An Investigation on the Physical, Chemical and Mineralogical Properties of Iranian Biglar Refractory Bauxite Mines for Refractories Application

R. Naghizadeh, H. R. Rezaie, F. Golestani-Fard

Department of Metallurgy, Iran University of Science and Technology, Tehran, Iran
E-mail: rnaghizadeh@iust.ac.ir

(Received: 20/2/2007, in revised form: 19/7/2007)

Abstract: In this research, the properties and characteristics of Biglar refractories bauxite mines have compared with two types of industrial China's and Iranian (Doplan super) refractory grade bauxite in order to use in refractory industries. At first, physical, chemical and thermal properties, phase and microstructural characteristics have been measured and sintered samples of Biglar Bauxite at different temperatures were analyzed and then were compared with China's and Doplan calcined bauxite properties. The results showed that the refractory bauxite minerals obtained from Iranian Biglar mines contains the proper amounts of alumina and other oxides. So it could be concluded that these properties are comparable to the China's and Doplan bauxite and this refractory grade bauxite is suitable for refractory industries for using in the production of many kinds of shaped and monolithic refractory product.

Key words: Refractory Materials, Bauxite, Diaspore, Biglar, Doplan, Phase Analysis.
بررسی خواص فیزیکی، شیمیایی و میکروالوژیکی خاک بوسکیت معدن بیگلر قزوین برای استفاده در تولید مواد دیرگداز

رحیم نقی‌زاده، حمید رضا رضایی، فرهاد گلستانی فرد

دانشکده مهندسی مواد، دانشگاه علم و صنعت ایران
pist@iust.ac.ir

چکیده: در این کار پژوهشی به بررسی خواص و سرشانه‌های خاک بوسکیت دیرگداز حاصل از معدن بیگلر قزوین پرداخته شده است. این بررسی‌ها در دو حالت خام و نیز پس از تکلیس در دمای مختلف صورت گرفت که شامل آلاین خواص مختلف فیزیکی، شیمیایی، فازی و ریزساختاری خاک بوسکیت معدن بیگلر مقایسه آن با دو نمونه بوسکیت مرغوب ایرانی و چینی بوده است. پس از آلاین‌های پیاد شده معلوم شد که این خاک به حداکثر 46 درصد آلومینیا دارد. در حالت خام شیمیآلاین‌های کالوتلیتی، دیسایور، و آلائاز است و پس از تکلیس، فیزیولوژی کورناردوم، مولایت، نابلیت و روتلیت. ساختار آن را شکل دهنده با توجه به اینکه این نوع خاک دیرگداز بوسکیتی در ارگیدار مقداری قابل توجهی آلومینیا به دست می‌رسد به نظر می‌رسد که پس از تکلیس در دماهای بالا باید استفاده در ساخت انواع محصولات دیرگداز شکل دار و یک با آلومینیا بالا مناسب باشد. همچنین نمونه‌های اجرای دیرگداز ساخته شده از آن در مقایسه با نمونه‌های ساخته شده از بوسکیت‌های صنعتی ایرانی و چینی دارای خواص مناسب فیزیکی، مکانیکی و ترمومکانیکی است. در نهایت این دستورالعمل‌ها با آلاین‌های ریزساختاری میکروسکوپیک الکترونی مورد بررسی و تحلیل قرار گرفتند.

واژه‌های کلیدی: مواد دیرگداز، بوسکیت، دیسایور، بیگلر، دیویان، آلاین فازی

مقدمه

خاک معدنی بوسکیت دارای گستره‌گسترده‌ای از کاربردها در صنایع مختلف است. مهم‌ترین کاربرد بوسکیت در بخش متالورژی و در تولید آلومینای مالاتریک‌یکی و فاز آلومینیوم است که مقدار ۸۵٪ کل مصرف بوسکیت گچیه را شامل می‌شود. درصد بوسکیت استخراج شده در تولید انواع آلومینیا (جز آلومینیای نوع مالاتریکی) نظیر هیدروکسید آلومینیوم، آلومینیای کلایسر شده و آلومینیای فاصله استفاده می‌شود. کاربردهای دیگر بوسکیت در تولید دیرگداز، سیمان، محصولات ساینده و مواد شیمیایی است. تولید بوسکیت دیرگداز یکی از مهم‌ترین موارد مصرف بوسکیت بر اساس حجم تولید و سهم تجارت این بخش است [۱].
جدول 1 آنتیز شیمیایی هم‌مترین انجام بی‌کسیس‌های تکلیس شده

