Mineral chemistry of volcanic rocks from the West of Arousan-e-Kaboudan (NE of Isfahan)

N. Bahadoran¹,², Gh. Torabi¹, J. Ahmadian², M. Murata³

¹- Geology Dep., Isfahan University, Iran.
²- Geology Dep., Payame-Noor University, Isfahan, Iran.
³- Geoscience Dep., Naruto University, Japan.
E-mail: noushinbahadoran@yahoo.com

(Received:5/2/2007, in revised form:15/10/2007)

Abstract: Arousan-e-Kaboudan area, located about 115 km northeast of Nain (south of Choupanan), is part of Central Iran (Yazad block). The Eocene volcanic rocks of the area are composed of lavas and pyroclastic rocks. The lavas can be divided into acidic (ryodacite) and relatively basic-basic (trachyandesite, mugearite and hawaiite) rocks. The textures of these rocks are trachytic, hyaloporphyrictic and poikilitic. Plagioclase (albite to andesine), alkali feldspars (sanidine-Or: 65-86%), clinopyroxene (diopside to augite), mica (biotite to phlogopite), amphibole (magnesian hastingsitic hornblende to magnesian hastingsite) and chlorite (brunsvigite) from tharoehcs were analyzed by electron microprobe. Geochemical evidence and mineralogical characteristics indicate that the acidic rocks are cale-alkaline and basic rocks have shoshonitic nature. The tectonic environment, in which these rocks were formed, is probably a volcanic arc related to subduction (in the continental margin of central Iranian micro – continental).

Keywords: Volcanic rocks, Mineralogy, Mineral chemistry, Arousan-e-Kaboudan
مطالعه شیمی کانی سنگ‌های آتش‌شناختی ناحیه غرب عروسان کوبودان (شمال شرق اصفهان)

نوشین بهزادیان۱، قدیرت ترابی۲، جهشید احمدیان۳، مامورو موراتا۴، آگاسی‌خانی۵

۱- کارشناس دانشگاه پایتخت نور اصفهان و دانشجوی کارشناسی ارشد دانشگاه اصفهان
۲- دانشگاه اصفهان، گروه زمین شناسی
۳- دانشگاه پایتخت نور اصفهان، گروه زمین شناسی
۴- دانشگاه نارا، بخش علوم زمین (ژئین)

nooshinbahadorani@yahoo.com

(دریافت مقاله: ۱۳۸۵/۰۸/۲۴، نسخه نهایی: ۱۳۸۵/۰۸/۲۶)

چکیده: منطقه عروسان کوبودان در ۱۱۵ کیلومتری شمال شرق تایبند (جنوب چهارمحال و بختیاری) واقع شده است و بخشی از زون ایران مرکزی (بلوک یزد) است. سنگ‌های آتش‌شناختی این منطقه مربوط به زمان اوسن و شامل گزشده و سنگ‌های آدرایوئی است. گزارش‌ها به دو گروه اصلی اثر ریوداکس و گروه آدریکنتی واردات می‌شود. این سنگ‌ها اغلب تراکتی‌کی، هیپوالادروکسید و پوئین کلینیک است. کانال‌های پلاژیوکالس (الپینتا آدریکنت)، فلدبری نیکهایی (سالدبین) ۶۰%، ریوداکس در ۳۰% و قتصی می‌باشد. گزارش‌های مختلف در مورد شرایط شرکت‌های مبتنی بر محیط زمین ساختی که سنگ‌های آتش‌شناختی این ناحیه در آن شکل فرآیند، احتمالاً یک گام ماهیگری وابسته به فرآیند در (حایه خردفاز) شرق ایران مرکزی است.

واژه‌های کلیدی: سنگ‌های آتش‌شناختی، کانی شیمیایی، شیمیایی کانی‌ها، عروسان کوبودان.

مقدمه
دوران سنژوسنیک در ایران، دوران اوچی فعالیت‌های ماهیگری به ویژه فعالیتهای آتش‌شناختی بوده است که محسوب این فعالیتها سنگ‌های آدرایوئی و آدرایوئی‌وارون در مناطق مختلف ایران است. بخش مهمی از سنگ‌های اوچی و شوشتنی منطقه ایران مرکزی مربوط به این زمان‌ها (آ) شکل ۱) اهمیت فعالیتها ماهیگری این منطقه از سوی و سود این فعالیتهای کانی‌شناسی و شیمی‌شناسی زمین‌ساختی از سنگ‌های منطقه خور این سوی دیگر، انگیزه اصلی این پژوهش است.

