بررسی اثر اندازه ذرات بر خواص ساختاری و مغناطیسی منگنایت

تینا رفیعی، محمدحسین احسانی، داوود نامی خشندو
دانشکده فیزیک، دانشگاه سمنان، سمنان، ایران
(دیروافت مقاله: ۱۷/۱۲/۱۴، نسخه نهایی: ۱۹/۰۳/۱۴)

چکیده: در این پژوهش، نمونه‌های آبی از ترکیب منگنایت La0.6 Sr0.4 MnO3 با روش سل-زر و حالت جامد در ابعاد نانو و میکرومتری ساخته شدند. تحلیل ساختاری نمونه‌ها با استفاده از داده‌های بدست آمده از طیف پرتو ایکس (XRD) و نرمال‌الافا قبول فروسای داد که نمونه‌ها در فاز روسوهدال با گروه فضای Cm–3C بلوری شده‌اند. بررسی ویژگی‌های مغناطیسی نمونه داد که این ماده جزء سه‌گانه مواد فرمغناطیسی نرم بود و با کاهش اندازه ذرات، دما کمی نمونه‌ها به صورت جزئی به دمای پایینتر جابه‌جا می‌شود. محاسبه‌ی گستراوی مغناطیسی موئر نمونه‌ها از طریق مدل کوری-وسیشان دان دک که با کاهش اندازه ذرات، گستارگ مغناطیسی نمونه‌ها کاهش می‌یابد. با این‌حال، مغناطیسی اشتباه در اثر کاهش اندازه ذرات مشاهده شد. رفتار مشاهده شده بر اساس مدل فوریه–یوست توصیف و فضاهای لایه‌ای مغناطیسی برای نمونه نانو متری بیان شد.

واژه‌های کلیدی: اثر اندازه ذرات، پذیرفتابی مغناطیسی ماده مغناطیسی-یوست، منگنایت

مقدمه
منگنایت‌ها دسته‌ای از اکسیدهای منگنز هستند که ساختار بروساواتی دارند و به خاطر حضور منگنز در این دسته از مواد به عنوان نانو مغناطیسی شناخته می‌شوند. فرمول عمومی منگنایت‌ها به صورت MnOx است که در آن A منگنز و B MnO نمایان می‌گردد. نمونه‌هایی با A1۱+۱ B۱۱ MnO ۴ در ساختار باعث کاهش اندازه ذرات می‌شوند. یکی از موارد قابل توجه در این جزییه پژوهشی جایگزینی کردن عنصر مناسب در جایگاههای متناسب با A و B از Mn و B است که باعث کاهش اکتیون در مواد مغناطیسی و برقی آنها می‌شود. در این مقاله به بررسی انجام می‌دهیم که با ایجاد کرده و یا آماده کردن طول پیوسته و یا کاهش اندازه ذرات، میراث منگنایت‌ها در اثر ساختاری کلینیکی و مغناطیسی

متن‌نویسی را ایجاد کند. تغییر دمای گذر مغناطیسی و طول Mn-O-Mn سبب کاهش سختی و بهبود واریانس پیوسته‌ی پودینگ و سپس بهبود بیشتر منگنایت‌ها می‌گردد. با اجرای این روش، سطح و حالتویژگی‌های منگنایت‌ها به ترتیب بهبود می‌یابد. مثلاً یکی از موارد قابل توجه در این جزییه پژوهشی جایگزینی کردن عنصر مناسب در جایگاههای متناسب با A و B از Mn و B است که باعث کاهش اکتیون در مواد مغناطیسی و برقی آنها می‌شود. در این مقاله به بررسی انجام می‌دهیم که با ایجاد کرده و یا آماده کردن طول پیوسته و یا کاهش اندازه ذرات، میراث منگنایت‌ها در اثر ساختاری کلینیکی و مغناطیسی

*تویستده سپهسل، تلفن: ۰۲۱۹۱۲۲۲۵۴۵۱۰۰، پست الکترونیکی: ehsani@semnan.ac.ir
کاوش اندازه‌ی شدت نیز آن‌های سطحی نظیر سکشه‌ی شدن پیوندهای اتمی نظری پیوند MnO-Mn کشت باید است که همراه درد و توقیف اتم اما به‌طور مزرا دارد (دار [16]).

