Crystal chemistry and comparison of mineralogical composition of Eocene volcanic rocks and their basic enclaves in north of Anarak (NE of Isfahan province)

M. Sayari1, I. Noorbehesht1, GH. Torabi1, A. Davoudian Dehkordi2

1) Department of Geology, Isfahan University
2) Faculty of Agriculture, Shahre-Kord University
E-Mail: m.sayari@gmail.com

(Received: 12/4/2006, in revised form:23/10/2007)

Abstract: Eocene volcanic rocks of north Anarak area are as scattered as masses. These rocks cross the Anarak schists and Ashin-Zavar ophiolites but had not metamorphosed them. Their outcrops follow the direction of within the area faults. Mineralogically, these rocks are limited in composition from Andesi-Basalt and Andesite to Dacite. These rocks have phenocrysts of amphibole and plagioclase in microcrystalline and microlitic matrix. The andesitic and andesibasaltic rocks in the study area have a lot of enclaves that contain many amphiboles. Type of the amphiboles is Magnesiohastingsite. Similarity of composition of amphiboles and biotites in the volcanic rocks and their enclaves indicate that these volcanic rocks and their enclaves are possibly cogenesis. There are three types of feldspar in these rocks that are andesine-oligoclase, alkali feldspar and bytownite. Bytownite is found only in certain enclaves. Geothermometry studies on phenocrysts of plagioclase and amphibole, that are in equilibrium, indicate that crystallization temperature of these phenocrysts is 835°C to 925°C.

Keywords: Eocene volcanic rocks, Enclave, Anarak, Microprobe analysis, Geothermometry.
شیمی بلوپا و مقایسه ترکیب کانی شناسی سنگ‌های آتش‌نشانی ایوسن و برونوبه‌های آذربایجان آنیا از شمال شرق استان اصفهان

محمد سیاپاری، ایرج نوری‌شهنشی، قدیرت ترابی، علیرضا داودی‌دهکده

گروه زمین‌شناسی دانشگاه اصفهان
دانشکده کشاورزی دانشگاه شهید کرد
m.sayari@gmail.com

(دربیاف مقاله 135/1/32، نسخه نهایی 1386/8/1)

چکیده: سنگ‌های آتش‌نشانی به سن ایوسن در شمال منطقه آذری به صورت پراکنده دیده می‌شوند. این سنگ‌ها شیست‌ها و افیولیت‌های عشیق - زوار را قطع کرده‌اند ولی آنها را دکرگون ناساخته‌اند. رخ آنها از روند گسل‌های منطقه پیروی می‌کند. از نظر ترکیب کانی‌شناسی، سنگ‌های مورد مطالعه در گستره‌ای از باریک و اندیکز، نا، تا داشتن قاره می‌گیرند. این سنگ‌ها بیشتر حاوی فتوکستن‌های افیولیت، سوِلی‌کپلریک‌های ستند که در زمینه ریز‌لبورین و میکروپلیکی قرار دارند. سنگ‌های آنژانی و اندیکز‌های بزالتی منطقه مورد مطالعه به قراران حاوی برونوبه‌های آذرین بازیکی ستند که عنوان می‌شود. سوِلی‌کپلریک‌های آذرین‌ها در حوزه برونوبه‌هایی موجود این سنگ‌های آتش‌نشانی با افیولیت‌ها و برونوبه‌های موجود در برونوبه‌های آذرین نشان می‌دهد که احتمالاً سنگ‌های آتش‌نشانی مورد مطالعه با برونوبه‌های آذرین نشان می‌دهد که دام‌های نیلوفر که در نشان می‌دهت. این درشت بلورها در حدود 375 تا 976 درجه سانتی‌گراد است.

واژه‌های کلیدی: سنگ‌های آتش‌نشانی ایوسن، برونوبه، آذری، انژانی‌زیر داژی، رنگ‌دار، زمین‌شناسی

افیولیت ملانژ عشیق - زوار به سن میزون‌یونک (2) را قطع کرده‌اند. این سنگ‌ها غلبه به مقدار زیادی هاوی افیولیت‌های همچنین در حوالی عشیق - زوار سنگ‌های آتش‌نشانی بی‌خصوص مقدار زیادی دارای برونوبه‌هایی هستند که غنی از افیولیت، بوده و برخی از آنها با سنترها یا ترکیب‌های مهم‌تر. هدف از ارائه این مقاله شناسایی و تعیین فرمول‌سازی‌های کانی‌های موجود در سنگ‌های آتش‌نشانی ایوسن در شمال آذری و مقایسه آنها از نظر ترکیب‌ها با کانی‌های موجود در برونوبه‌های همراه است.