در این مقاله به بررسی شیمی کانی‌های موجود در سنگ‌های آتش‌شناختی برمی‌گردد. در مطالعات کانی‌شناسی، یکی از راه‌های مهم و اساسی بررسی ترکیب شیمیایی کانی‌ها، استفاده از نتایج آنالیز‌های ریزبردازیده است. در این کار پژوهشی با استفاده از این روش،
جدول 1 نتایج آنالیز ریزپترادیشی بورهای پتروفس (برای تفکیک میزان Fe^{2+} و Fe^{3+} از روی عنصر سنگی [24 استفاده شده است.]

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>51.83</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.75</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.1</td>
</tr>
<tr>
<td>FeO</td>
<td>4.14</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.83</td>
</tr>
<tr>
<td>NO</td>
<td>0.33</td>
</tr>
<tr>
<td>MgO</td>
<td>16.88</td>
</tr>
<tr>
<td>CaO</td>
<td>0.38</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.21</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>99.38</td>
</tr>
<tr>
<td>Mg</td>
<td>98.38</td>
</tr>
<tr>
<td>Si</td>
<td>0.88</td>
</tr>
<tr>
<td>Ti</td>
<td>0.27</td>
</tr>
<tr>
<td>Al</td>
<td>0.38</td>
</tr>
<tr>
<td>Fe</td>
<td>0.48</td>
</tr>
<tr>
<td>Cr</td>
<td>0.16</td>
</tr>
<tr>
<td>Mn</td>
<td>0.07</td>
</tr>
<tr>
<td>NO</td>
<td>0.13</td>
</tr>
<tr>
<td>MgO</td>
<td>0.38</td>
</tr>
<tr>
<td>CaO</td>
<td>0.07</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.07</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>99.38</td>
</tr>
</tbody>
</table>

شکل 1 موقعیت ناحیه مورد مطالعه در ناحیه پراکندگی شوشونیت‌های ایران [15].
جدول ۲ نتایج آنالیز پیکتریاژی بتره‌های قلب‌سیار برای تغییر میزان Fe^{2+} و Fe^{3+} از روش عضو‌سنجی [۲۴] استفاده شده است.

<table>
<thead>
<tr>
<th>شماره نطفه</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>52.35</td>
<td>0.32</td>
<td>0.34</td>
<td>0.35</td>
<td>0.11</td>
<td>0.09</td>
<td>0.37</td>
<td>0.83</td>
<td>1.28</td>
<td>3.66</td>
</tr>
<tr>
<td>0.2</td>
<td>52.37</td>
<td>0.34</td>
<td>0.36</td>
<td>0.36</td>
<td>0.13</td>
<td>0.09</td>
<td>0.38</td>
<td>0.84</td>
<td>1.31</td>
<td>3.68</td>
</tr>
<tr>
<td>0.3</td>
<td>52.38</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.15</td>
<td>0.10</td>
<td>0.39</td>
<td>0.85</td>
<td>1.34</td>
<td>3.71</td>
</tr>
<tr>
<td>0.4</td>
<td>52.39</td>
<td>0.36</td>
<td>0.38</td>
<td>0.38</td>
<td>0.17</td>
<td>0.11</td>
<td>0.40</td>
<td>0.86</td>
<td>1.37</td>
<td>3.74</td>
</tr>
<tr>
<td>0.5</td>
<td>52.40</td>
<td>0.37</td>
<td>0.39</td>
<td>0.39</td>
<td>0.19</td>
<td>0.12</td>
<td>0.41</td>
<td>0.87</td>
<td>1.40</td>
<td>3.77</td>
</tr>
<tr>
<td>0.6</td>
<td>52.41</td>
<td>0.38</td>
<td>0.40</td>
<td>0.40</td>
<td>0.21</td>
<td>0.13</td>
<td>0.42</td>
<td>0.88</td>
<td>1.42</td>
<td>3.80</td>
</tr>
<tr>
<td>0.7</td>
<td>52.42</td>
<td>0.39</td>
<td>0.41</td>
<td>0.41</td>
<td>0.23</td>
<td>0.14</td>
<td>0.43</td>
<td>0.89</td>
<td>1.44</td>
<td>3.83</td>
</tr>
<tr>
<td>0.8</td>
<td>52.43</td>
<td>0.40</td>
<td>0.42</td>
<td>0.42</td>
<td>0.25</td>
<td>0.15</td>
<td>0.44</td>
<td>0.90</td>
<td>1.46</td>
<td>3.86</td>
</tr>
<tr>
<td>0.9</td>
<td>52.44</td>
<td>0.41</td>
<td>0.43</td>
<td>0.43</td>
<td>0.27</td>
<td>0.16</td>
<td>0.45</td>
<td>0.91</td>
<td>1.48</td>
<td>3.89</td>
</tr>
</tbody>
</table>