یکی دیگر از آن‌های کاوش اندازه‌ی شدت، افزایش سطح تنش بین ذرات نسبت به دیگر سیستم‌های مغناطیسی است. به طوری که این اثر می‌تواند به‌صورت دیگر بتواند بازی با دره‌ای را افزایش دهد. از نتایج دیگر کاوش اندازه‌ی شدت یپیدا، تفاوت و عیوب پلیوی است که در زمان ساخت ایجاد می‌شوند ([16]).

فیلتر دینامیکی ماده مغناطیسی که در مقیاس نانویی نیز به‌صورت پیوندهای ماکروسکوپی به یکسان می‌شود. اکثر عامل اصلی این اندازه‌های افزایش اهمیت افزایش گرمایی به شرط کار بر می‌گردد. باید ابر با پلاریزاسیون در ناهیدن مغناطیسی در زمانی که انرژی گرمایی از مرتبه‌ی از ناهیدنگردران باشد، که از نتایج جالب توجه است ([16]). در مواد فرمغناطیسی، نظم مغناطیسی در سطح ذرات قطبی کرده و روی سری‌های چین مغناطیسی و دامی گذاران تأثیر می‌گذارد. اثر کاوش اندازه‌ی شدت به گونه‌ای است که جفت‌شدنی‌گی مغناطیسی دستخوش سردرگمی با آشوب می‌گردد. به همین دلیل مغناطیسی خالص در سطح ناهیدن فرمغناطیسی قطبی کرده و لایه‌های مرتبی مغناطیسی شکل می‌گیرد که ضخامت آن به اندازه‌ی دانه‌ای درست دارد ([16]). در مواد به‌طور خاص فرمغناطیسی، این پدیده‌های اثر مغناطیسی دانه‌ای پس از روی پوشش مغناطیسی خالص بوجود می‌آید و از خود فرمغناطیسی جزیری نشان می‌دهد.

روش تغییر
برای ساخت نمونه‌ها در مقیاس نانویی از نیترات‌های سنتزیست، سنتز و منگزین به نسبت درصد به‌دست آمده است. فرآیند قطعه را با 14 مولول حاصل از ترکیب مواد اولیه به آب مقطع، به مدت 100 گایش طول در ادامه دامی گرم گذار 150 درجه سانتی‌گراد تنظیم گردید که پس از حدود 10 دقیقه خون بود و قطعه. گردد پس از این کار دانه‌ای شد. به منظور دستیایی به خواص بلوری بهتر، یک میف تغییر را به پودر به حالت افزایش 500 C حاصل از قطعه به صورت گرفت. مرحله‌ی سخت پودرها در دو میف ممکن است و 100 درجه سانتی‌گراد با 500 گرفته به صورت 800 S سنتی‌گراد کشیده شد. برای ساخت نمونه‌ها با دامی میکروویو و منگزین به‌صورت گردد که استریوم و آکسیدهای لیتوپروم می‌گزیند به نسبت درصد عناصر می‌باشد استریوم. یک میف به خواص بلوری میف برای مراحل تغییر به 14 میف به دانه‌های سخت پودر به صورت گرفت. مرحله‌ی سخت پس از تغییر را به 900 C 100 درجه سانتی‌گراد با 16 ساعت انجام گرفت.
داد که حجم یاده واحد از افزایش نمایش دمای کلوخسازی افزایش یافته و ناپذیری شیب نیز دستخوش انرک تغییر شده‌اند. در برخی گزارش‌ها وابسته به میکروتکنیک (LSMO) 50/50 کاوش اندازه در ساختار نمونه و ناپذیره شیب را به طور قابل ملاحظه‌ای تغییر داده است [21]. ولی در این کار به نظر می‌رسد که تغییر قابل ملاحظه‌ای در نوع ساختار ماده رخ نداده است.