مقدمه: فعالیت آتش‌نشانی ایوسن، یکی از مهم‌ترین پدیده‌های زمین‌شناسی ایران در زمان این ایوسن، آذری آن در اغلب مناطق ایران به‌طور درجاتی که های داغ به‌طور در جهیده در منطقه آذری اثرات فعالیت آتش‌نشانی ایوسن به‌صورت نکته‌های گیاه‌شناسی، گیاهان گیاهی و گیاهان گیاهی بیشتری، به‌وسیله روند ترمیم‌های شرک‌های گیاه به جهت خوردن که عموماً از روند گسل‌های منطقه بی‌روی می‌کنند. این فعالیت‌ها، به‌دست بردن سنگ‌های آتش‌نشانی ایوسن و برونوبه‌های آذری، نشان می‌دهد که دام‌های نیلوفر که در نشان می‌دهت. این درشت بلورها در حدود 375 تا 976 درجه سانتی‌گراد است.

واژه‌های کلیدی: سنگ‌های آتش‌نشانی ایوسن، برونوبه، آذری، انژانی‌زیر داژی، رنگ‌دار، زمین‌شناسی

افیولیت ملانژ عشیق - زوار به سن میزون‌یونک (2) را قطع کرده‌اند. این سنگ‌ها غلبه به مقدار زیادی هاوی افیولیت‌های همچنین در حوالی عشیق - زوار سنگ‌های آتش‌نشانی بی‌خصوص مقدار زیادی دارای برونوبه‌هایی هستند که غنی از افیولیت، بوده و برخی از آنها با سنترها یا ترکیب‌های مهم‌تر. هدف از ارائه این مقاله شناسایی و تعیین فرمول‌سازی‌های کانی‌های موجود در سنگ‌های آتش‌نشانی ایوسن در شمال آذری و مقایسه آنها از نظر ترکیب‌ها با کانی‌های موجود در برونوبه‌های همراه است.

مقدمه: فعالیت آتش‌نشانی ایوسن، یکی از مهم‌ترین پدیده‌های زمین‌شناسی ایران در زمان این ایوسن، آذری آن در اغلب مناطق ایران به‌طور درجاتی که های داغ به‌طور در جهیده در منطقه آذری اثرات فعالیت آتش‌نشانی ایوسن به‌صورت نکمه‌های گیاه‌شناسی، گیاهان گیاهی و گیاهان گیاهی بیشتری، به‌وسیله روند ترمیم‌های شرک‌های گیاه به جهت خوردن که عموماً از روند گسل‌های منطقه بی‌روی می‌کنند. این فعالیت‌ها، به‌دست بردن سنگ‌های آتش‌نشانی ایوسن و برونوبه‌های آذری، نشان می‌دهت. این درشت بلورها در حدود 375 تا 976 درجه سانتی‌گراد است.

واژه‌های کلیدی: سنگ‌های آتش‌نشانی ایوسن، برونوبه، آذری، انژانی‌زیر داژی، رنگ‌دار، زمین‌شناسی

افیولیت ملانژ عشیق - زوار به سن میزون‌یونک (2) را قطع کرده‌اند. این سنگ‌ها غلبه به مقدار زیادی هاوی افیولیت‌های همچنین در حوالی عشیق - زوار سنگ‌های آتش‌نشانی بی‌خصوص مقدار زیادی دارای برونوبه‌هایی هستند که غنی از افیولیت، بوده و برخی از آنها با سنترها یا ترکیب‌های مهم‌تر. هدف از ارائه این مقاله شناسایی و تعیین فرمول‌سازی‌های کانی‌های موجود در سنگ‌های آتش‌نشانی ایوسن در شمال آذری و مقایسه آنها از نظر ترکیب‌ها با کانی‌های موجود در برونوبه‌های همراه است.
روش کار
نخست بررسی‌های صحراei و نمونه برداری از منطقه سرد مطالعه صورت گرفته. سپس نمونه‌های مناسب برای نهایی مقاطع نازک و مقطع‌های نازک - صافی با استفاده از پوئش رژیم انتخاب شده. مطالعات سنگ شناسی با استفاده از میکروسکوپ فیزیکی پالئورنی از نور عبوری مدل BH2 گرفته. آنالزهای نفتی انجام شده تا کامیها با استفاده از رای پردازندگی الکترونی مدل 880-8000 با ولتاژ شتابدهده 30 کیلو ولت و جریان 12 نانو آمپر دانشگاه کانازا ازین صورت گرفت.

