
<td>کروم</td>
<td>۹۵۴</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>فیژن سه گیل</td>
<td>۴۵۰۸</td>
<td>Fe²⁺</td>
<td>فیژن دو گیل</td>
<td>۱۰۰۶</td>
</tr>
<tr>
<td>Mn</td>
<td>منگنز</td>
<td>۱۲۳۰</td>
<td>Mg</td>
<td>مگنیس</td>
<td>۲۵۲۸</td>
</tr>
<tr>
<td>Ca</td>
<td>کالیوم</td>
<td>۱۸۳۵</td>
<td>Na</td>
<td>نا</td>
<td>۰۷۲۸</td>
</tr>
<tr>
<td>K</td>
<td>کلوئید</td>
<td>۱۸۶۹</td>
<td>۴۹۰۶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

علامات * مربوط به نمونه‌های درون بردپیوسته است.
جدول 2
نتیجه آنالیز ریپردرافش فتوکریست‌های فلکسی و محاسبه فرمول ساختاری آنها با پایه 8 آکسیژن ساختاری (آکسیدها بر حسب درصد)

<table>
<thead>
<tr>
<th>کمیت</th>
<th>نُسْمَه 18</th>
<th>نُسْمَه 20</th>
<th>نُسْمَه 22</th>
<th>نُسْمَه 24</th>
<th>نُسْمَه 26</th>
<th>نُسْمَه 28</th>
<th>نُسْمَه 30</th>
<th>نُسْمَه 32</th>
<th>نُسْمَه 34</th>
<th>نُسْمَه 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO</td>
<td></td>
</tr>
<tr>
<td>TiO</td>
<td></td>
</tr>
<tr>
<td>Al 2O 3</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>NaO</td>
<td></td>
</tr>
<tr>
<td>K 2O</td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
</tr>
</tbody>
</table>

میزان

<table>
<thead>
<tr>
<th>کمیت</th>
<th>نُسْمَه 18</th>
<th>نُسْمَه 20</th>
<th>نُسْمَه 22</th>
<th>نُسْمَه 24</th>
<th>نُسْمَه 26</th>
<th>نُسْمَه 28</th>
<th>نُسْمَه 30</th>
<th>نُسْمَه 32</th>
<th>نُسْمَه 34</th>
<th>نُسْمَه 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO</td>
<td></td>
</tr>
<tr>
<td>TiO</td>
<td></td>
</tr>
<tr>
<td>Al 2O 3</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>NaO</td>
<td></td>
</tr>
<tr>
<td>K 2O</td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
</tr>
</tbody>
</table>

میزان
جدول 4. ترکیب کاتیون‌های موجود در سنگ‌های آتش‌نشانی (aksiدهای بر حسب درصد وزنی) و محاسبه فرمول ساختاری آنها