<table>
<thead>
<tr>
<th>عامل (%)</th>
<th>راباع</th>
<th>ترکیب</th>
<th>شانه</th>
<th>گینوژود</th>
<th>گینوژود</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>88.77</td>
<td>85.6</td>
<td>89.67</td>
<td>89.65</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>5.33</td>
<td>10.11</td>
<td>7.84</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.85</td>
<td>1.15</td>
<td>2.42</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.23</td>
<td>2.42</td>
<td>3.79</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.17</td>
<td>0.01</td>
<td>0.1</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.04</td>
<td>0.12</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ZrO₂</td>
<td>0.09</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Na₂O + K₂O</td>
<td>0.3</td>
<td>0.09</td>
<td>0.23</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>L.O.I</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 آنتیز شیمیایی تعدادی از معدان بی‌کسیس ایران [10]

<table>
<thead>
<tr>
<th>عامل (%)</th>
<th>راباع</th>
<th>ترکیب</th>
<th>شانه</th>
<th>گینوژود (1)</th>
<th>گینوژود (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>88.77</td>
<td>85.6</td>
<td>89.67</td>
<td>89.65</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>5.33</td>
<td>10.11</td>
<td>7.84</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.85</td>
<td>1.15</td>
<td>2.42</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.23</td>
<td>2.42</td>
<td>3.79</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.17</td>
<td>0.01</td>
<td>0.1</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
<td>0.04</td>
<td>0.12</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>ZrO₂</td>
<td>0.09</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Na₂O + K₂O</td>
<td>0.3</td>
<td>0.09</td>
<td>0.23</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>L.O.I</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

معدن بی‌کسیس دویلان با شهید نیلپری در 220 کیلومتر جنوب غربی اصفهان و در نزدیکی شهر آزاد در استان چهارمحال و بختیاری قرار دارد و معدنین در سال 1346 شمسی از سوزاران زمین‌شناسی فعالیت و یو چراغ قرار می‌گیرند. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود. در این معدن بی‌کسیس دویلان، شبکه ملی فوآردان انجام گرفت و از نظر ترکیب کلی به همان صورت شکل‌گیری می‌شود. در این معدن بی‌کسیس دویلان با شهید نیلپری در 220 کیلومتر جنوب غربی اصفهان و در نزدیکی شهر آزاد در استان چهارمحال و بختیاری قرار دارد و معدنین در سال 1346 شمسی از سوزاران زمین‌شناسی فعالیت و یو چراغ قرار می‌گیرند. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود. در این معدن بی‌کسیس دویلان، شبکه ملی فوآردان انجام گرفت و از نظر ترکیب کلی به همان صورت شکل‌گیری می‌شود.

مهم‌ترین معادن بی‌کسیس ایران در تاییب‌دان، بوکان، دم‌شند، سنده، و جام واقع شده‌اند. بی‌کسیس اوین بار در ایران در سال 1346 میلادی در کرمان کشف شد. در سال‌های بعد معادنی در سوزاران زمین‌شناسی فعالیت و یو چراغ قرار می‌گیرند. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود.

مهم‌ترین معادن بی‌کسیس ایران در تاییب‌دان، بوکان، دم‌شند، سنده، و جام واقع شده‌اند. بی‌کسیس اوین بار در ایران در سال 1346 میلادی در کرمان کشف شد. در سال‌های بعد معادنی در سوزاران زمین‌شناسی فعالیت و یو چراغ قرار می‌گیرند. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود.

