Crystal chemistry and comparison of mineralogical composition of Eocene volcanic rocks and their basic enclaves in north of Anarak (NE of Isfahan province)

M. Sayari¹, I. Noorbehesht¹, GH. Torabi¹, A. Davoudian Dehkordi²

¹) Department of Geology, Isfahan University
²) Faculty of Agriculture, Shahre-Kord University
E-Mail: m.sayari@gmail.com

(Received: 12/4/2006, in revised form:23/10/2007)

Abstract: Eocene volcanic rocks of north Anarak area are as scattered as masses. These rocks cross the Anarak schists and Ashin-Zavar ophiolites but had not metamorphosed them. Their outcrops follow the direction of within the area faults. Mineralogically, these rocks are limited in composition from Andesi-Basalt and Andesite to Dacite. These rocks have phenocrysts of amphibole and plagioclase in microcrystalline and microlitic matrix. The andesitic and andesibasaltic rocks in the study area have a lot of enclaves that contain many amphiboles. Type of the amphiboles is Magnesiohastingsite. Similarity of composition of amphiboles and biotites in the volcanic rocks and their enclaves indicate that these volcanic rocks and their enclaves are possibly cogenesis. There are three types of feldspar in these rocks that are andesine-oligoclase, alkali feldspar and bytownite. Bytownite is found only in certain enclaves. Geothermometry studies on phenocrysts of plagioclase and amphibole, that are in equilibrium, indicate that crystallization temperature of these phenocrysts is 835°C to 925°C.

Keywords: Eocene volcanic rocks, Enclave, Anarak, Microprobe analysis, Geothermometry.
شیمی بیولوگی و مقایسه ترکیب کانی شناسی سنگ‌های آتش‌نشانی اسوس و برونیوم‌های آذرین باری آنها در شمال اتارک (شمال شرق استان اصفهان)

محمد سیاری۱، ایرج نوری‌شست۲، قدرت ترابی۳، علیرضا داویدان دهکدی۴

۱ گروه زمین‌شناسی دانشگاه اصفهان
۲ دانشکده کشاورزی دانشگاه شهید چمران
۳ m.sayari@gmail.com

پیست الکترونیکی: (1384/8/6/1) (درباره مقاله ۱/۳/۱۳۴۵)

چکیده: سنگ‌های آتش‌نشانی به سن اسوس در شمال منطقه اتارک به صورت راکدنه دیده می‌شوند. این سنگ‌ها شیست‌ها و افیوبیت‌های عشیان - زوار را قطع کرده‌اند ولی آنها را دگرگون نسانشند. رخ‌مندان این سنگ‌ها بیشتر از روند گسل‌های منطقه پیروی می‌کنند. از نظر ترکیب کانی شناسی، سنگ‌های مورد مطالعه در گستره اندریز بزالت و آندزیت تا داسیت قرار گرفته‌اند. این سنگ‌ها بیشتر حاوی فلوریست‌های افیوبیت، و پلازیکولز هستند که در زمینه ریزبورین و میکرولیتی قرار دارند. سنگ‌های آندزیتی و آندزیت‌های فلوریستی ومنطقه مورد مطالعه به صورت برزند و پلازیکولز هستند که در زمینه ریزبورین و میکرولیتی قرار دارند. سنگ‌های آندزیتی و آندزیت‌های فلوریستی از نوع مینیزیوهاستینسیت است. شرایط ترکیب افیوبیت‌های پلازیکولز موجود در این سنگ‌های آتش‌نشانی با افیوبیت‌های پلازیکولز موجود در برونیوم‌های آنها نشان می‌دهد که احتبالات سنگ‌های آتش‌نشانی مورد مطالعه با برونیوم‌های تونگ گسته‌اند. فلوریست‌های موجود در این سنگ‌های عبارتند از فلوریست‌های قلبی، پلازیکولز با ترکیب آندزیت-الکسیتر و نیز پلازیکولز‌های تونگ به ترتیب برونیوم‌های موجود در این زمینه. روش هیدروژنی در نما بارک در نوادنا افیوبیت و پلازیکولز نشان می‌دهد که دمای بهتر این درشت بیولوگی با حداکثر ۹۱ تا ۹۲ درجه سانتی‌گراد است.