میانگین اندازه دانه‌ها (بلورک‌ها) (D) و کرنش را می‌توان با استفاده از رابطه ویلیامسون– هال پراورد کرد. که از معادله زیر بیروی می‌کند [22,23]:

\[D = \frac{\lambda}{1.38 \times \theta} \]

که در آن D اندازه بلورک‌ها، \(\lambda \) طول موج پرتو X، \(\theta \) نهایی بیشینه (FWHM) از تاب ثرش (برابر با 0.6) در K (15406A)، K نمودار خط گذشته از تاب ثرش در این روش برای رش 0 برحس(\(\sin \theta / \cos \theta \)) می‌شود. با رسم پهپاد خط گذشته از مجموعه نقاط منحنی وابسته به هر نمونه، می‌توان با استفاده از شبکه خط و عرض از میابیم آن مقادیر کرنش و اندازه درشت را بدست آورد. در شکل 3 نمونه ویلیامسون– هال برای دو نمونه S1400 و S1100، S800 و S700، و پراورد شده است.

مدت 24 ساعت انجام گرفت. نمونه‌های حلال با کد S1400 نام گفتوی شد.

بررسی پراش پرتو ایکس نمونه‌ها با D4-Bruker و فیلتر SEM و تصوربرداری از نمونه‌ها با استفاده از TEM و گرفت. اندازه‌گیری مغناطیس وابسته به دما و میدان وابسته به نمونه‌ها با اسکوپ شکل کننده (MPMS) در داشته‌که برای کشور کانادا انجام گرفت.

بحث و بررسی

آنانیل ساختاری

\(\text{La}_0.6\text{Sr}_{0.4}\text{MnO}_3 \)

طقس پریان اکس نمونه‌های (LSMO) با در دمای کلوخسازی متفاوت در شکل 1 نشان داده شده است. بررسی داده‌های بدست آمده با ترم‌فاز خطاندازی نشان داد که در همه نمونه‌ها می‌توان محقل قله‌های براک را از ساختار لوئی رخ با گروه فضایی R-3C شاخه گذاری کرد. چنانه مشاهده می‌شود هیچ ناحیه در نمونه ماهیت نمی‌شود و افزایش دمای کلوخسازی شدت قله را افزایش داده است که این می‌تواند گاهی بر بهبود خواص بلوری و اثر افزایش اندازه دانه‌ها باشد. نمونه‌ها از تحلیل ریترون در شکل 2 (الف و ب) نمایش داده شده و نتایج آن برای همه نمونه‌ها در جدول 1 آورده شده‌اند. از مقادیر بدست آمده می‌توان نشان

![شکل 1: طبق پریان اکس نمونه‌ها](image-url)
جدول ۱ پارامترهای شیبکه، حجم شیبکه و اطلاعات ساختاری دیگر بست آباده از آنالیز داده‌های پرتو X

<table>
<thead>
<tr>
<th>ϵ</th>
<th>D (mm)</th>
<th>FWHM (Å)</th>
<th>V (Å³)</th>
<th>C (Å)</th>
<th>a=b (Å)</th>
<th>نام نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>47.8</td>
<td>248.85</td>
<td>12411</td>
<td>0.854</td>
<td>0.006</td>
<td>S700</td>
</tr>
<tr>
<td>75</td>
<td>57.8</td>
<td>248.87</td>
<td>12440</td>
<td>0.859</td>
<td>0.009</td>
<td>S800</td>
</tr>
<tr>
<td>55</td>
<td>29.2</td>
<td>249.84</td>
<td>12441</td>
<td>0.853</td>
<td>0.010</td>
<td>S1100</td>
</tr>
<tr>
<td>57</td>
<td>29.5</td>
<td>248.77</td>
<td>12441</td>
<td>0.856</td>
<td>0.011</td>
<td>S1400</td>
</tr>
</tbody>
</table>

شکل ۲ نمودار ریتوال نمونه‌های (الف) S700 و (ب) S1100.

شکل ۳ اندازه‌گیری ذرات و کرنش بر حسب دمای کلپه‌سازی نمونه‌ها.
چنانکه در جدول ۱ و شکل ۴ دیده می‌شود، با افزایش دامای پیخ اندازه‌گیری ذرات افزایش می‌یابد. در شکل ۴، کرین و اندازه‌گیری ذرات نشان داده شده‌اند. مقدار ذرات در پایان اثر S700 است که به عنوان وابسته وارون این پارامتر به اندازه‌گیری ذرات است.