<table>
<thead>
<tr>
<th>کاتیون ها</th>
<th>نمونه 1</th>
<th>نمونه 2</th>
<th>نمونه 3</th>
<th>نمونه 4</th>
<th>نمونه 5</th>
<th>نمونه 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.324</td>
<td>0.327</td>
<td>0.329</td>
<td>0.334</td>
<td>0.338</td>
<td>0.340</td>
</tr>
<tr>
<td>Fe</td>
<td>0.455</td>
<td>0.462</td>
<td>0.467</td>
<td>0.473</td>
<td>0.478</td>
<td>0.480</td>
</tr>
<tr>
<td>Mg</td>
<td>0.215</td>
<td>0.218</td>
<td>0.220</td>
<td>0.224</td>
<td>0.226</td>
<td>0.228</td>
</tr>
<tr>
<td>Ca</td>
<td>0.190</td>
<td>0.194</td>
<td>0.196</td>
<td>0.199</td>
<td>0.201</td>
<td>0.203</td>
</tr>
<tr>
<td>K</td>
<td>0.170</td>
<td>0.173</td>
<td>0.180</td>
<td>0.185</td>
<td>0.187</td>
<td>0.189</td>
</tr>
<tr>
<td>Ti</td>
<td>0.162</td>
<td>0.165</td>
<td>0.168</td>
<td>0.172</td>
<td>0.175</td>
<td>0.178</td>
</tr>
<tr>
<td>V</td>
<td>0.150</td>
<td>0.153</td>
<td>0.156</td>
<td>0.160</td>
<td>0.163</td>
<td>0.166</td>
</tr>
<tr>
<td>Cr</td>
<td>0.134</td>
<td>0.138</td>
<td>0.141</td>
<td>0.145</td>
<td>0.148</td>
<td>0.151</td>
</tr>
<tr>
<td>Ni</td>
<td>0.120</td>
<td>0.124</td>
<td>0.130</td>
<td>0.135</td>
<td>0.139</td>
<td>0.142</td>
</tr>
<tr>
<td>Na</td>
<td>0.110</td>
<td>0.114</td>
<td>0.118</td>
<td>0.123</td>
<td>0.127</td>
<td>0.131</td>
</tr>
<tr>
<td>Zn</td>
<td>0.100</td>
<td>0.105</td>
<td>0.110</td>
<td>0.115</td>
<td>0.121</td>
<td>0.127</td>
</tr>
<tr>
<td>FeO</td>
<td>0.090</td>
<td>0.095</td>
<td>0.100</td>
<td>0.105</td>
<td>0.111</td>
<td>0.117</td>
</tr>
<tr>
<td>MgO</td>
<td>0.080</td>
<td>0.085</td>
<td>0.090</td>
<td>0.095</td>
<td>0.101</td>
<td>0.107</td>
</tr>
<tr>
<td>CaO</td>
<td>0.070</td>
<td>0.075</td>
<td>0.080</td>
<td>0.085</td>
<td>0.091</td>
<td>0.097</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.060</td>
<td>0.065</td>
<td>0.070</td>
<td>0.075</td>
<td>0.081</td>
<td>0.087</td>
</tr>
</tbody>
</table>

شکل 12. نمودار تقسیم بندي آمپیلوید [16]. در شکل مشخص است نمونه‌های مورد آنالیز در پخش كلیک قرار می‌گیرند (دواری نوید مربوط به نمونه‌های درون سنگ‌های آتش‌نشانی و دواری نتوانست مربوط به نمونه‌های درون سنگ‌های آتش‌نشانی).
شکل ۱۳ نمودار آمفیبول‌ها [۱۲] نمونه‌های آنالیز شده در گروه منیزیوهماستینگیت قرار دارند (علائم مانند شکل ۱۲).

شکل ۱۴ فلزسیات‌های موجود در سنگ‌های آتش‌نشانی (دواری توبیو) و برنیوم‌های آنها (دواری توخالی).

شکل ۱۵ تصویری از فتیک‌رست‌های در تعادل پلاژیوکلاز و آمفیبول (نور PPL).
جدول 2 دمای‌های محسوب شده در فشارهای 1 تا 10 کیلوبار برای جریان‌های آمفیبول و بلژیکولاز انتخابی و مقادیر میانگین آنها در سنگ‌های آتش‌نشانی شمال ایران:

<table>
<thead>
<tr>
<th>فشار (کیلوبار)</th>
<th>نمونه 1</th>
<th>نمونه 2</th>
<th>نمونه 3</th>
<th>نمونه 4</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.63</td>
<td>0.65</td>
<td>0.68</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>2</td>
<td>0.67</td>
<td>0.69</td>
<td>0.71</td>
<td>0.68</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>0.68</td>
<td>0.7</td>
<td>0.72</td>
<td>0.69</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.70</td>
</tr>
<tr>
<td>5</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>9</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.71</td>
<td>0.72</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

در پایین‌ترین سطح ذوب نیشکر پلاژیکولاز، نسبت به فوران‌های گسترده تبدیل به برونویزی و اگزنشانی این سنگ‌ها به صورت گسترده است.

سنگ‌های آتش‌نشانی مورد مطالعه، شیست‌های پرمیا و اقلیتی ملاتسی عشیق - زور را توقف کرده‌اند، ولی آنها را برگرفته و داده‌های آنها از نقطه می‌شود.

نتایج آنالیز ریزبردانش نشان می‌دهد که تکیه آمفیبول - های موجود در سنگ‌های آتش‌نشانی شمال ایران و نیز آمفیبول‌های موجود در برونویزی های مشابه با نوع آمفیبول کلسیک و نوع فلزی بسیاری بسیار متفاوت است.

مراجع

شیبی بلورها و مقاومت ترکب‌کانی شناسی سنگ‌های آتش‌نشانی...