زمین‌شناسی منطقه اثرک
منطقه اثرک در فاصله 270 کیلومتری شمال شرق اصفهان و 26 کیلومتری شمال شرق شهرستان شاهین دژ قرار گرفته است. این منطقه در حاشیه منطقه دشت کور (کویر مرکزی)، بین طولهای ژغرافیایی ۳۵-۵۴ درجه شمال و عرضهای ژغرافیایی ۴۷-۴۳ درجه شرقی و واقع شده است. ارتفاع شهر اثرک از سطح دریا ۶۲۵ متر است. این منطقه در تقسیمات اینوئیتیزی نشان دهنده گذشته‌های زیست‌شناسی ایران در دوران تاریخی قاره دارد [۲۴] و [۲۵] شکل 1 نشان دهنده کمیت بافت‌های اثرک و مویعیت سنگ‌های مورد مطالعه را نشان می‌دهد. این منطقه خود بخشی از ناحیه جنوب خوراکی ایبیا کورمندی چنین خوراکی اپ – هیمالیا (مدیرانی) است. منطقه اثرک از نظر، جینه‌‌سن، شناسی، آنتیشفاسی و کاساراسازی بسیار متنوع، و از نظر زمین

شکل 1: نقشه زمین‌شناسی منطقه اثرک (رتبه ۱۳۸۳)
مدل سنگ زایی

از آنجا که منطقه مورد مطالعه جزئی از زون ارومیه - دختر نیست و روند سنگ‌های آتشنشانی این نیز با ارومیه - دختر مطابقت ندارد، بنابراین ممکن است واژه به با فروروانش احتمالی حاصل از بوسته‌ایانی نارس برآموم خرد فرآیند ایران مرکزی باشد. ولی از آنجا که فروروانش نمونه‌برداری نیز به سمت شمال شرق است، نمی‌توان آن‌ها فروروانش نمونه‌برداری را نادیده گرفت.

سنگ‌شناسی سنگ‌های آتش‌نشانی

با فاصله نسبی آتش‌نشانی مورد مطالعه پورفیری، هالیوپورفیری، و ریز بلوژ پورفیری است. بر اساس مطالعات میکروپتروپیکی، سنگ‌های مورد مطالعه از نظر کانی شناسی، به طور کلی به سه دسته تقسیم می‌شوند.

۱- آنزیستها و اندورSENTENTIA: این سنگ‌ها بیشتر از فنکریست‌های پلاژیوکلار (شکل ۲)ً، آمفیپول (شکل ۳) و کمی کلیپتروپوکسین (شکل ۴) هستند که در زمینه‌ای شیمیایی و ریز بلورین از پلاژیوکلار قرار گرفته‌اند. آمفیپول‌ها خود شکل به دیواره‌ای به کریست تجزیه شده، و فلدسفات‌ها به سرپشت و کاتولیت‌یک در اکثر شاهد. فراوانی آمفیپول در این سنگ‌ها به اندازه‌ای است که می‌توان آن‌ها را آمفیپول آندزانتی و آمفیپول آندزانت نامید.

۲- کانی‌های فرعی موجود در این سنگ‌ها شامل اسفین، آپاتیت و زیرکون است که به شکل بیضی کم‌بزرگ و جدول دارند.

۳- داسیتان‌ها این سنگ‌ها حاوی پلاژیوکلار، کوارتز و سالیدین بنده در متن سنگ آندزانتی (تور (PPL.

شکل ۲ تصوری از فنکریست خودشکل آمفیپول همراه با منطقه‌بندی در متن سنگ آندزانتی (تور XPL.