واژه‌های کلیدی: سنگ‌های آتش‌نشانی اسوس، برونیوم، آتارک، آلیتزیپریدابه، زمین دماسنجی

افیوبیت ملانئز عشیان - زوار به سن زیست‌های مدل شده، قطع کرده‌اند. این سنگ‌های صورت راکدهای افیوبیت‌های مدل شده‌اند. همچنین در حوالی عشیان - زوار سنگ‌های آتش‌نشانی به مقدار زیادی دارای افیوبیت‌های هستند که از افیوبیت بوده و بروز از آنها با سمتگیری ترجیحی است. هدف از ارائه این مقاله شناسایی و تعیین فرمول متنوعه‌ای ساختاری کانی‌های موجود در سنگ‌های آتش‌نشانی اسوس در شمال اتارک و مقایسه آنها از نظر ترکیبی با کانی‌های موجود در برونیوم‌های همراه است.

مقدمه
فعالیت آتش‌نشانی اسوس، یکی از مهمترین پدیده‌های زمین-شناسی ایران در زمان اسوس، آثار آن در اغلب مناطق ایران به‌شمار آمده و چشم‌های داغ به مردم می‌خورد. منطقه اتارک آثار فعالیت آتش‌نشانی اسوس به صورت کاده‌های کوچک، گدازه و کنده به ابعاد مترا زیاد با روند قطبی زمین و گیرش‌های غربی به چشم‌های مردم می‌خورد. کاده‌های موجود در این اندازه‌ها، از جمله سنگ‌های هستند که در منطقه پیروی می‌کنند. این آتش‌نشانی‌ها، قطبی ترین سنگ‌های منطقه برونیوم می‌کنند. به منظور شناسایی، به‌سر بردن تحقیقی نوپردازی شده است...
روش کار
یکی از بررسی‌های صحرایی و نمایه برداری از منطقه مورد
مطالعه صورت گرفت. بسیار نمونه‌های مناسب برای تهیه
مقاطع نازک و مقطع نازک - صرفه با استفاده از پویش
رزی انتخاب شدند. مطالعات سنگ شناختی با استفاده از
میکروسکوپ قطعی پلازما یا نور عبوری صدای
جرف آنالیزهای تقطعی انجام شده و روی کاتیا با استفاده از
ریز پردازشکده الکترونی مدل XA-8800-BA و لنز Jeol,
شتایبندگی دو کیلوولت و جریان 12 نانو آمپر دانشگاه
کاتالاوا زاین صورت گرفت.

زمین‌شناسی منطقه اثرک
منطقه اثرک در فاصله 20 کیلومتری شمال شرق اصفهان و
۲۴ کیلومتری شمال شرقی شهرستان نابین قرار گرفته است.
این منطقه در حاشیه جنوبی دشت کویر (کورک مکزی) بین
طول‌های جغرافیایی ۵۴-۵۵ درجه شرقی و عرض‌های
جغرافیایی ۲۹-۳۲ درجه شمالی واقع شده است. ارتفاع شهر
اندر از سطح دریا ۱۲۰۰ متر است. این منطقه در تقسیمات
زئین‌شناسی ایران در بزرگ‌شهر مرکزی قرار دارد [۲] و
[۳] شکل ۱ نشان دهنده زئین‌شناسی کلی منطقه اثرک و موقعیت
سنگ‌های مورد مطالعه را نشان می‌دهد [۲] این منطقه خود
بخشی از ناحیه چین خوردگی ایلی با کمربند چین خورده آب‌پذیر
- هیمالیا (مدیریت‌های) است. منطقه اثرک ناحیه جنوبی، جنوبی-
شناسی، آنتیفزیال و کاسپیان‌های بسیار متنوع، از نظر زمین

شکل ۱ نشانه زمین‌شناسی منطقه اثرک (نزایی)
مدل سنگ زایی

از آنجا که منطقه مورد مطالعه جزئی از زون ارومیه - دختر نیست و روند سنگ‌های آتش‌نشانی آن نیز با ارومیه - دختر مطابقت ندارد، بنابراین ممکن است واگذاری احتمالی حسی ایکتیسی ناتس بی‌رومان خود فرآیند ابری مvertising باشد، ولی از آنجا که فرآیندها نشون دهنده نبوده است شست درآیش است. نمی‌توان آثار فرآیندهای نشون دهنده را نادیده گرفت.

سنگ سناسی سنگ‌های آتش‌نشانی

بافت سنگ‌های آتش‌نشانی مورد مطالعه پورفیری، هالوپورفیری، و ریز‌بلور پورفیری است. بر یافته‌های میکروسکوپیک، سنگ‌های مورد مطالعه از نظر کانی شناسی، به طور کلی به صورت ترمیمی می‌شوند.