جدول ۲ نتایج آنالیز پیکتریاژی بتره‌های قلب‌سیار برای تغییر میزان Fe^{2+} و Fe^{3+} از روش پیشنهادی [۲۸] استفاده شده است.

<table>
<thead>
<tr>
<th>شماره نطفه</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>52.35</td>
<td>0.32</td>
<td>0.34</td>
<td>0.35</td>
<td>0.11</td>
<td>0.09</td>
<td>0.37</td>
<td>0.83</td>
<td>1.28</td>
<td>3.66</td>
</tr>
<tr>
<td>0.2</td>
<td>52.37</td>
<td>0.34</td>
<td>0.36</td>
<td>0.36</td>
<td>0.13</td>
<td>0.09</td>
<td>0.38</td>
<td>0.84</td>
<td>1.31</td>
<td>3.68</td>
</tr>
<tr>
<td>0.3</td>
<td>52.38</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.15</td>
<td>0.10</td>
<td>0.39</td>
<td>0.85</td>
<td>1.34</td>
<td>3.71</td>
</tr>
<tr>
<td>0.4</td>
<td>52.39</td>
<td>0.36</td>
<td>0.38</td>
<td>0.38</td>
<td>0.17</td>
<td>0.11</td>
<td>0.40</td>
<td>0.86</td>
<td>1.37</td>
<td>3.74</td>
</tr>
<tr>
<td>0.5</td>
<td>52.40</td>
<td>0.37</td>
<td>0.39</td>
<td>0.39</td>
<td>0.19</td>
<td>0.12</td>
<td>0.41</td>
<td>0.87</td>
<td>1.40</td>
<td>3.77</td>
</tr>
<tr>
<td>0.6</td>
<td>52.41</td>
<td>0.38</td>
<td>0.40</td>
<td>0.40</td>
<td>0.21</td>
<td>0.13</td>
<td>0.42</td>
<td>0.88</td>
<td>1.42</td>
<td>3.79</td>
</tr>
<tr>
<td>0.7</td>
<td>52.42</td>
<td>0.39</td>
<td>0.41</td>
<td>0.41</td>
<td>0.23</td>
<td>0.14</td>
<td>0.43</td>
<td>0.89</td>
<td>1.44</td>
<td>3.80</td>
</tr>
<tr>
<td>0.8</td>
<td>52.43</td>
<td>0.40</td>
<td>0.42</td>
<td>0.42</td>
<td>0.25</td>
<td>0.15</td>
<td>0.44</td>
<td>0.90</td>
<td>1.46</td>
<td>3.82</td>
</tr>
<tr>
<td>0.9</td>
<td>52.44</td>
<td>0.41</td>
<td>0.43</td>
<td>0.43</td>
<td>0.27</td>
<td>0.16</td>
<td>0.45</td>
<td>0.91</td>
<td>1.48</td>
<td>3.83</td>
</tr>
</tbody>
</table>
جدول 2: نتایج آنالیز ریزپردازش بلوهای بیونیت (برای تفکیک میزان Fe²⁺ و Fe³⁺) بر اساس مواده با الکتریکی مطابق با روش [26] انجام شده.

<table>
<thead>
<tr>
<th>شماره بندی</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.1</td>
<td>33.1</td>
<td>34.1</td>
<td>35.1</td>
<td>34.1</td>
<td>34.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>FeO</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
</tr>
<tr>
<td>MnO</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
</tr>
<tr>
<td>MgO</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
</tr>
<tr>
<td>CaO</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>Total</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.1</td>
<td>33.1</td>
<td>34.1</td>
<td>35.1</td>
<td>34.1</td>
<td>34.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>FeO</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
</tr>
<tr>
<td>MnO</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
</tr>
<tr>
<td>MgO</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
</tr>
<tr>
<td>CaO</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>Total</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
</tbody>
</table>

جدول 5: نتایج آنالیز ریزپردازش بلوهای کریت (برای تفکیک میزان Fe²⁺ و Fe³⁺) از روش عصرنسجی [26] استفاده شده است.