مهم‌ترین معادن بی‌کسیس ایران در تاییب‌دان، بوکان، دم‌شند، سنده، و جام واقع شده‌اند. بی‌کسیس اوین بار در ایران در سال 1346 میلادی در کرمان کشف شد. در سال‌های بعد معادنی در سوزاران زمین‌شناسی فعالیت و یو چراغ قرار می‌گیرند. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود. در این معدن سوزاران صورت گرفته و در جزئیات تفصیل‌گرایی و نیز تشویق آن از سوزاران مورد استفاده می‌شود.
قرار گرفتند. همچنین به نظر می‌رسد، وجود خاک بیکسیت نتایجی ایرانی (بیکسیت سودیور سال) و چنین تکلیف شده که در سیاست‌گذاری خاک کاربری بیکسیت کشور برای ساخت انواع محصولات شکل‌دار و بیش به میزانی و بیکسیت استفاده‌ای محدود نیز به روش‌های مشابه سودر X آنتیزهای خاک ویژه، بیکسیت شیمیایی تر و مشاهده کرده‌اند. نتایجی از تبادل‌های بیکسیت‌های بیکسیت‌های دوبلان و چنین در جدول 3 ترکیب‌شده، نیز اضافه‌ای از خاک ویژه این انبوه‌های (آکریلیت‌های) بیکسیتی نظر چگالی کلی، تخلخل ظاهری و درصد جذب آب را اضافه کرده‌اند.

لازم به ذکر انواع به کسانی که مهارتی و تجربه‌ای کافی دارند در X و (XRD) X نمونه‌ها اضافه بر روی آن‌ها آنتیزهای بیکسیتی را استفاده از X-Ray Philips Xpert پردازش‌های ریز‌شانسی‌ها با استفاده از SEM−EDS و مینی‌سکوپ‌های الکترونی و ریز‌شانسی‌های پیشرفته‌ای استفاده ازощه.din.تعریف‌های شیمیایی با استفاده از روش (DTA) با استفاده از Shimadzu 50 انجام شد.

کار روی هم در این کار یافته‌های نخست تقریباً مقدار 20 کیلوگرم نسبت به بیکسیت بیکسیت بیکسیت انتخاب و پس از از خود و آسیب به هم‌سان شکن فکری، آسیب سایشی، با رعایت اصول نمونه‌برداری، مقداری از نمونه‌برداری از خاک بیکسیتی‌ها مانند فرم شکن فکری، ریز‌شانسی‌ها و غیره انتخاب شد. سپس به منظور بررسی نگرش‌ها و فازات خاک بیکسیتی در ترکیب گردید. درون بیکسیت‌های سرامیک‌هایی نوین و در کوره‌های الکترونی به دمای 1050 درجه سانتی‌گراد 5 ساعت بیکسیت شدند. سپس نمونه‌ها در خام و بیکسیت شده، اسیب به بیکسیت و پردازش یک بیکسیت (XRD) X آنتیزهای شیمیایی با استفاده از SEM−EDS و ریز‌شانسی‌ها و با مینی‌سکوپ الکترونی و بیکسیت (SEM−EDS) مورد بررسی (Cm,Cq,C1e,Cb,Cm)

جدول ۱ مقایسه خاک ویژه بیکسیت‌های تکلیف شده و کانول

<table>
<thead>
<tr>
<th></th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>Na₂O</th>
<th>MgO</th>
<th>L.O.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیکسیت چینی</td>
<td>64.8</td>
<td>21.6</td>
<td>11.6</td>
<td>3.6</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>بیکسیت بیکسیت</td>
<td>81.12</td>
<td>10.9</td>
<td>1.46</td>
<td>3.65</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>بیکسیت دوبلان</td>
<td>54.8</td>
<td>42.8</td>
<td>0.9</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>کانول</td>
<td>44.1</td>
<td>50.2</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول ۲ مقایسه خاک ویژه بیکسیت‌های تکلیف شده

<table>
<thead>
<tr>
<th></th>
<th>جذب آب (%)</th>
<th>تخلخل ظاهری (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیکسیت چینی</td>
<td>3.66</td>
<td>7/66</td>
</tr>
<tr>
<td>بیکسیت بیکسیت</td>
<td>3.5</td>
<td>8.7</td>
</tr>
<tr>
<td>بیکسیت دوبلان</td>
<td>3.1</td>
<td>7/69</td>
</tr>
</tbody>
</table>
ساخت انواعی از ساختنی نسبت به نمونه‌های صنعتی کمتر است.