1- آنزیم‌ها و انژیم‌های اکتین‌ها: این سنگ‌ها بیشتر از فنوتراپسیسته‌های پلاژیولیت (شکل 1)، آمفیپول (شکل 2) و کمی کلیروپروکسن (شکل 3) هستند که در زمین‌های شیشه‌ای و ریز‌بلور از پلاژیولیت قرار گرفته‌اند. آمفیپول‌ها خود شکل بوده و نااندازه‌ای به کلر فرآیندهای سنگ‌ساز را تبدیل به سنگ‌های میکروسکوپیک و کاتاولیت‌های منشأ شفه‌اند فراوانی آممپولیف در این سنگ‌ها به اندازه‌ای است که می‌توان آن‌ها را آمبیپول اندزیت و آمبیپول آندزیت بازلیت نامید.

کلی‌های فراین موجود در این سنگ‌ها شامل اسفین، آباتیت و زیورک است که به میزان بسیار کم وجود دارند.

2- داسیت‌ها: این سنگ‌ها حاوی پلاژیولیت، کوارتز و سنیدین بندی در متن سنگ اندزیت (شکل .XPL.

شکل 2 تصویری از فنوتراپسیست خودشکل پلاژیولیت‌های همراه با منطقه‌ی نشان دهنده در متن سنگ اندزیتی (نور PPL)

3- آنزیم‌های بیوندیکار: این سنگ‌ها که فقط در حوالی مکانیاقت می‌شوند، تفاوت‌های مشخصی در واگذاری اول دارند و وجود بیوندیکار در آن‌ها. این سنگ‌ها واجد پلاژیولیت، بیوندیکار و آمفیپول هستند. در این سنگ‌ها عموما بیوندیکار سالم مانندانار در صورتی که آمفیپول به کلر دگرگسان شده‌اند (شکل 7) پلاژیولیتره‌ها نیز در حال
آنتفششاتی میزبان کامل متعادل بوده و اثری از حوادث واکنشی دیده نمی‌شود (شکل 7 و 10). این بروتونومها از نظر کانی-شناسی شباهت زیادی به سنگ‌های برقزداران و یکی از نظر بافتی کاملاً با آنها متفاوتند. بروتونوم‌های آدرین باریک نیز به فراوانی حاوی آمیفیبول‌اند (شکل 11).

علاوه بر این بروتونومها، بروتونوم‌هایی از سیست‌ها و افیولیت‌ها نیز در نمونه‌ها وجود دارند که بررسی آنها مورد توجه قرار گرفته است. بروتونوم‌های مورد مطالعه (آدرین باریک) نیز به فراوانی حاوی آمیفیبول‌های کلسیک از نوع منیزیوهاستینگسیت هستند. پلاژیوکلاز از دیگر کانی‌های موجود در بروتونوم‌ها هستند. برخی از این پلاژیوکلازها کلسیک و از نوع بیتونیت بوده و برخی نیز قلبی‌اند. پلاژیوکلاز‌های بروتونوم‌ها، بافت‌های دگرشکلی را نیز نشان می‌دهند.

شکل 5 فتوکریست‌های کوارتز با خوردگی خلیجی و حاشیه‌گی بروتونوم یا (PPL).

شکل 6 فتوکریست‌های کوارتزی حاشیه‌ای واکنشی (نور XPL).

شکل 7 فتوکریست‌های بروتونوم به همراه آمیفیبول‌هایی که در حال تجزیه به کلریت هستند (نور PPL).

شکل 8 فتوکریست‌های پلاژیوکلاز در حال تجزیه به سرسنت، همره با نفوذ آمیفیبول (نور XPL).

سنگ‌شناسی بروتونوم‌ها
سنگ‌های آدرینی و آندزی الیسی مورد مطالعه اغلب حاوی بروتونوم‌های قراریت و محل تماس باریک از بروتونوم‌ها با سنگ‌های کوارتزی توسط تکنیک‌های تصویری شده (PPL).

شکل 9 بروندرهای بروتونوم همگی همونگ با سنگ آنتفششاتی (نور PPL).

شکل 10 بروندرهای بروتونوم آدرین باریک با سنگ آنتفششاتی (نور XPL).

