An Investigation on the Physical, Chemical and Mineralogical Properties of Iranian Biglar Refractory Bauxite Mines for Refractories Application

R. Naghizadeh, H. R. Rezaie, F. Golestani-Fard

Department of Metallurgy, Iran University of Science and Technology, Tehran, Iran
E-mail: rnaghizadeh@iust.ac.ir

(Received: 20/2/2007, in revised form: 19/7/2007)

Abstract: In this research, the properties and characteristics of Biglar refractories bauxite mines have compared with two types of industrial China's and Iranian (Doplan super) refractory grade bauxite in order to use in refractory industries. At first, physical, chemical and thermal properties, phase and microstructural characteristics have been measured and sintered samples of Biglar Bauxite at different temperatures were analyzed and then were compared with China's and Doplan calcined bauxite properties. The results showed that the refractory bauxite minerals obtained from Iranian Biglar mines contains the proper amounts of alumina and other oxides. So it could be concluded that these properties are comparable to the China's and Doplan bauxite and this refractory grade bauxite is suitable for refractory industries for using in the production of many kinds of shaped and monolithic refractory product.

Key words: Refractory Materials, Bauxite, Diaspore, Biglar, Doplan, Phase Analysis.
بررسی خواص فیزیکی، شیمیایی و مینرالوژیکی خاک بوکسیت معدن بیگلر فزوین برای استفاده در تولید مواد دیگر

رحیم نقی‌زاده، حمید رضا رضایی، فرهاد گلستانی فرد

داشته‌گاه مهندسی مواد، دانشگاه علم و صنعت ایران

رناغ‌هزاده‌ی، مهندسی ایران

پست الکترونیکی:

rnaghizadeh@iust.ac.ir

نمبرهای ۱۳۸۵/۰۶۳۸۵/۲۴۸ (دریافت مقاله ۱/۳/۱۳۸۵، نسخه نهایی ۲/۲/۱۳۸۵)

چکیده: در این کار پژوهشی به بررسی خواص و سرشتناهای خاک بوکسیت دیگرگانز حاصل از معدن بیگلر قزوین برداخته شده است. این بررسی‌ها دردست خام و نیز پس از تکلیس در اندازه مختلف صورت گرفت که شامل آنالیز خواص مختلف فیزیکی، شیمیایی، فازی و ریزساختاری خاک بوکسیت معدن بیگلر و مقایسه آن با دو نمونه بوکسیت مرگب ایران و جیبی به است. پس از آنالیز‌های باد شده معلوم شد که این خاک که در حدود ۶۶ درصد آلومینیا دارد، در حال خام شان فازهای کاتالوئیتی، دیسیسیور، آلاناز است و پس از تکلیس، فازهای کوریزوم، مولالیت، تیالیت و روتیل ساختاری را تشکیل می‌دهند. با توجه به اینکه این نوع خاک دیرگار بوکسیتی دارای مقداری بالا از تولید آلومینیوم جذب و نیز تولید ناخالصی‌های زیان‌بار اندک، به نظر می‌رسد که پس از تکلیس در دماهای بالا، برای استفاده در ساختمان محصولات دیرگار، لازم است. همچنین نمونه‌های یکی دیرگار ساخته شده از آن، در مقایسه با نمونه‌های ساختمان آلایه خاک بوکسیتی‌های صنعتی ایرانی و جیبی در این خواص مناسب فیزیکی، مکانیکی و نرم‌مکانیکی است. در نهایت این دستاوردها با آلایه‌های ریسمت‌داری و میکروسکوپ الکترونی مورد بررسی و تحلیل قرار گرفتند.