آنتئیز گرما‌یی
شکل ۲ محتوی آنتئیز گرما‌یی حاصل از بوکسیت DTA حالا به دنبالی انوگ‌ها و دیگر بوکسیت‌های تکلیس شده ایرانی و چینی، فرمول‌بندی اجر دیرگاز مطالب جدول ۵ نیمه شد. نخست هر کدام از بوکسیت‌ها مطلوب جدول ۵ دانندیت شده و با ۱۵ درصد کانولن ۳۱ به همراه ۵ درصد AB کلینه‌دار شد. کانولن با شده ۸۸۰ درجه سانتی‌گاهی بجا آمد و مقدار آلومینیوم پس از تکلیس کردن به حدود ۴۵/۳خواهد رشد. مقدار عناصر قلب‌یابی آن بی‌سیار اند از آن به عنوان بایندر برای بهبود پرس‌پذیری و نیز ایجاد استحکام، حالت و تشکیل ماده و عناصر در زمینه استفاده می‌شود.

سیس فرمول‌بندی‌ها تهیه‌شده با تیس‌های منطقه‌ای و با فشار به ۲۰۰ kg/cm² به حوصلات اساسنامه در ابتدای ۳۰ درجه سانتی‌گاهی به مدت ۲۴ ساعت و پس در دمای ۱۵۰ درجه سانتی‌گاهی به مدت ۵ ساعت تغییرات ابتدایی سپس از خاککش، کانولن و دیسپور است. تغییرات در واحد به الومینیوم می‌شود.

جدول ۵ توزیع داننده انوگ‌ها بوکسیت بر ساخت نمونه‌های اجر دیرگاز:

| بوکسیت | اندازه مشکی کل | درصد وزنی | کانولن ۳۱ | آب | آب
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰-۱۸</td>
<td>۲۵</td>
<td>۴۵</td>
<td>۰</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۷-۳۰</td>
<td>۱۰</td>
<td>۳۵</td>
<td>۰</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۷-۳۰</td>
<td>۱۰</td>
<td>۳۵</td>
<td>۰</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۷-۳۰</td>
<td>۱۰</td>
<td>۴۵</td>
<td>۰</td>
<td>۱۵</td>
</tr>
</tbody>
</table>

بررسی خواص فیزیکی انوگ‌ها
به طورکلی چگالی بالک بوکسیت‌های تکلیس شده در گرما دیر‌گاز در حدود ۳-۲۲ gr/cm³ به توجه به میزان تغییرات قابل استفاده جامدی و با افزایش مقدار کروماتوم افزایش می‌یابد. بنابراین تکلیس مناسب باعث سندرام به تعویض چگالی مورد نظر در بوکسیت‌ها خواهد شد. نیروی جدول ۴ در نمونه بوکسیت بیگذشته به غلبه می‌باشد تکلیس یکی از شرایط اساسی تولید شکل بی‌پن بر روی قطعات.
آنالیز پراش پرتو (SEM)
شکل 3: اگهیار پراش پرتو X حاصل از X-پوکسیت چینی.

آنالیز پراش پرتو (SEM) حاصل از Xپوکسیت چینی در حالت X و گیپر در دمای 1400 °C از دارایی به دست آمده. در این شکل می‌توان دو نوع پوکسیت رنگ را مشاهده کرد. با توجه به آنالیز SEM نشان داد که ذرات تیره تری زمینه تصویر را تغییر می‌دهند. بستر سنگی، سیلیکا TiO2 و Fe3O4 مشاهده نمی‌شود. در این شکل ژنتیک شکل تیتانیوم کوده و مولتاید TiO2 نشان داده شده و وجود فاز مولایت TiO2 در پراش پرتو X حاصل از X-پوکسیت چینی را نشان می‌دهد.

چنان‌که ملاحظه می‌شود این پوکسیت نیز از فازهای اصلی کورکاندوم و مولایت تغییری نشان نمی‌دهد.

شکل 4: کوکسیت پرتو (الف) در حالت X

شکل 5: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.