شکل 11 تصویری از آمیفیبول‌های موجود در بروتونوم‌های آدرین باریک (نور PPL).
شیمی و میکروشیمی سنگ‌های آتش‌نشانی شمال آتارک
سنگ‌های آتش‌نشانی با بلوچیون و مولکول اتانول را به‌کاربردهای مختلفی نسبت به سطح زمین و محیط کنولر در مورد سنگ‌های آتش‌نشانی دقیقاً گرفته شده است. این سنگ‌های آتش‌نشانی در ناحیه‌های زیست‌محیطی تولید می‌شوند و در اینجا به منظور تعیین شرایط تولید فنکریده‌های سنگ‌های آتش‌نشانی استفاده شده است که برای زیست‌محیطی از نظر زیست‌محیطی کامپیوتر تخصصی به‌طور گسترده است. این سنگ‌های آتش‌نشانی گرفته شده است.

برای شواهد استحکام و تولید سنگ‌های آتش‌نشانی، روی سنگ‌های آتش‌نشانی کلسیم‌پات و پلازیکالز در ناحیه‌های مختلفی از مهم‌ترین مصالح باریک و ارزشمندی است که کوارتز در سنگ حضور دارد و به‌کار رفته در شرایط استحکام کوارتز در سنگ وجود ندارد.

همچنین زمین‌محیطی زمین‌محیطی پلازیکالز - پلازیکالز

منظور از فشار در این محاسبات، فشار سنگ‌های باریک بوده است که [14] در محاسبات خود از این استفاده کرده است. بنابراین محاسبه دما با استفاده از این روش با استفاده از فرمول زیر است که در آن

\[T \] بر حسب درجه سانتی‌گراد درای

است. با

* Petrological elementary tools for Mathematica
مقادیر البت پلازموکلر بسیار از 0.5 به صورت داده شده در نظر گرفته می‌شود. ارتباط فشار با دمای محاسبه شده به ترکیب هر دو جز فتوکریست آمیلیم و پلازموکلر به‌عنوان دارای و مستقیماً از رابطه بالا بسته می‌باشد.

در این فرمول P فشار (بر حسب کلویار) ضریب R برای با Yab 0.031444 سیلوزول برکیالومول و Yab نیز در صورتی که

جدول 1: نتیجه آنالیز ریزپردازش فتوکریستهای آمیلیم و محاسبه فرمول ساختار آنها بر پایه 33 آکسیژن ساختاری (اکسیدها) بر حسب درصد.

<table>
<thead>
<tr>
<th>آکسیدها</th>
<th>نمودارهای</th>
<th>ننوتونه</th>
<th>نمودارهای</th>
<th>ننوتونه</th>
<th>نمودارهای</th>
<th>ننوتونه</th>
<th>نمودارهای</th>
<th>ننوتونه</th>
<th>نمودارهای</th>
<th>ننوتونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₅⁸₈₈₈</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>TiO₂⁵⁴⁵</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
</tr>
<tr>
<td>Al₂O₃⁵⁵</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>Cr₂O₃⁵⁴</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
<td>395</td>
<td>504</td>
</tr>
<tr>
<td>MnO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>MgO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>CaO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>NaO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>KO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>NiO⁵⁴</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
<td>382</td>
<td>504</td>
</tr>
<tr>
<td>مشروع</td>
<td>496</td>
<td>504</td>
<td>496</td>
<td>504</td>
<td>496</td>
<td>504</td>
<td>496</td>
<td>504</td>
<td>496</td>
<td>504</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کاتیون ها</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si⁵⁴</td>
<td>589</td>
<td>597</td>
<td>589</td>
<td>597</td>
<td>589</td>
<td>597</td>
<td>589</td>
<td>597</td>
<td>589</td>
<td>597</td>
</tr>
<tr>
<td>Al⁵⁴</td>
<td>244</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>583</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>130</td>
</tr>
<tr>
<td>Mn⁵⁴</td>
<td>0.7</td>
</tr>
<tr>
<td>Mg⁵⁴</td>
<td>3.4</td>
</tr>
<tr>
<td>Ca⁵⁴</td>
<td>1.8</td>
</tr>
<tr>
<td>Na⁵⁴</td>
<td>0.7</td>
</tr>
<tr>
<td>K⁵⁴</td>
<td>0.7</td>
</tr>
<tr>
<td>Ni⁵⁴</td>
<td>0.7</td>
</tr>
<tr>
<td>مجموع</td>
<td>15755</td>
</tr>
</tbody>
</table>
جدول ۲
نتایج آنالیز ریپوردارش فتوکریست‌های فلدسیاتی و محاسبه فرمول ساختاری آنها بر پایه ۸ اکسیژن ساختاری (آکسیدها بر حسب درصد)