<table>
<thead>
<tr>
<th>شماره بندی</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.1</td>
<td>33.1</td>
<td>34.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>FeO</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
</tr>
<tr>
<td>MnO</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
</tr>
<tr>
<td>MgO</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
</tr>
<tr>
<td>CaO</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>Total</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.1</td>
<td>33.1</td>
<td>34.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>32.1</td>
<td>32.1</td>
<td>32.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>31.1</td>
<td>31.1</td>
<td>31.1</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>FeO</td>
<td>29.1</td>
<td>29.1</td>
<td>29.1</td>
</tr>
<tr>
<td>MnO</td>
<td>28.1</td>
<td>28.1</td>
<td>28.1</td>
</tr>
<tr>
<td>MgO</td>
<td>27.1</td>
<td>27.1</td>
<td>27.1</td>
</tr>
<tr>
<td>CaO</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>24.1</td>
<td>24.1</td>
<td>24.1</td>
</tr>
<tr>
<td>Total</td>
<td>23.1</td>
<td>23.1</td>
<td>23.1</td>
</tr>
</tbody>
</table>
زمین شناسی عمومی منطقه

ناحیه مورد مطالعه در جنوب چوبانان (شمال شرق اصفهان)، بین طولهای جغرافیایی ۴۳°۵۶' تا ۴۳°۳۷' شمالی و عرضهای جغرافیایی ۶۲°۱۳' تا ۶۲°۱۹' شرقی واقع شده است. این منطقه جزئی از سون ساختاری ایران مرکزی (بلوک ۹۵) و زیر زون ایران - خورمحور می‌باشد (۱۲). این شناخت مواد مطالعه شامل سنگ‌های انقشاعی و سنگ‌های آذرآوری است. است که بر اساس تعیین سن به روش $^{26}K-Ar$ به‌وجود زبرین - میابی نسبت به‌وجود است (۴). این سنگ‌ها در بخش‌های شمال غربی و جنوبی در از مرز زمین ساختی با مجموعه درگوگوی اثرکندان. این مجموعه درگوگونه موسوم به شیستهای ایران، قدمی‌ترین سنگ‌های منتهی می‌باشد - شنو، و منسوب به هر کامی‌الرین - کامی‌الرین زبرین است. سنگ‌های انقشاعی در بخش شرقی و نابوسکو روي واحدها به نشانه‌گر زبرین قرار گرفته‌اند (شکل ۲). این واحد شال آهنگهای ارتباطی در با ضخامت قابل ملاحظه مانند سکس و کنگره می‌باشد. سنگ‌های آهنگی به نابوسکو زاویه مشخصی روي تشکیلات پالئوزیک قرار گرفته‌اند. همچنین سنگ‌های انقشاعی در بخش غربی دارای هم‌اری

شکل ۲ نقشه زمین‌شناسی ساده شده منطقه (۶).
پیروکسن
تمامی پیروکسنهای سنگ‌های آنتفلوژنی ناحیه غرب عروسان کبودان (شمال شرق اصفهان)...

فیلایی با کلینوبروکسن نیز می‌تواند با ادخال‌های فراوان فلدسار فیلایی منجر به تشكل کلینوبروکسن اسفنجی شود.

با توجه به اینکه فراوان اول (اکسلشن) و فراوان دوم (وکنش در نقطه بری تکیک) در مورد سنگ‌های دیگرگون فشار بالا (UHP) مضر شده است، تعیین آن برای گزاره‌های این ناحیه منطقه‌ای نیست. و سابقه است که تشكل کلینوبروکسن‌های اسفنجی به وکنش شاره‌های غنی از عنصر قلیایی نسبت داده شود.