شکل 6: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.

شکل 7: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.

شکل 8: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.

شکل 9: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.

شکل 10: انالیز میکروسبک اکتروپ (SEM) حاصل از X-پوکسیت چینی.
شکل 5 تصویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز EDS حاصل از ذرات پوکسیت بیگلر خام.

شکل 6 تصویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز EDS حاصل از ذرات پوکسیت بیگلر تکلیس شده در 16000°C.
بررسی خواص آجرهای دیرکداز

خشونت قیفیکی و مکانیکی سرد

نمودارهای موجود در شکل‌های ۸، ۱۰ به ترتیب نتایج حاصل از اندازه‌گیری استحکام فشاری سرد، تغییرات ابعادی پس از پخت و چگالی کلی مربوط به نمونه‌های آخر دیرکداز ساختمه شده از سه نوع بوسیسیت مطالعه را پس از پخت در دمای ۱۴۵۰ درجه سانتی‌گراد. استحکام نمونه‌های سرد بوسیسیتی بستگی به توزیع دانه بندي، شکل دانه‌ها، فشار پرس، دما و زمان پخت، نوع فازهای حاصل، میزان انقباض و انقباض حين پخت، و نوع عوامل موجود در قطعه‌های دارای استحکام فشاری نمونه‌های دیرکداز بوسیسیت بیگلر دارای مقادیر ۴.۸۵/۱۰۰ کیلوگرمی در متر مکعب است. این نتایج نشان‌دهنده افزایش استحکام فشاری نمونه‌های آجر بوسیسیتی است و همچنین شکل‌های ۸ نتایج حاصل از اندازه‌گیری استحکام فشاری سرد نمونه‌های آجر بوسیسیتی.
خواص فیزیکی و مکانیکی گرم

جدول 6: نتایج حاصل از آزمون دیرگدازی (PCE) (انهایه‌های ASTM)

بوکسیت ایرانی و چینی را که متشابه با استاندارد اندازه‌گیری شده است، نشان می‌دهد. چنان‌که مشاهده می‌شود، همی‌بوکسیتهای مورد مطالعه، دمای دیرگدازی بالاتری از محدوده ۱۹ زیر دارند که معادل دمای ۱۲۵۰ است.

شکل ۱۱ نتایج حاصل از اندازه‌گیری استحکام خمی گرم (نمونه‌های آجر بوکسیتی ساخته شده را نشان می‌دهد.

در این یک در مورد تأثیر ترکیب‌های و فازهای مشاهده شده در انواع بوکسیت بر خواص درگدازی آنها تکنیکی ذکر می‌شود. گرایش مولی (Al2O3) به سیلیک (SiO2) کمتر از ۲ و یا درصد وزني آلومینیم بیشتر از ۵۵٪ کاهش در این صورت فاز اصلی نمونه به تکلس در دمای بالا فاز کورانومخواهد بود. ویل در نسیله‌های پانیدنی، مولیتروپی، کاهش واریانس باشتر تشکیل می‌شود. در مورد اندازه‌گیری فاز کورانومخواهد انجام تحلیل بر توجه شده که در جمله دمای تکلس، میزان فاز پیش‌نیزه و ترکیب وانه فاز کورانومخواهد در نظر گرفته در بوکسیتهای گیبسیتی، هنگام تکلس الکتریک

شکل 9 نتایج حاصل از اندازه‌گیری تغییرات ابعادی پس از بافت نمونه‌های آجر بوکسیتی

شکل 10 نتایج حاصل از اندازه‌گیری چگالی کلی نمونه‌های آجر بوکسیتی

کورناتوم نظیراً از دمای ۱۰۰۰ درجه سانتی‌گراد بیشتر در حالی که در بوکسیتهای دیسیموری شود و در شرایطی که در بوکسیتهای دریایی بوکسیت‌های دیسیموری چنانچه نسبت تکلس شده باشد، باشد. میزان تحلیل‌های نسبت میزان تحلیل‌های مهم است. چنانچه میزان تحلیل‌های قلب‌ای زیاد باشد، تشکیل فاز‌پیش‌نیزه در دمای بالای نمای جهت افزایش گرم را خیلی کم نکند.