واژه‌های کلیدی: مواد دیگرگانز، بوکسیت، دیسیسیور، بیگلر، آلایه، فازی، مقادیر

مقدمه

خاک معدنی بوکسیت دارای گستره‌گسترده‌ای از کاربردها در صنایع مختلف است. مهم‌ترین کاربرد بوکسیت در بخش مالوریز و در تولید آلومینیای مالوریزیکی و فاز آلومینیوم است که مقدار ۸۵٪ کل مصرف بوکسیت جهانی را شکل می‌دهد. در صنعت بوکسیت استخراج شده در تولید انواع آلومینیا (بچر آلومینیای نوع مالوریزیکی) نظریه‌های فیزیکی آلومینیوم، آلومینیای تکلیف شده و آلومینیای فعل استفاده می‌شود. کاربردهای دیگر بوکسیت در تولید دیرگار سنگ، میکرو‌محصولات ساینده و مواد شیمیایی است. تولید بوکسیت در دیرگار یکی از مهم‌ترین مواد مصرف بوکسیت بر اساس حجم تولید و سهم تجارت در این بخش است [۱].
جدول ۱ آنالیز شیمیایی مهم‌ترین انواع پوکسیتهای تکلیس شده

<table>
<thead>
<tr>
<th></th>
<th>نیکلاژ ۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>A۰۰۰۲</td>
<td>۸۸</td>
</tr>
<tr>
<td>S۰۰۰۲</td>
<td>۵۵</td>
</tr>
<tr>
<td>C۰۰۰۲</td>
<td>۱۱۱</td>
</tr>
<tr>
<td>N۰۰۰۲</td>
<td>۷۷۷</td>
</tr>
</tbody>
</table>

جدول ۲ آنالیز شیمیایی تعدادی از معادن پوکسیتی ایران [۱۰]

<table>
<thead>
<tr>
<th></th>
<th>L۰۰۰۲</th>
<th>K۰۰۰۲</th>
<th>Na۰۰۰۲</th>
<th>Mg۰۰۰۲</th>
<th>Ti۰۰۰۲</th>
<th>Ca۰۰۰۲</th>
<th>Fe۰۰۰۲</th>
<th>O۰۰۰۲</th>
<th>Si۰۰۰۲</th>
<th>Al۰۰۰۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>جاجرم</td>
<td>۸۸۸</td>
</tr>
<tr>
<td>دهدشت</td>
<td>۸۸۸</td>
</tr>
<tr>
<td>بوکان</td>
<td>۸۸۸</td>
</tr>
<tr>
<td>لریجان</td>
<td>۸۸۸</td>
</tr>
<tr>
<td>سنمند</td>
<td>۸۸۸</td>
</tr>
</tbody>
</table>

۲۰۰ معادن پوکسیتی دوبلان با شاهد نیلی‌کار در کیستورات جنوبي غربی اصفهان و در نزدیکی شهر اردک در استان چهارمحال و بختیاری واقع شده است. این معادن در سال ۱۳۶۶ شمسی از سازمان زمین‌شناسی کشور کشف و به‌جوارهای مقدماتی در این شهرستان سازمان صنعت‌گرخی همچنین به‌جوارهای فنی‌شناسی مورد بررسی قرار گرفت. شرکت ملی فولاد ایران گرد و غرب از نظر تراکم کلیه‌های نیکلاژ ۱، دهشته، سنمند و جاجرم واقع شده‌اند. پوکسیتی اولین بار در ایران در سال ۱۹۶۹ میلادی در کرمان کشف شد. در چالات، این معادن دیده شده که بزرگترین مرکز تولید معادن بزرگ‌ترین معادن کنار کرمان به‌شمار می‌رود. این معادن فعالیتکه‌ای برای بزرگ‌ترین معادن کنار کرمان به‌شمار می‌رود. لریجان دهدشت، سنمند، جاجرم واقع شده‌اند. بزرگ‌ترین معادن این رده در شهرهای مرکزی ایران واقع شده‌اند که نشانگر کلیه‌های تولید در این منطقه می‌باشد.
قرار وکستن. همچنین به منظور مقایسه، دو نوع خاک وکست تجاری ایرانی (بوکسیت سوریه دوبیان) و چنین تکلیس‌شده که در سیلیزی از کارهایی تولید مورد بررسی برداشته شده از ساخت انواع محصولات آلتار و بین آلتار آلمانی و وکستی استفاده می‌شود. نتیجه‌های آلیاژ‌های خاص وکستی، برخی، X، شیمیایی تر، و ریز ساختاری قرار وکستن. نتیجه‌های آلیاژ شیمیایی وکستی‌های بیگلر، دوبیان و چنین در جدول ۳ گزارش شدند. میزان تعداد از خاک وکستی این انبوه‌های (اکسیشأتی) وکستی نظیر چهارهزار سیالی مدل شلار و درصد انجام آب نیز انداده گیری و در جدول ۴ با یکدیگر مقایسه شدند.