برخی از پلوره‌های کلینوبروکسن در دو منطقه بندی عادی هستند (شکل 2-ب). در مطالعات SEM علوم شد که فنون کریست‌های این کلی علوا بر منطقه‌بندی کامل، در مواردی نیز نشان دادند (Patchily Zonation). برای بررسی دقیق منطقه‌بندی کلینوبروکسن‌های از یک مدل (Elemental Mapping) یا نقشه نور‌بندی عنصری، فنومریست اسفنجی، نقشه توسعه عنصری تهیه شد (شکل 3). با توجه به فنومراهای مهم سه عنصر آلومینیم، تیتانیم و آلیاژ‌های آن عنصر در تهیه نقشه‌های داده شده در نمای گرده شده لازم گردید. بررسی این نقشه نشان داد که میزان آهن از مرکز به حاشیه قارچ‌افراشی یافته که میوه منطقه‌بندی عادی در این کلی است. همچنین نبرد الومینیوم و تیتانیم نیز با اهمیت یک نواخت از مرکز به حاشیه قارچ‌افراشی یافته است.

d2 = 3KAl2SiO6 + 2Ca0.5AlSi2O6 = 3KAlSi3O8 + CaAl2SiO6
(K-bearing Cpx + Ca-Eskola Px = K-feldspar + Ca-Tschermak Px)

دوم (9) برای این داده‌ها نظریه‌ایکنامیکی در بررسی واقع شده معتقد است که این واکنش به دلیل وجود مولفه Ca یا Ca - Eskola در اینجا به دلیل باعث شدن سنگ‌های با واحدهای کلینوبروکسن‌های این منطقه‌بندی می‌شود. واقعیت اینکه واکنش برای نقطه بری تکیک صورت پذیرفت است.

3KAl2SiO6 + 2Ca0.5AlSi2O6 = 3KAlSi3O8 + CaAl2SiO6
(K-bearing Cpx + Ca-Eskola Px = K-feldspar + Ca-Tschermak Px)

دوم (9) برای این داده‌ها نظریه‌ایکنامیکی در بررسی واقع شده معتقد است که این واکنش به دلیل وجود مولفه Ca یا Ca - Eskola در اینجا به دلیل باعث شدن سنگ‌های با واحدهای کلینوبروکسن‌های این منطقه‌بندی می‌شود. واقعیت اینکه واکنش برای نقطه بری تکیک صورت پذیرفت است.

3KAl2SiO6 + 2Ca0.5AlSi2O6 = 3KAlSi3O8 + CaAl2SiO6
(K-bearing Cpx + Ca-Eskola Px = K-feldspar + Ca-Tschermak Px)

دوم (9) برای این داده‌ها نظریه‌ایکنامیکی در بررسی واقع شده معتقد است که این واکنش به دلیل وجود مولفه Ca یا Ca - Eskola در اینجا به دلیل باعث شدن سنگ‌های با واحدهای کلینوبروکسن‌های این منطقه‌بندی می‌شود. واقعیت اینکه واکنش برای نقطه بری تکیک صورت پذیرفت است.
همه بیروکسین‌های منطقه در نمودار Q-J [100] در قلمرو بیروکسین‌های آهن – مینزیم- کلسیم قرار گرفته‌اند (شکل 5). ترکیب شیمیایی کلسیم بیروکسین‌ها در نمودار Wo-En-Fs [101] نشان داده شده است. ترکیب این کانی‌ها در تراکیتی‌ها و هاوائی‌آتی هم‌خوان با تقسیم‌بندی [100] در گستره دیوپسید (در تقسیم‌بندی [1111] سالیت) و در موزه آریتی از دیوپسید تا اوزیت در تیتانیت است (شکل 3).

بررسی بیزیان MgO موجود در بیروکسین‌ها نشان داد که تراکیت آندزیت‌ها که به موزه آریتی‌ها و هاوائی‌آتی‌ها از کمترا برخوردارند به میزان آن به دلیل پایین‌تر ترکیب کلسیم بیروکسین‌ها و شیمیایی و محیط تغییر که منطقه موزه بیروکسین‌ها به ترکیب کلیتوبروزکس‌ها به عنوان یک مميز مناسب برای تشخیص محیط زمین ساختی تکیه گرفته از تراکیت‌های 115 با مشاهده (شکل 7 - ألف) که برای سه‌روی‌های
شکل ۵ نمایش ترکیب پیروکسن های منطقه در نمودار J-Q-I

شکل ۶ نمایش ترکیب شیمیایی کلینو-پیروکسن در نمودار مثلث Wo-En-Fs

شکل ۷ افتاده از کلینو-پیروکسن برای تعیین سری ماسیفی [۱۳] تعیین موقعیت زمین ساختنی ماسیفی کلینو-پیروکسن [۱۴].