شکل ۳ تصوری از آمفیپول خودشکل (PPL.

شکل ۴ مقطع عرضی کلینوپتروپوکسین (تور (PPL.
آنفلشاتی میزبانی کامل متعادل بوده و اثری از حواشی واقعی می‌گرفته می‌شود. این پرونیوم‌ها از نظر کلی -شانسی شیب‌های زیاد به سنگ‌های میزبان خود دارند ولی از نظر بافتی کاملی با آنها متلاشیتی پرونیوم‌های آدرین باریک نیز به‌وجود می‌آمده (شکل 11).

علاوه بر این پرونیوم‌ها، پرونیوم‌هایی از اسپیستها و افیولیت‌ها نیز در منشأ آنها وجود دارد که بررسی آنها مورد نظر قرار گرفته است. پرونیوم‌های مورد مطالعه (آدرین باریک) نیز به‌وجود آمده در این پرونیوم‌ها قسمتی از دیگر کامی‌های موجود در پرونیوم‌ها هستند. پلاژیوکلاز از دیگر کامی‌های موجود در پرونیوم‌ها هستند. برخی از این پلاژیوکلازها کلسیک و از نوع پیونت بوده و برخی نیز کلسیک و پلاژیوکلازهای پرونیوم‌ها. بافت‌های دگرگونی را نیز نشان می‌دهند.

شكل 5. پرونیسم‌های کوارتز با خودگرای خیلی و حاشیه‌ای

به‌وجود آمده با پلاژیوکلازهای اسفولینی (نور PPL).

شکل 6. پرونیسم‌های کوارتز حاشیه‌ای واقعی

به‌وجود آمده با کلریت هستند (نور PPL).

شکل 7. پرونیسم‌های پیونت به همراه اسفولینی که در حال تجزیه به‌وجود آمده هستند (نور PPL).

شکل 8. پرونیسم‌های پلاژیوکلاز در حال تجزیه به‌وجود آمده با نفوذ اسفولینی (نور PPL).

سنگ شناسی پرونیوم‌ها

سنگ‌های آدرین باریک به‌وجود آمده اغلب حاوی پرونیوم‌های پراوانتاند. محل نمایی برخی از پرونیوم‌ها با سنگ‌های آدرین باریک.
شیمی بلورها
کانی‌های سنگ‌های آتش‌نشانی مورد مطالعه در شرایط این نیز مورد انتظار برای دیگر قرار گرفتن، و سپس با فرمول
ساختمانی آنها با استفاده از نرم افزار *PET [10, 11] انجام
گرفته است (جدول ۳.۱۱). می‌دهد که هم‌آنار دارای کمترین مشابهیت بوده و در
فرمول‌های آتش‌نشانی نشان داده می‌گردد (شکل ۲-۱۲) این
فرمول‌های آش
مدفوع الیت پلاؤکسلاریپ به وسیله 5، یک انسداد صفر در نظر گرفته
می‌شود. ارتباط فشار با دمای محاسبه شده به ترکیب کرده دو
زوج فنکریست امفیبول و پلاؤکسلاریپ استوار دارد و مستقیماً
از رابطه بالا بدست می‌آید.

در این فرمول P شاخص (بر حسب کیلوباری) ضریب R برای با
Yab 0.1441200 کیلوولت ترکیب‌بندی، و

جدول 1. نتیجه آنالیز ریزپدراش فنکریست‌های امفیبول و محاسبه فرمول ساختاری آنها بر پایه 23 آسیمین ساختاری (آسیدهای در حسب درصد).