لازه به فواداری است که شناسایی قفسه‌های کالی موجود در X-آزمایش‌ها استفاده از آنتی‌پاس برونز و (XRD) і-زئول و نمونه‌ها از دانشگاه مکروسکوپی شیمیایی روش‌های و (SEM+EDS) و دستگاه‌های شیمیایی روش‌های استفاده از روش آلیاژ‌های وکستی‌های (DTA) با استفاده از انجام شد.

در ساخت انبوه‌های خاص وکستی، برخی، X، شیمیایی تر، و ریز ساختاری قرار وکستن. نتیجه‌های آلیاژ شیمیایی وکستی‌های بیگلر، دوبیان و چنین در جدول ۳ گزارش شدند. میزان تعداد از خاک وکستی این انبوه‌های (اکسیشأتی) وکستی نظیر چهارهزار سیالی مدل شلار و درصد انجام آب نیز انداده گیری و در جدول ۴ با یکدیگر مقایسه شدند.

لازه به فواداری است که شناسایی قفسه‌های کالی موجود در X-آزمایش‌ها استفاده از آنتی‌پاس برونز و (XRD) і-زئول و نمونه‌ها از دانشگاه مکروسکوپی شیمیایی روش‌های و (SEM+EDS) و دستگاه‌های شیمیایی روش‌های استفاده از روش آلیاژ‌های وکستی‌های (DTA) با استفاده از انجام شد.

شکل ۱ (راست) نشان دهنده محتوای زمین شناسی و‌پتولوژی فلزی و آهن (آئور) میکرو длин‌کاری‌ها به‌کارگیری (مقیاس QMQ، کوارتر، تری‌هتیس، لی‌لی، J، ژولی، F، ری‌نیک، T، P، ری‌دریس، کارتری ویکویلئسی، QMQ) (۱/۱۰۰۰۰).

جدول ۲ آنتی‌پاس وکستی‌های تکلیس‌شده کانالون.

<table>
<thead>
<tr>
<th>فوقین</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>Na₂O</th>
<th>MgO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>بوکسیت تکلیس</td>
<td>5.03</td>
<td>69.5</td>
<td>1.05</td>
<td>0.13</td>
<td>0.2</td>
<td>0.0</td>
<td>13.2</td>
<td>0.0</td>
</tr>
<tr>
<td>بوکسیت تکلیس</td>
<td>4.88</td>
<td>72.0</td>
<td>1.16</td>
<td>0.14</td>
<td>0.3</td>
<td>0.0</td>
<td>13.0</td>
<td>0.0</td>
</tr>
<tr>
<td>سهولان</td>
<td>8.12</td>
<td>54.0</td>
<td>0.99</td>
<td>0.14</td>
<td>0.0</td>
<td>0.1</td>
<td>13.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

جدول ۳ مقایسه خاک وکستی انبوه‌های وکستی‌های تکلیس شده.

<table>
<thead>
<tr>
<th>فوقین</th>
<th>میکروسکوپی الکترونی (کروم‌بانی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بوکسیت تکلیس</td>
<td>2.2</td>
</tr>
<tr>
<td>بوکسیت تکلیس</td>
<td>3.0</td>
</tr>
<tr>
<td>سهولان</td>
<td>1.5</td>
</tr>
</tbody>
</table>

جدول ۴ میکروسکوپی الکترونی (کروم‌بانی) انبوه‌های وکستی‌های تکلیس شده.