کاهش تنش داخلی در نمونه‌ها به دلیل بهبود خواص بلوری در اثر افزایش دمای پیخ انتزاعی. افزایش ذرات بزرگ‌ترین ذرات در نمونه‌ها می‌تواند باعث قرارگیری پشت اتم‌ها در جایگاه‌های خود در ساختار بلوری ماده شود. می‌تواند نتیجه‌گیری داشته باشد که در نتیجه تغییر بلوری در ماده باعث می‌باشد (۴۴). این موضوع می‌تواند باعث کاهش اندازه‌گیری باعثی یکه منجر شود که نتایج مشاهده شده در شکل ۴ و جدول ۱، این ادعا را تأیید می‌کند.

روش‌های مدلسازی دنیای ساخته شده با استفاده از آنالیز S700 و S1400 مورد بررسی قرار گرفت. نمونه‌های SEM و TEM مورد بررسی قرار گرفت. نمونه‌های S700 و S1400 در دایره اندازه‌گیری نانومتری بوده که حدود ۳۰ و ۱۰۰ نانومتر برابر شده. کاهش در شکل (الف-ب) توسط مشاهده ذرات در نمونه S700 در پایان اثر S1400 نتیجه‌گیریش از تغییرات ذرات در دیگر نمونه‌ها ضایعی تر است که مشاهده شده در جدول ۱، این ادعا را تأیید می‌کند.

شکل ۴ نمودار ویلسون - هال برای نمونه‌های S700 و S1400.
شکل ۵ تصاویر TEM نمودارهایalfa و beta (S۰۰ و S۸۰۰) و تصویر SEM مربوط به نمونه (۱۴۰۰) S۰۰۰۰ و نمونه د (۱۲۰۰) توسط دو چهارم ماده. }

شکل ۶ نمودار مغناطیسی بر حسب دما مربوط به نمونه‌ها در مدهای ZFC و FC

شدگی یا T_B است که در بحث قبلی توضیح داده شد. نمودار مربوطه در شکل ۷ ترسیم شده است.

همانطوری که از شکل ۷ مشاهده می‌شود، دمای قفل شدگی به سمت دماهای بالایی تا چاپی گی می‌شود. می‌توان به افزایش نسبت سطح به حجم درشت در نتیجه کاهش اندازه ذرات وابسته دانست. به این دلیل که این وابستگی بعث می‌شود نمودار مغناطیسی کل ماده و انرژی ناهسنگردی کاهش یابد و در نتیجه دمای قفل شدگی به

از شکل ۷ پیداست که با کاهش اندازه ذرات مقدار مغناطیسی وابسته به دمای نمونه‌ها کاهش یافته است که این رخداد را می‌توان با مدل مغزی - بوسته توجیه کرد. بنابراین مدل مغناطیسی کل روز بوسته تقریباً صفر است و باعث می‌شود که سهم مغناطیسی کل ماده کاهش یابد [۲۵]

با استفاده از منحنی‌های شکل ۶ می‌توان دمای قفل شدگی واپسته به نمونه‌ها را انداده‌گیری کرد، به‌دین ترتیب که قله‌ی مشاهده شده در اندازه‌گیری ZFC نشان دهنده‌ی دمای قفل-
سنت دماهای پاپین تر منتقل شدو. در واقع با کاهش انرژی ناهسازگردنی، به انرژی گرمایی کمتری برای چرخش گشتاور مغناطیسی ذرات در راستای میدان نیاز است.

اثر کاهش اندازه ذرات بر دما کوری نمونه‌ها نیز که از منحنی منفی مشتق دمای مغناطیسی (dM/dT) به دست می‌آید، در شکل (8) نمایش داده شده است. نمودار داخل شکل (8) تغییرات دما کوری را بر حسب اندازه ذرات نشان می‌دهد. در این شکل ماهیت می‌شود که با کاهش اندازه ذرات

![نمودار دما کوری مشتق مغناطیسی در نمونه‌ها](image)

شکل 7: نمودار دما کوری فلز شدیدی در نمونه‌ها

![نمودار منفی مشتق مغناطیسی بر حسب دما برای نمونه‌ها](image)

شکل 8: نمودار منفی مشتق مغناطیسی بر حسب دما برای نمونه‌ها.
ناحیه پارامگناطیس در شکل 9 نمایش داده شده است. نتایج این بررسی در جدول 1 آورده شده است.