<table>
<thead>
<tr>
<th>شیء</th>
<th>نمونه ۱</th>
<th>نمونه ۲</th>
<th>نمونه ۳</th>
<th>نمونه ۴</th>
<th>نمونه ۵</th>
<th>نمونه ۶</th>
<th>نمونه ۷</th>
<th>نمونه ۸</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>68.76</td>
<td>68.68</td>
<td>68.40</td>
<td>68.80</td>
<td>68.75</td>
<td>68.61</td>
<td>68.67</td>
<td>68.90</td>
<td>68.81</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.10</td>
<td>0.15</td>
<td>0.12</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.18</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>CaO</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>NiO</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>مجموع</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
<td>98.95</td>
</tr>
</tbody>
</table>

۱۹۲۰

سیاری، تربیت‌بزرگداشت، دوستداران دهکده
جدول ۲. نتیجه آنالیز ریزپردازش بوتروپیتی موجود در سنگ‌های انتشافی (اکسیدها بر حسب درصد وزنی) و محاسبه فرمول ساختار آنها بر پایه ۲۲ اکسیدان ساختاری (علائم × مربوط به نمودار درون بوتروپیتی)

<table>
<thead>
<tr>
<th>اکسید</th>
<th>نمودار۸۰</th>
<th>نمودار۷۷</th>
<th>نمودار۷۶</th>
<th>نمودار۸۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۳۳/۵۵۵</td>
<td>۳۳/۵۱۱</td>
<td>۳۳/۴۴۵</td>
<td>۳۳/۵۷۸</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۲/۳۴۵</td>
<td>۲/۳۴۱</td>
<td>۲/۳۳۲</td>
<td>۲/۳۲۲</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۱۵/۹۷۶</td>
<td>۱۵/۲۳۲</td>
<td>۱۵/۳۷۶</td>
<td>۱۵/۴۳۴</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>۰/۰۶۰</td>
<td>۰/۰۷۴</td>
<td>۰/۰۷۹</td>
<td>۰/۰۸۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۸/۰۲۲</td>
<td>۱۸/۶۳۸</td>
<td>۱۷/۶۷۷</td>
<td>۱۴/۰۲۴</td>
</tr>
<tr>
<td>MnO</td>
<td>۳/۳۱۷</td>
<td>۱/۱۱۸</td>
<td>۱/۱۸۲</td>
<td>۰/۱۸۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۲/۱۳۱</td>
<td>۱۲/۱۳۱</td>
<td>۱۲/۲۲۰</td>
<td>۱۱/۷۴۶</td>
</tr>
<tr>
<td>NaO</td>
<td>۰/۲۶۵</td>
<td>۰/۳۲۴</td>
<td>۰/۳۲۹</td>
<td>۰/۳۱۶</td>
</tr>
<tr>
<td>K₂O</td>
<td>۹/۱۱۶</td>
<td>۹/۳۸۷</td>
<td>۹/۳۵۳</td>
<td>۹/۳۴۸</td>
</tr>
<tr>
<td>NiO</td>
<td>۰/۰۷۲</td>
<td>۰/۰۲۳</td>
<td>۰/۰۲۳</td>
<td>۰/۰۲۹</td>
</tr>
<tr>
<td>مجموع</td>
<td>۹۶/۸۹۰</td>
<td>۹۵/۱۷۸</td>
<td>۹۵/۵۲۴</td>
<td>۹۵/۷۵۲</td>
</tr>
</tbody>
</table>

شاخص ۱۲. نمودار تقسیم بندی امفیبول‌ها [۱۲]. در شکل مشخص است نمودارهای مورد آنالیز در بخش سه‌گانه انتشافی و دواوی کلیسیک قرار می‌گیرند (دواوی نیتر مربوط به نمودارهای درون بوتروپیتی.)
شکل 13 نمودار آمپیپولا [12]، نمونه‌های آنالیز شده در گستره منیزوپوهاستینسیت قرار دارند (علائم مانند شکل 12).

شکل 14 فلدسپات‌های موجود در سنگ‌های آتش‌نشانی (دواریت توبری و برنیوم‌های آنها (دواری توخالی).