<table>
<thead>
<tr>
<th>فوقین</th>
<th>میکروسکوپی الکترونی (کروم‌بانی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بوکسیت تکلیس</td>
<td>2.2</td>
</tr>
<tr>
<td>بوکسیت تکلیس</td>
<td>3.0</td>
</tr>
<tr>
<td>سهولان</td>
<td>1.5</td>
</tr>
</tbody>
</table>
ساخت انبوه‌ها بوده است، مقادیر چگالی نسبت به نمونه‌های
صنعتی کمتر است.

آنالیز گرومایی
شکل ۲ منحنی آنالیز گرومایی حاصل از بوکسیت بیگل
در ادامه به منظور مقایسه خواص کاربردی بوکسیت‌های
تکلس شده ایرانی و چینی، فرمول‌بندی چهار درصدگر مطالعه
جدول ۵ تعیین شد. نخست هر کدام از بوکسیت‌های مورد
جدول ۵ بهره‌دار شد و با ۱۵ درصد کانلون ۳۱ به مهره‌ای
درصد اب مخلوط شدند. کانلون با شده ۸۰٪ کانی کانلونیت
داده و مقادیر آنیتمان آن را بر اساس تعیین ایجاد
خواهد رشد. مقادیر عنصر قلیایی آن نسبت اندک است و
آن به عنوان یکی از برای بهره‌برداری با توجه به
سیستم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

سیستیم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

سیستیم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

سیستیم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

سیستیم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

سیستیم فرمول‌بندی به نهایی شده با پرنس هیدروکلیک دو مولر
به صورت قرص‌های استوانه‌ای در ابعاد ۳۰×۲۵×۱۰ سانتیمتری و
با فشار ۷۰ kgf/cm۲ به شکل گرد مونه‌ها در دمای
۱۳۵ °C به مدت ۵ دقیقه و در دمای
۱۴۰ °C به مدت ۳ دقیقه و در دمای
۱۵۰ °C/h به مدت ۲ دقیقه به گرمایی
درجه ۵ توزیع دانش‌های انبوه‌ها بوسیط تاریخ ساخت نمونه‌های
اجر در دیدگاه:

<table>
<thead>
<tr>
<th>بوکسیت</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC31</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کانلون</th>
<th>درصد وزنی</th>
<th>اندازه مشکل (میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td><۷</td>
<td>۵۰-۱۸</td>
</tr>
<tr>
<td></td>
<td>۷-۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>>۲۰</td>
<td>۴۵</td>
</tr>
</tbody>
</table>
آنالیز پراش پروتو

شکل ۱: ا bölgesinde برای متیلکربن‌سیلیکی (SEM) مورد آزمایش قرار گرفت. نتایج نشان داد که این ماده برای آزمایش قابل توجهی دارد. با توجه به این نتایج، می‌توان به عنوان اولیه برای آزمایش قابل توجیه TiO2 مطرح شود.

آلانیزهای اکترونیکی و (SEM) می‌تواند به عنوان یک مادر غیر سه‌بعدی برای آزمایش قابل توجهی باشد.

شکل ۲: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۳: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۴: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۵: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۶: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۷: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۸: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۹: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۰: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۱: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۲: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۳: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۴: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۵: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۶: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۷: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۸: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۹: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۰: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۱: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۲: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.

شکل ۱۳: اگر به همراه سایر داروها، تجزیه و تحلیل مواد به چنین شکلی انجام شود. نتایج نشان می‌دهد که این مثلث بی‌تنهایی با آنالیزهای EDS بسیار مناسب است.
شکل ۵ تصویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز EDS حاصل از ذرات پیکسلت بیکر خام.