در منگنزات LSMO آلیش‌شده در شرایط مورد شرایط ترمیم مغناطیسی به صورت به ترتیب $\text{La}_0.6\text{Sr}_{0.4}\text{MnO}_3$ و Mn_3^4 ترکیب تنهای بیشتری مغناطیسی ماده نش دارند. مقدار این نوشته بستگی به میزان آلیش استر و مکان اول در نمونه‌های لایه‌ای با $\text{La}_0.6\text{Sr}_{0.4}\text{MnO}_3$ با فرض اینکه این مقدار مغناطیسی مبتنی بر $\text{La}_0.6\text{Sr}_{0.4}\text{MnO}_3$ در $S_1 = 3$ و $S_2 = 2$ است. ترکیب مغناطیسی مولت کل را می‌توان با استفاده از رابطه زیر محاسبه کرد:

$$\mu_{\text{tot}} = (1-x)\mu_{\text{eff}}(S_1) + x\mu_{\text{eff}}(S_2)$$

در این رابطه مقدار نظری گستار مغناطیسی مولت بیشتر به ترتیب از روابط زیر محاسبه می‌شوند:

$$\mu_{\text{eff}}(\text{Mn}^{2+}) = 2\mu_0\sqrt{2/3}(2+1) = 4.9\mu_0$$

$$\mu_{\text{eff}}(\text{Mn}^{4+}) = 2\mu_0\sqrt{3/3}(2+1) = 3.87\mu_0$$

در این محاسبات مقدار 2-غیر احاطه شده است. با داشتن این مقدار مقدار نظری گستار مغناطیسی برای ترکیب $\text{La}_0.6\text{Sr}_{0.4}\text{MnO}_3$ در رابطه زیر دست می‌آید:

$$\mu_{\text{eff}}^2 = 0.4*(3.87)^2\mu_0^2 + 0.6*(4.97)^2\mu_0^2$$

$$\mu_{\text{compound}}^2 = 4.54\mu_0^2$$

به نظر می‌رسد که دلیل این وارد نبودن دمای ختم نمونه باشد. بررسی‌های ناحیه شده روي منگنزات‌ها نشان می‌دهد که در نمونه‌های تهیه شده با دمای ختم بالاتر، استتیوکریستالیسی‌شده برای ختم و این می‌تواند در نسبت نیز تاثیر گذاشته باشد [27].

چنان‌که در شکل 8 مشاهده می‌شود مغناطیسی بر حسب دمای نمونه‌ها در ناحیه گزار نمونه‌ها با کاهش اندازه‌ی ذرات سخت‌کشی تغییر شده و باید افزایش آن کاهش می‌یابد. در این باره در حالی که ساختار فریت مغناطیسی سطح برخی می‌دهد ولی با کاهش اندازه‌ی ذرات اثراتی تأکیدی روی پوشش ذرات باعث می‌شود که اسباب‌ها در حالتی بی نظم شکل گیرند و در نتیجه نظم مغناطیسی نخستین ماده در خوشحالی مغناطیسی وجود آید و در نتیجه حالت فریت مغناطیسی بلند بر دارایبیدی پذیرفتاری نمونه‌ها به زیری بالایی دمای کوری نشان می‌دهد که نمودار $X = M/H$ بر حسب دمای گرمی - وسپری سیستم [28] در رابطه گرمی - وسپری مقدار ثابت C به گستار مغناطیسی مؤثر وابسته است.

$$X = \frac{C}{T}$$

در این روابط ثابت یا می‌تواند S سیستم‌های معنی‌برنده با گستار مغناطیسی مؤثر وابسته باشد و 4 دمای کوری پیش بینی شده است. برای دادن دمایی با رابطه گرمی - وسپری در

شکل 9 نمودار عکس پذیرفتاری بر حسب دمای نمونه‌های سیال و دمای نمونه‌های سیال در Oe