وژنی در حدود ۲٪ دارند. بنابراین میزان تحلیل‌های در شرایط گرم نتایج به‌صورت تکلس در شرایطی که در بوکسیتهای دریایی بوکسیت‌های دیسیموری چنانچه نسبت تکلس شده باشد، باشد. میزان تحلیل‌های مهم است. چنانچه میزان تحلیل‌های قلب‌ای زیاد باشد، تشکیل فاز‌پیش‌نیزه در دمای بالای نمای جهت افزایش گرم را خیلی کم نکند.

وژنی در حدود ۲٪ دارند. بنابراین میزان تحلیل‌های در شرایط گرم نتایج به‌صورت تکلس در شرایطی که در بوکسیتهای دریایی بوکسیت‌های دیسیموری چنانچه نسبت تکلس شده باشد، باشد. میزان تحلیل‌های مهم است. چنانچه میزان تحلیل‌های قلب‌ای زیاد باشد، تشکیل فاز‌پیش‌نیزه در دمای بالای نمای جهت افزایش گرم را خیلی کم نکند.
آهن داشته باشید در صورتی که میزان اکسید آهن کم و محیط
کربنات دوباره به فلز Fe3+ به دلیل کوچکی بیون می‌تواند به صورت
کربنات باشد. به فلز Fe3+ وجود داشته باشد. معمولاً رنگ فلز از اکسیداها مشاهده می‌شود.

شود [10].

به طور کلی ارتباط‌های گرمایی به ریز ساختار می‌تواند در
دبی‌گذاریهای پروپان بی‌پیچیده است. به نظر می‌رسد که
در ارتباط با گرمایی ماهیان شده، پاداوری آنان ریز
شیمیایی هرگونه با ساختار متراسکوپیک نیز ممکن است. در
ساختار متراسکوپیک پروپان گرفتار بی‌ساختاری نسبت به یکی چندین سطح
کربنات آنان پیوسته به یکی است. استاد خواندن این دو
ینه دارای تداخل بالایی هستند. به طوری که تأثیر حضور
پیوسته گرفتار گرفتار شده در استحکام گرم نمی‌باشد. پروپان
روی دیگر گرفتار بی‌پیچیده است. و واقعی استحکام خمی
گرم آنان نمی‌باشد به همین دلیل پروپان گرفتار
کربنات مولیکولی می‌باشد. و مقدار جنبشی روی دیگر
و فاز مشابه است. با یکی توجه به آنان پروپان گرفتار
پیوسته گرفتار و داشتن مقدار نشان دهنده اکسیدهای
قلیایی جنینی Na2O و K2O و نیز حضور سیلیس
با بالا تشکیل گرفتاز ملی در آن تقویت می‌شود. با این وجود
دبی‌گذاری پایین آن نسبت به پروپان گرفتار جنینی و دوباین
احتمالاً به دلیل تشکیل مقدار جزیی فاز Fe2TiO5
است که استحکام خمی گرمایی برای نسبت به نمی‌باشد هاواي
پروپان گرفتار و جنینی دارد [9].

Al2O3 - SiO2 - TiO2 می‌باشد. توجه به نمودار سه تابی سیستم

که در شکل 12 نشان داده شده است. در گوشته نزدیک به

الومینا دمای تشکیل اولین فاز مذاب 1730°C - 1740°C

ولی در مخلوط پروپان گرفتار (Al2O3 - SiO2 - TiO2) نیز

دلیل حضور نمایشگری دیگر در بالای دیگری از 1350°C - 1450°C

1300 به حالت مذاب در می‌آید و این مسئله می‌تواند در رفتار

خزیر دبی‌گذاری پروپان یک تاثیر چشمگیری داشته باشد.

نالهایی یا دیگر ویژگی‌های فلزی در پروپان به ویژه ترکیبی‌های قلبی

و قلبی خاکی همه وارد فاز مشابه می‌شوند [12].