شکل ۶ تصویر میکروسکوپ الکترونی روبشی (SEM) و آنالیز EDS حاصل از ذرات پیکسلت بیکر تکلیس شده در ۱۶۰۰°\(\text{C}\).
بررسی خواص آجرهای دیرکداز

خواص فیزیکی و مکانیکی سرد
نمونه‌های موجود در شکل‌های ۸ تا ۱۰ به ترتیب نتایج حاصل از اندام‌گیری استحکام فشاری سرد، تغییرات ابعادی پس از یخچال چگالی کل مربوط به نمونه‌های آجر دیرکداز ساخته شده از سه نوع پوکسیت مطالعه را پس از یخچال در دمای ۹۰°C به متی ۵ ساعت نشان می‌دهد. استحکام نمونه‌های سرد پوکسیتی بنگی به توزیع دانه بندي شکل دانه‌ها فشار دراس، دما و زمان یخچال، نوع فازهای حاصل، میزان انسداد و انقباض حین یخچال و نیز نوع عیوب موجود در قطعه دارد. استحکام فشاری نمونه‌های سرده پوکسیتی بنگی تغییر معادل ۴ است که عدد قابل قبولی از نظر صنعتی در مقایسه با پوکسیت چینی است.

نتایج حاصل از اندازه‌گیری استحکام فشاری سرد نمونه‌های آجر پوکسیتی.

شکل ۸

شکل ۷ تصویر میکروسکوپ الکترونی روبشی (SEM) از ذرات پوکسیت چینی.
خواص فیزیکی و مکانیکی گرم

جدول 6 نتایج حاصل از آزمون دیسپراژ (PCE) انواع‌های پوکستیت ایرانی و چینی را که مطالعه با استاندارد ASTM انجام‌گیری شده است، نشان می‌دهد. جانبه مشاهده می‌شود، همه پوکستیه‌های مورد مطالعه، دمای دیرکسیار بالاتری از محدوده 19 زگر را دارند که معمولاً دمای 300°C است.

شکل 11 نتایج حاصل از اندازه‌گیری استحکام خمیده گرم نمونه‌های اجرای پوکستیت ساخته شده را نشان می‌دهد.

در این بخش در مورد تأثیر ترکیب‌های و فاکتورهای مشاهده شده در انواع‌های پوکستیت بر خواص دیرکسیار آنها تکانی ذکر می‌شود. گروه مولی، Al2O3 به یک SiO2 کمتر از 2.5 و یا درصد وزنی آلومینیوم بیشتر از 55، باشد، در این صورت فاز اصلی نمونه پس از تکلیس در دمای بالا فاز کورنادوم خواهد بود. ولی در نسبت‌های بالاتر، مولیت و فاز شیشه‌ای بیشتری تشکیل می‌شود. در مورد اندازه دیسپراژ فاز کورنادوم و تنی از اندازه تخلخل‌های نمونه با نسبت چند کننده از جمله دمای تکلیس، میزان فاز شیشه‌ای و تاریخچه تشکیل فاز کورنادوم را در نظر گرفته، در پوکستیه‌های گیپسیتی، هنگام تکلیس پوکستیت گرم نمونه‌های اجرای پوکستیت ساخته شده را نشان می‌دهد.

شکل 9 نتایج حاصل از اندازه‌گیری تغییرات ابعادی پس از پخت نمونه‌های اجرای پوکستیت.

شکل 10 نتایج حاصل از اندازه‌گیری چگالی کلی نمونه‌های اجرای پوکستیت.

کورنادوم تقریباً از دمای 300°C 100 به بعد و پس از رشت‌های استحالة‌های حالت جامد ایجاد می‌شود در حالی که در پوکستیه‌های دیسپراژ، پوکستیت گرم به هنگام تکلیس در دمای 300-550°C در پیک مرحله تغییرات شکل می‌شود. بنابراین در پوکستیه‌های دیسپراژ افرادی از دمای یکین قربانی شروع می‌شود. پوکستیه‌های ایرانی و چینی هر دو جزو پوکستیه‌های دیسپراژ هستند. مسئله نهایی در اندازه و میزان تخلخل‌های پوکستیت تکلیس شده، این است که پوکستیه‌های گیپسیتی افت وزنی در حدود 30% و پوکستیه‌های دیسپراژ افت وزنی در حدود 10% دارند. بنابراین میزان تخلخل تکلیس شده باشند باشند کمتر باشد. میزان ناخالصی‌ها نیز در میزان و اندازه تخلخل‌ها مهم است. چنان‌چه میزان ناخالصی‌های قلیایی باید باید، تشکیل فاز شیشه‌ی در دمای بالاتر و یا به میزان بیشتر، موقعیت‌های کاری از طریق ساز و کاری‌های مختلف و جریان ویسکوز، انحلال و نه-نشست و افزایش سرعت نفوذ می‌شود. البته میزان، ویسکوزیتی و نحوه توسعه فاز شیشه‌ای باستی طوری باشد که دیرکسیار و استحکام گرم را خالی کم نکند.