۱۰۰ Oe
بیان و بررسی اثر اندازه‌ی ذرات بر خواص مغناطیسی و

چنانکه جدول ۲ ملاحظه می‌شود، مقدار تجربی به دست امده از پیازده داها با رابطه‌ی کوری- وس برای نمونه

\[S_{1100} = 100 \text{ نانومتر} \]

\[\text{ب} = 4.5 \mu \text{ب است. بنابراین مقدار کاشتار مغناطیسی به دست امده برای نمونه‌ی یک شباهت با گزارش کوشکر از مقدار نظری کمتر است. این کاهش را می‌توان با داده‌های بوسته توجیه کرد که بنابرین مدل مقدار گشتاور مغناطیسی بوسته به دلیل بهم ریختن نظم اسپین‌ها تقریباً صفر شده است و این باعث می‌شود که سهم خالص گشتاور مغناطیسی ماده کاهش یابد. مقدار گشتاور مغناطیسی موتر در نمونه‌ی S1400 از مقدار نظری بیشتر است. به نظر می‌رسد که بهم ریختن عنصر سنگین این ماده که در دما بالا ساختمانش دارد و رفتار غیر معقول دما گذار کوری آن نیز در بخش قبل اشاره شد می‌تواند توجیه خوبی برای این افزایش باشد. گزارش مشابهی در مورد افزایش گشتاور مغناطیسی نسبت به گشتاور نظری گزارش کوشکر از مقدار Lao.7Ca0.3Ba0.1MnO3 که توسط تانک و همکاران

\[\text{نتیجه‌ی اشرار شده است.} \]

چنانکه از شکل ۱۰ مشاهده می‌شود، مغناطیسی تمام نمونه‌ها ها با اعمال میدان می‌بایست کوشکر به شدت افزایش یافته است و سپس اشاع می‌شود. این خاصیت مربوط به مواد مغناطیسی نرم است. از روزی این نمودار می‌توان مغناطیسی اشاع نمونه‌ها را

\[M_{(bulk)} = \left(\frac{2t}{d} \right) ^{1/3} M_{(nano)} \]

\[\text{در دما یک ایده می‌دهد که در دما بالا می‌تواند به دست امده از پیازده داها با رابطه‌ی کوری- وس برای نمونه S1100 با اندازه ذرات ۱۰۰ نانومتر با این مقدار (۴.۵ \mu‌ب) نزدیک بوده و مقدار گشتاور مغناطیسی به دست امده برای

\[\text{ب‌ها مورد ذرات کوچک که می‌پاید.} \]
برداشت

نانوپوسته‌های این اندازه‌ها متفاوت و نمونه‌های کهیزی از مکانیک با روشهای سل-زل و حالت جامد به ترتیب ساخته شده‌اند. نتایج آنالیز ریتولد و الگوی پراش پرتو ایکس ساختار رومیوهدلرا گروه فضایی (R-3C) را برای تمام نمونه‌ها نشان می‌دهند. بررسی‌های کرنش در نمونه‌ها وایسه‌گی به اندازه‌ی ذرات را نشان می‌دهد. بررسی‌های ریخت‌شناسی سطح نشان داد که نمونه‌های با اندازه ذرات در میکرومتر به صورت شرکی یا بنام ریش، بررسی مغناطیسی نمونه‌ها، نشان داد که کیفیت‌های مغناطیسی نظر مغناطیسی اشباع، دمای قفل شدگی، دمای گذر با کاهش اندازه‌ی ذرات کاهش می‌یابد. این وایسه‌گی کاهش درجه‌ی نظم مغناطیسی در مواد را با کاهش اندازه ذرات نشان می‌دهد. همچنین برای نمونه‌های با اندازه‌ی ذرات 30 nm پوسته‌گی غیر یکنواخت در حدود 11 nm پراورد شد.

مراجع

[2] Sujoy R., Lgor D., Dossah D. E., "Size induced variation in structural and magnetic properties of double exchange La_{0.8}Sr_{0.4}MnO_{3+δ} nano-

[30] Dyakonov V., Slawska-Waniewska A., Piotrowski N., "Magnetic, resonance and transport properties of nanopowder of La$_{0.7}$Sr$_{0.3}$MnO$_3$