\[
F_1 = - (0.012 * SiO_2) - (0.0807 * TiO_2) + (0.0026 * Al_2O_3) - (0.0012 * FeOt) - (0.0026 * MnO) + (0.0087 * MgO) - (0.0128 * CaO) - (0.0419 * Na_2O)
\]

\[
F_2 = - (0.0469 * SiO_2) - (0.0818 * TiO_2) + (0.0212 * Al_2O_3) - (0.0041 * FeOt) - (0.1435 * MnO) + (0.0029 * MgO) - (0.0085 * CaO) - (0.016 * Na_2O)
\]
گاهی دارای منطقه‌بندی پیچیده‌های خودند. در بخشی از آنها حواشی بلور دارای خورده‌گری است که می‌توان آن را به تغییرات فشار و عدم تعادل شیمیایی هنگام خروج گذاره نسبت داد. ترکیب پلاژیوکلاز سنگ‌های آنتشفاسی ناحیه مورد مطالعه در گستره‌ای بسیار گسترده‌ای از ابیت تا آندزین در نوسان است. ترکیب فلدسپار موجود در رویدادیت‌ها عمدتاً در گستره الکوکلاژ و در برخی موارد تا آندزین (29-18:18) است (شکل 9). در عین حال این کاکی در تراکی آندزیت‌ها در حاشیه بلور با ترکیب 29 مشخص می‌شود و در مرکز بلور به An-32 می‌رسد.

(ب) فلدسپار قلبی
فلدسپار قلبی علاوه بر شکل‌های فنوزیست و ریز بلورهای زمینه، به صورت ادخال نیز درون کلیپورزکس‌های با ساختار استخنی (به ویژه در موارد آندرزین) مشاهده می‌شود. در همه این موارد ترکیب آن از ابیت با خلوص بالا (3%-1) و یا ساندین (65%-86%) تشکل شده است.

میزان آن ترکیب پیروکسین‌ها تابعی از فوگاسیت‌ها کسب می‌شود. محدود ترکیب دهنده آنهاست [17]. با جایگزینی Fe3+ و Fe2+ و ترکیب Fe3+ در سایر انواع فنوزیست‌ها و هواویت‌ها در پایای خلاص شده‌است. ترکیب Fe3+ در سایر انواع فنوزیست‌ها و هواویت‌ها در پایای خلاص شده‌است.

تشکل 8 این ترکیب از نظر ترکیب خلیف پیروکسین‌ها و هواویت‌ها مناسب است. این ترکیب از نظر ترکیب خلیف پیروکسین‌ها و هواویت‌ها مناسب است.

![Diagram](https://via.placeholder.com/150)

الف: پلاژیوکلاز
این کاکی علاوه بر انواع فنوزیست‌ها در زمینه نیز پیش آمد. این کاکی علاوه بر انواع فنوزیست‌ها در زمینه نیز پیش آمد. فنوزیست‌های پلاژیوکلاز اغلب دارای منطقه‌بندی و...
نمودار [21] نشان می‌دهد که هم‌اکنون میکاهای موجود در هاوائی ایستا از نوع فلوگوپیت‌نیائی می‌باشند. ولی در مورد تراکی اندزیت‌ها و روبداسیت‌ها ملاحظه می‌شود که هم‌اکنون میکاهایی از نوع فلوگوپیت آهن‌دار و بی‌پیتی می‌باشد (شکل 11-1). این تغییر ترکیب کانی‌شناسی را می‌توان به‌کار بودن میزان MgO در میکا می‌باشد. این نیست داد [18]. همچنین با توجه به آنکه حضور فلوگوپیت در گذشته‌های بزرگ سلولری نیست، حضور بی‌پیتی در گذشته‌های سلولری است، لذا می‌توان تصور کرد که میکاهای سلولری میکا‌های ایستا با نسبت به روبداسیت و تراکی آندزیت‌ها از عمق بیشتر (فشار بیشتر) رشد گرفته‌اند.

از بی‌پیتی‌ها برای تعمیم محتوی زمین ساخته‌ای‌های آندزیت‌های ناحیه استفاده شد. با توجه به (شکل 12) مشخص است که ترکیب بی‌پیتی‌ها در فلوروم میکاها کالک فلایی‌ها می‌باشد.