<table>
<thead>
<tr>
<th>آسیمین‌ها</th>
<th>کاتیون‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Ca</td>
</tr>
<tr>
<td>Ti</td>
<td>Na</td>
</tr>
<tr>
<td>Al</td>
<td>Mg</td>
</tr>
<tr>
<td>Cr</td>
<td>Fe</td>
</tr>
<tr>
<td>Mn</td>
<td>K</td>
</tr>
<tr>
<td>Fe^3+</td>
<td>Na</td>
</tr>
<tr>
<td>Fe^2+</td>
<td>Mg</td>
</tr>
<tr>
<td>Mn</td>
<td>K</td>
</tr>
<tr>
<td>Ca</td>
<td>Na</td>
</tr>
</tbody>
</table>

عکاره گروهی به توجه به نمونه‌های درون بسته‌سازی.
جدول 2
نتیجه آنالیز ریزپداسی فتوکریست‌های فلدسیت و محاسبه فرمول ساختاری آنها با ضایع 8 اکسیژن ساختاری (اکسیدها بر حسب درصد)

<table>
<thead>
<tr>
<th>انحراف</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>MgO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>MnO</th>
<th>FeO</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترمیم 5</td>
<td>64.3</td>
<td>2.7</td>
<td>27.5</td>
<td>0.55</td>
<td>16.1</td>
<td>5.8</td>
<td>10.8</td>
<td>1.18</td>
<td>1.14</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 6</td>
<td>62.1</td>
<td>3.5</td>
<td>25.1</td>
<td>1.18</td>
<td>15.5</td>
<td>6.3</td>
<td>10.0</td>
<td>1.11</td>
<td>1.11</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 7</td>
<td>59.8</td>
<td>3.3</td>
<td>25.6</td>
<td>0.73</td>
<td>13.5</td>
<td>6.0</td>
<td>10.1</td>
<td>1.10</td>
<td>1.08</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 8</td>
<td>58.9</td>
<td>3.1</td>
<td>25.1</td>
<td>0.73</td>
<td>12.5</td>
<td>6.2</td>
<td>10.2</td>
<td>1.08</td>
<td>1.06</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 9</td>
<td>57.8</td>
<td>3.0</td>
<td>24.8</td>
<td>0.73</td>
<td>11.5</td>
<td>6.5</td>
<td>10.3</td>
<td>1.06</td>
<td>1.05</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 10</td>
<td>56.7</td>
<td>2.9</td>
<td>24.6</td>
<td>0.73</td>
<td>10.5</td>
<td>6.8</td>
<td>10.4</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 11</td>
<td>55.6</td>
<td>2.8</td>
<td>24.4</td>
<td>0.73</td>
<td>9.5</td>
<td>7.1</td>
<td>10.6</td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 12</td>
<td>54.6</td>
<td>2.7</td>
<td>24.2</td>
<td>0.73</td>
<td>8.5</td>
<td>7.4</td>
<td>10.8</td>
<td>1.00</td>
<td>1.02</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 13</td>
<td>53.6</td>
<td>2.6</td>
<td>24.0</td>
<td>0.73</td>
<td>7.5</td>
<td>7.7</td>
<td>11.0</td>
<td>0.98</td>
<td>1.01</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 14</td>
<td>52.6</td>
<td>2.5</td>
<td>23.8</td>
<td>0.73</td>
<td>6.5</td>
<td>8.0</td>
<td>11.2</td>
<td>0.97</td>
<td>1.00</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 15</td>
<td>51.7</td>
<td>2.4</td>
<td>23.6</td>
<td>0.73</td>
<td>5.5</td>
<td>8.3</td>
<td>11.4</td>
<td>0.95</td>
<td>0.99</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 16</td>
<td>50.8</td>
<td>2.3</td>
<td>23.4</td>
<td>0.73</td>
<td>4.5</td>
<td>8.6</td>
<td>11.6</td>
<td>0.94</td>
<td>0.98</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 17</td>
<td>49.9</td>
<td>2.2</td>
<td>23.2</td>
<td>0.73</td>
<td>3.5</td>
<td>8.9</td>
<td>11.8</td>
<td>0.92</td>
<td>0.97</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 18</td>
<td>49.0</td>
<td>2.1</td>
<td>23.0</td>
<td>0.73</td>
<td>2.5</td>
<td>9.2</td>
<td>12.0</td>
<td>0.91</td>
<td>0.96</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 19</td>
<td>48.1</td>
<td>2.0</td>
<td>22.8</td>
<td>0.73</td>
<td>1.5</td>
<td>9.5</td>
<td>12.2</td>
<td>0.90</td>
<td>0.95</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>ترمیم 20</td>
<td>47.2</td>
<td>1.9</td>
<td>22.6</td>
<td>0.73</td>
<td>0.5</td>
<td>9.8</td>
<td>12.4</td>
<td>0.89</td>
<td>0.94</td>
<td>1.04</td>
<td>0.3</td>
<td>0.11</td>
</tr>
</tbody>
</table>
جدول 2 - نتایج آنالیز ریزبازارشی برومیت‌ها: وجود در سنگ‌های آنتشفانی (اکسیدها بر حسب درصد وزنی) و محاسبه فرمول ساختاری آنها بر