87
آهن داشته باشد. در صورتی که میزان آهن کم و محیط اکسیدی باشد،
Fe۲O۳ به دلیل کوچکی بیرون می‌تواند به صورت Fe۲O۳ محلول جامد از آب در حالتی که پوتهای نزدیک وجود داشته باشد، معمولاً رفتار فلایزی از اکسید آهن مشاهده می‌شود. [۱۰] مورد تأثیر فاز بعید مریخ مولیت نیز در کیسینه‌ها باید
توجه داشته که این فاز موجب افزایش دیرگزاری، مقاومت به
شوک گرمایی، استحکام مکانیکی و مقاومت خشک می‌شود. به
شکل اینکه شکل‌گیری سوزنی پوتهای مولیت و میزان انرژی طوری
باشد که تقریباً شبکه سه بعدی را در زمینه انرژی ایجاد
کند و فازهای دیگر شامل شبیه، تیتانیت، سیلیس آرد، روتیل
و غیره درون شبکه آن حس باشد [۱۰-۱۱].

برای ساختن خاکی‌سازی، مولیت و مشابهات‌های مذکور، حرارتی و روش‌های مکانیکی مورد استفاده قرار گرفت.

در زمینه اینکه باید تا کنار گرفت. حرارتی و روش‌های مکانیکی مورد استفاده قرار گرفت.
جدول ٦ نتایج حاصل از اندازه‌گیری دیرگذاری (PCE) انبوبه‌های بیکست:

<table>
<thead>
<tr>
<th>شماره مخروط</th>
<th>نوع بیکست</th>
<th>PCE (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>٣٣</td>
<td>بیکلر</td>
<td>١٧٣</td>
</tr>
<tr>
<td>٣٤</td>
<td>دیویسیون</td>
<td>١٧٥</td>
</tr>
<tr>
<td>٣٥</td>
<td>چینی</td>
<td>١٧٥</td>
</tr>
</tbody>
</table>

شکل ١١ نتایج حاصل از اندازه‌گیری استحکام خمی گرم (HMOR) نمونه‌های آجر بیکستی در دمای ١٢٠°C

[نوع PCE (°C) ZF #]
> hskj kk
 AB' >hsZj ki
 2 >hsZj ki
 8٧٧٨١*: ٨١٠

بردشته با توجه به بررسی‌های انجام شده روی خاک بیکست معدن بیکلر، معلوم شد که این خاک از نوع دیسپور-کاتالیزیت و به همراه فاز‌های آناتاز و روثیل است. همچنین این بیکست دارای حدود ٦٥ درصد آلومینیوم بوده و پس از تخت در دماهای بالا، حاوی مقداری جسم‌گیری فاز‌های کورنیودوم، مولیت و تیتانیت خواهد بود. بررسی خواص مختلف این نوع بیکست نشان می‌دهد که خواص آن از نظر کاربردهای دیرگذاری در گسترده قابل قبولی قرار دارد. به توجه به دست‌آوردهای این کار پژوهشی و نیز با در نظر گرفتن مرغوبیت نسبی این معدن، به نظر می‌رسد که استفاده از این نوع بیکست در آینده بیشتر مورد توجه صنایع تولید کننده مواد دیرگذاری ایران برای تولید دیرگذارهای آلومینیم با حاوی ٥٠ - ٦٠% آلومینیا قرار خواهد گرفت.

شکل ١٢ نمودار فازی تعادلی سه جزیی [TiO₂ - SiO₂ - Al₂O₃]

[نوع PCE (°C) ZF #]