می‌تواند در مورد تأثیر فاز بندی بیشتر در مولیکول ترکیب

توجه داشته که این فاز موجب افزایش در دبی‌گذاری، مقاومت به

شکگیری می‌کند. مقاومت خشک می‌شود. به

شروع اینکه شکل طبیعی مولیکول و میزان آنها طوری

باشد که تقریباً شباهت سه بعدی را در زمینه انبوه‌ها ایجاد

کند و فازهای دیگر شماش شده، تیتانیت، سیلیس آزدان، روتین

و غیره درون شیشه‌ای احتمال حضور در مولیکول موجود در پروپان یا تکلیف به صورت

پرلاطی بی‌پیچیده. در محلول‌های بی‌پیچیده گرمایی مشاهده می‌شود.

های بی‌پیچیده خود را می‌دهد. تیتانیت (Al2O3, TiO2)

با نقطه ذوب بالا (1850 °C) فازی در دبی‌گذار

است که ضریب اکسیدهای گرمایی از اکسیدهای بی‌پیچیده می‌باشد.

آن نیز کم است. در صورتی که تیتانیت در پروپان تکلیف

شده به مقادیر بندی وجود داشته باشد، سه مکان است

روی دهه اول انبوه تیتانیت به دلیل داشتن اکسیدهای فاز

گرمایی موجب افزایش مقاومت در بر این موارد

گرمایی شود. این انبوه به دلیل پدیداری ریز ترکیبی بیش از

کننده اینکه در زمینه‌ای را ایجاد می‌کند. در

صورت وجود مقداری اکسیدهای Fe2O3 به علت طبیعی

می‌باشد. مقدار نقطه ذوب بالا و Fe2O3

تیتانیت FeTiO3

آزاد نیز در پروپان تکلیف وجود داشته باشد. روتین

دارای نقطه دیگری از 1380°C - 1390°C، جدالی

فازهای مختلفی مثل سوزنی، رشته‌ای و دانه‌ای دیده

شود. روتین اگر شکل پلی‌متانه‌ای داشته باشد. می‌تواند تأثیر

مشابه بر خواص ترکیبی مولیکول داشته باشد [10].

اکسید آهن موجود در پروپان به صورتی مختلف

محلول گردیده در کوکروم، بی‌پیچیده و فاز Fe2O3

البی‌پیچیده. به Fe2TiO5، FeTiO3 و Fe3O4، و با در فاز مشابه دیده

می‌شود. نشان دهنده اینکه هنگامی خروج می‌گردد که

پروپان از نوع آهن بالا باشد و مثلاً 10% اکسید
جدول ۶ نتایج حاصل از اندازه‌گیری دیرگذاری (PCE) انبوه‌های پوکسیت.

<table>
<thead>
<tr>
<th>شماره مخروط</th>
<th>نوع پوکسیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳</td>
<td>بیگلر</td>
</tr>
<tr>
<td>۳۴</td>
<td>دولان</td>
</tr>
<tr>
<td>۳۵</td>
<td>چینی</td>
</tr>
</tbody>
</table>

نمودار فازی تعادلی سه جزیی [۱۲] [TiO۲- SiO۲- Al۲O۳] شکل ۱۲ نمودار فازی تعادلی سه جزیی [۱۲].

برداشت

یک توجه به بررسی‌های انجام شده روی خاک پوکسیت معدن بیگلر، معلوم شد که این خاک از نوع دیاسپور-کاتولیتی و به همراه فازهای آنانات و روتویل است. همچنین این پوکسیت دارای حدود ۶۵ درصد آلومینا بوده و پس از پخت در دماهای بالا، حاوی مقداری شیمیایی فازهای کوراندوم، مولایت و تیلاپت خواهد بود. بررسی خواص مختلف این نوع پوکسیت نشان می‌دهد که می‌تواند با توجه به شکل قرار دارد. با توجه به دست آوردهای این کار پژوهشی و نیز با در نظر گرفتن مرغوبیت نسبی این معدن، به نظر می‌رسد که استفاده از این نوع پوکسیت در آینده بیشتر مورد توجه صنایع تولید کننده مواد دیرگذاری ایران برای تولید دیرگذاری آلومینای بالا حاوی ۵۰ - ۶۰% آلومینا قرار خواهد گرفت.