<table>
<thead>
<tr>
<th>اکسیدها</th>
<th>میزان درصد</th>
<th>میزان درصد</th>
<th>میزان درصد</th>
<th>میزان درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>3.575</td>
<td>4.615</td>
<td>7.462</td>
<td>7.843</td>
</tr>
<tr>
<td>Ti</td>
<td>2.494</td>
<td>2.941</td>
<td>2.123</td>
<td>2.123</td>
</tr>
<tr>
<td>Al</td>
<td>15.425</td>
<td>15.372</td>
<td>14.982</td>
<td>14.982</td>
</tr>
<tr>
<td>Cr</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>FeO</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>12.911</td>
<td>12.911</td>
<td>12.911</td>
<td>12.911</td>
</tr>
<tr>
<td>CaO</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>NaO</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>K2O</td>
<td>9.156</td>
<td>9.156</td>
<td>9.156</td>
<td>9.156</td>
</tr>
<tr>
<td>NiO</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>مجموع</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

کاتیون‌ها:

Si 4.615 7.462 7.843 7.462
Ti 2.941 2.123 2.123 2.123
Cr 0.04 0.04 0.04 0.04
Fe 1.06 1.06 1.06 1.06
Mn 0.02 0.02 0.02 0.02
Mg 12.911 12.911 12.911 12.911
Ca 0.24 0.24 0.24 0.24
Na 0.34 0.34 0.34 0.34
K 9.156 9.156 9.156 9.156
Ni 0.20 0.20 0.20 0.20
مجموع 100.0 100.0 100.0 100.0

شکل 12 - نمودار تقسیم بنی آمپیوبلا: [۱۲]. در شکل مشخص است نمایه‌های مورد آنالیز در بخش خاصهگر از می‌گردد (دوار نور مربوط به نمایه‌های درون سنگ‌های آنتشفانی و دوار نور مربوط به نمایه‌های درون سنگ‌های آنتشفانی).
شکل ۱۳: نمودار آمفیبول‌ها [۱۲]. نمونه‌های تحلیلی شده در گروه مینی‌پواستین‌گیسیت قرار دارند (علامت مانند شکل ۱۲).

شکل ۱۴: فلدسپات‌های موجود در سنگ‌های آتش‌نشانی (دوازی توبیرو) و برنیوم‌های آنها (دوازی توخالی).

شکل ۱۵: تصویری از فنوكریست‌های در تعادل پلاژیکلاز و آمفیبول (نور PPL)
جدول ۴ دمای محاسبه شده در فشارهای ۱ تا ۱۰ کیلوبار برای زوج های آمفیبول و پلاژیوکلاز انتخابی و مقادیر میانگین آنها در سنگ‌های آنتشفلزی شمال ایران

<table>
<thead>
<tr>
<th>فشار (کیلو)</th>
<th>نمونه ۱</th>
<th>نمونه ۴</th>
<th>نمونه ۵</th>
<th>نمونه ۶</th>
<th>نمونه ۷</th>
<th>نمونه ۸</th>
<th>نمونه ۹</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۹۴۲</td>
<td>۱۹۴۸</td>
<td>۸۷۵</td>
<td>۶۲۷</td>
<td>۷۸۹</td>
<td>۹۰۱</td>
<td>۹۱۲</td>
<td>۸۴۴</td>
</tr>
<tr>
<td>۲</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۳</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۴</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۵</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۶</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۷</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۸</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۹</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۹۱۴</td>
<td>۹۲۵</td>
<td>۹۲۴</td>
<td>۸۹۶</td>
<td>۹۰۷</td>
<td>۹۲۴</td>
<td>۹۳۷</td>
<td>۹۲۴</td>
</tr>
</tbody>
</table>

مقدار میانگین بدین سببیک که برای به دست آوردن مقدار میانگین حساب شده است.