تشکیل شده شکل‌های نمودار (شکل 7) میکاهایی این ناحیه در تراکی اندزیت‌ها و هاوائی‌ها ایستا به میزان چشم‌گیری پایین است (شکل 11-1). به‌طور کلی نشان می‌دهد که این ناحیه از حوزه‌های آهن‌دار (شکل 11-1) در هاوائی‌ها نیست (شکل 11-2). میکاها در این ناحیه از نوع (MgO+)Fe3+ ترکیب یافته‌اند (شکل 10-1). تغییرات (Na+ + K+)Al3+ 2Ti + Al3+ Fe3+ Mg2+ نشان می‌دهد که در ناحیه‌های این ناحیه که حاکی از نتایج ترکیب آمفیبول‌های ناحیه مورد مطالعه‌ای تابع

میکا

میکا در کنار کانی‌های ناحیه در ناحیه تلاش‌های مختلف می‌باشند. این کانی‌ها در ترکیب چربی‌های زمین ساخته‌ای‌ها است. این کانی‌ها به شکل بلورهای گوناگون پدید می‌آورند. میکاهای موجود در روبداسیت‌ها و تراکی آندزیت‌ها از نوع بی‌پیتی است. در تکامل ترکیب این کانی در هاوائی‌ها نیست. در این ناحیه میکاهایی وجود دارند که در ناحیه بازیگری گسترشی قرار می‌گیرد (شکل 11-3). در صورت یافته‌میکاها میکاها منطقه‌ای بر پایه

1- Magnesian Hastingsite Hornblende
2- Magnesian Hastingsite
شکل ۱۰ (الف) رده‌بندی میکائاهی منطقه مورد مطالعه در نمودار [۱۹] ب روی تغییرات ترکیب شیمیایی آمفیبول های ناحیه عروسان [۲۰].

شکل ۱۱ (الف) رده‌بندی میکائاهی منطقه مورد مطالعه در نمودار [۱۸] تمامی روداسیت‌ها و تراکی آندزیت‌ها در گستره پیوستن قرار گرفته‌اند.

(ب) رده‌بندی روداسیت‌ها میکائاهی پایه [۲۱].

شکل ۱۲ استفاده از ترکیب شیمیایی میکائاهی در تعیین موقعیت تکنولوژی مگامیکاهی گدازه های منطقه [۲۲] همه نمونه‌ها در گستره C (ماگماهای کالک کلیایی تواحی کوهزایی) واقع شده‌اند. گستره‌های P و A به ترتیب مربوط به نواحی کالک و برخورداری از ناپیم دهد.
شکل ۱۳ نمایش تغییرات شیمیایی والاسی نسبت به شاخه اشباع شدگی (لومین). [۲۲] روداسیت‌ها در ایا بی‌شیمینان میزان شاخه اشباع شدگی‌های آلومینیم و کمترین مقدار نشان می‌پیدا کنند.

کلریت کلریت‌های موجود در سنگ‌های مفصل، محصول دگرگان کل نرم‌بر، سنگ‌های ریوداسیت، آمفیبول، و بیتونیت هستند. در برخی از نمونه‌های ریوداسیت، آمفیبول و بیتونیت‌ها تغییرهای تازه در شکل کلریت ایجاد شده. کلریت‌ها نسبت به برونیکیت‌ها، به نظر می‌رسد که نمایان آن‌هایی باید برای نمودار بی‌شیمیایی [۱۸] از نوع برونیکیت‌ها است. (شکل ۱۴).

برداشت ۱- ترکیب کلینورپیک‌سی در تراکی آندزیت و هواتی ایت‌ها، دیوپسید و در موزه آرت، دیوپسید تا اوتیت است. میزان فوگاسیتی آکسیزن در محیط تراکی آندزیت‌ها، باین است حال آنکه در محیط تشکیل موزه آرت و هواتی ایت نسبت به بی‌شیمی است. این اثر می‌تواند نشانگر محیط نمای قلبی‌ای برای گذاره‌های ناحیه مورد مطالعه است. بر همین نظر محیط زمین سابقه موتر در شکل گیری آن‌شیمیایی ناحیه، می‌تواند یک کمان مادکی وایسته به

شکل ۱۴ تعیین ترکیب کلریت‌های موجود در تراکی آندزیت‌های منطقه مورد مطالعه [۱۸] این کلریت‌ها از نوع برونیکیت‌ها هستند.