شکل 15 تصویری از فنکوپیست‌های در تعاون پلاژیکلاز و آمپیپولا (نور PPL).
شیب بلورها و مقاوا تحکیم کانی‌شناسی سنگ‌های آنتفیشنا...

جدول ۴ دماهای محاسبه شده در فشار‌های ۱ تا ۱۰ کیلوبار برای زوج‌های آمفیبول و پلاژیوکلاز انتخابی و مقادیر میانگین آنها در سنگ‌های آنتفیشنا شمال ایران

<table>
<thead>
<tr>
<th>فشار (کیلو)</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه ۱</td>
<td>۸۲۳</td>
<td>۸۴۵</td>
<td>۸۵۴</td>
<td>۸۶۷</td>
<td>۸۷۹</td>
<td>۹۰۱</td>
<td>۹۱۲</td>
<td>۹۲۵</td>
<td>۹۳۷</td>
<td>۹۴۸</td>
</tr>
<tr>
<td>نمونه ۲</td>
<td>۸۴۵</td>
<td>۸۵۴</td>
<td>۸۶۸</td>
<td>۸۶۹</td>
<td>۸۹۱</td>
<td>۹۰۷</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۳۸</td>
<td>۹۴۹</td>
</tr>
<tr>
<td>نمونه ۳</td>
<td>۸۷۷</td>
<td>۸۸۶</td>
<td>۸۸۷</td>
<td>۸۸۷</td>
<td>۹۰۴</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۳۸</td>
<td>۹۴۹</td>
<td>۹۵۰</td>
</tr>
<tr>
<td>نمونه ۴</td>
<td>۸۴۴</td>
<td>۸۴۳</td>
<td>۸۴۳</td>
<td>۸۴۵</td>
<td>۸۴۶</td>
<td>۸۴۷</td>
<td>۸۴۸</td>
<td>۸۴۹</td>
<td>۸۵۰</td>
<td>۸۵۱</td>
</tr>
<tr>
<td>میانگین</td>
<td>۸۴۶</td>
<td>۸۴۷</td>
<td>۸۴۹</td>
<td>۸۵۰</td>
<td>۸۴۶</td>
<td>۸۴۷</td>
<td>۸۴۸</td>
<td>۸۴۹</td>
<td>۸۵۰</td>
<td>۸۵۱</td>
</tr>
</tbody>
</table>

بردشت
ماگما‌های تشکیل دهنده سنگ‌های آنتفیشنا این‌گونه در شمال ایران دارای دو شکل سختی بالایی است. زیرا این گونه سختی دارای فورم‌های گسترده، نیروی بهبود و بیشتر بیرون زدگی‌های این سنگ‌ها به‌صورت گنبدی است.

سنگ‌های آنتفیشنا مورد مطالعه شده‌های پرکامبرین و افیولیت ملالاژ عشقم - زوار را قطع کرده‌اند، ولی آن‌ها را نگور کرده‌اند آن‌ها اثر یک‌گونه اندکی مشاهده می‌شود.

نتایج آنالیز ریزپردشش نشان می‌دهد که ترکیب آمفیبول - های موجود در سنگ‌های آنتفیشنا شمال ایران و نیز آمفیبول‌های موجود در بریتانیا آنها مشابه از نظر آمفیبول کلسیک و نوع مینی‌های اسنشنسپت است.

شیب انتخاب ترکیب آمفیبول‌های موجود در سنگ‌ها انتخاب این نمونه و نوع سنگ‌ها در بریتانیا دلیل نشانه‌های دلیل مشترک بودن حاکمیت آمفیبول‌های آنتفیشنا و بریتانیا موجود در آن باند. از طرف دیگر، شیب‌ها و اثرات اثرات در سنگ‌های انتخابی میانگین ترکیب آنتفیشنا های موجود در سنگ‌های آنتفیشنا و بریتانیا شکوفا، مافیتی شدید یک دیگر بر این دمکوه.

[۲] ترازی، "مطالعه تکثیری از انواع سنگ‌های شمپان، عصر اسفید"، دانشگاه تهران، دانشگاه تهران، مدرسه، ۱۳۸۳ (۲۰۱۴). ۲۴صفحه.
[۳] ترازی، "مطالعه تکثیری از انواع سنگ‌های شمپان، عصر اسفید"، دانشگاه تهران، دانشگاه تهران، مدرسه، ۱۳۸۳ (۲۰۱۴). ۲۴صفحه.

