Mineral chemistry and thermobarometry of Kuh e-Dom granitoid, NE Ardestan
A. Kananian¹, J. Ahmadian², F. Sarjoughian¹

¹: School of Geology, University College of Science, University of Tehran, Iran
²: Department of Geology, University of Payam-e- Noor, Esfahan
Email: Kananian@khayam.ut.ac.ir

(Received: 28/6/2007, in revised form: 7/7/2007)

Abstract: Kuh e-Dom intrusion, located at the northeast of Ardestan, consists of granodiorite and diorite. The granodiorites have been intruded by various basic dikes. Plutonic rocks are mainly composed of plagioclase, biotite, amphibole, pyroxene, alkali-feldspar and quartz. Based on microprobe analysis, the biotite is classified as magnesiobiotites which typically occur at calc-alkaline orogenic igneous rocks. The amphibole belongs to calcic-amphibole group but its composition varies from magnesiohornblende to actinolite in granodiorite and from hornblende-actinolite to actinolite both in diorite and basic dikes. The plagioclase also shows variable composition from oligoclase to andesine in the granodiorite and from andesine to labradorite both in diorite and basic dikes. Based on the mineral chemistry data, the equilibrium temperature of the mineral crystallization is estimated at about 700°C, the pressure equilibrium occurred at ~1.5 Kb, which is consistent with a depth of 5.5 Km.

Key words: mineral chemistry, granodiorite, geothermometry, geobarometry, Kuh e-Dom.
شیمی برخی از کانی‌ها و ارزیابی دما و فشار در توده گرینتیودی کوه دم، شمال شرق اردستان

علي كنعانیان، جمشید احمدیان، فاطمه سراجیان

1- دانشکده زمین شناسی، برای دانشگاه تهران
2- دانشگاه بابل، تفریح تحقیق
Kananian@khayam.ut.ac.ir

(دریافت مقاله 1385/11/16، نسخه نهایی 1386/5/16)

چکیده: توده گرینتیودی کوه دم، واقع در شمال شرق اردستان، بیشتر از گرینتیودیت و کمی دریوت تشکیل شده است. بخش‌های گرینتیودیت این مجموعه به وسیله دایک‌های باری متعدد، قطع شدهاند. کایه‌های اصلی تشکیل دهنده سگنهای منطقه شامل یلیزیکالر، آلکان فلدسپار، کوارتز، بیوتیت، امفیبول و پیروکسندند. نتایج ریز برداری آنها نشان می‌دهد که بیوتیت‌های گرینتیودیت و دریوت از نوع منیزیم‌دار و متعلق به سری کالک گرینتیودیت، امفیبول‌های این مجموعه، کلسیک و ترکیب آنها از منیزیوم‌هربین هستند. اکتیلولیت‌های گرینتیودیت یا اکتیلولیت‌های این مجموعه، بیوتیت‌های باریک و غیریکننده از قبل به دایک‌های دایکی‌گالر، از آن‌هایی که محلی از پادشاه و دایک‌های دایبک‌گالر از اندیف‌های نوعی غیر‌دایکی‌گالری ایجاد شده، هستند. ترکیب اکتیلولیت‌ها در گرینتیودیت‌ها از الیزیکالر اکتیلولیت‌های دریوتی‌ها و دایبک‌گالر از آن‌هایی که محلی از پادشاه و دایک‌های دایک‌گالری ایجاد شده، هستند.

مطالعات زمین‌دان فشار و دما گرینتیودیت‌ها حاکی از این است که منابع فشار و دما هکام بر توده هندگام جایگزینی به دست در حدود 15 کیلوبار و 700 درجه سانتی‌گراد بوده است. این فشار با توجه به موانعی چگالی سگنهای پوسته، با عمق در حدود 5.5 کیلومتری هموگی دارد.

واژه‌های کلیدی: کاکی، گرینتیودیت، زمین شناسی، فشار و دما، فشار و دما، گرینتیودیت.

1- مقدمه
تنزیق توده، سگنهای فرآینده و ظهور آهک‌های کرتاسه به

 tersefzeh hadedeham e asdkan va horonfes tdbal shehade. talahe ber esdek hashehashe she Dahisheh bariz baya banu fowidhiyey magnet fisheh ra K-Ar. Torseb, mnn nquistesin shehede, az jonhal megiti tenni tihqiyate

 انجام شده در سطح منطقه. از میان منان منان شناسی و تولوزدانی شکست تکنوکسپورت در سال 1981 اشاره کرد. این تحقیقات به منظور شناسایی کاراکترهای پراکنده در اطراف کوه دم صورت گرفته، به شناسایی یکسان‌های معدنی
منجر شده است و نتایج آن در پس از تصحیح توسط کارشناسان سازمان زمین‌شناسی در سال 1984، تحت عنوان زمین‌شناسی ناحیه آذرک کرمانشاه است. شرکت پیچب کواش در سال 1379 به منظور ارزیابی کانی‌های طلا نواحی امید بخش را مورد بررسی قرار داده است. هم اکنون این شرکت تهیه و توزیع مواد معدنی ایران طرح یحیی طلایی کوه در دست‌آورده است. هعلایگی رعیه سازمان زمین‌شناسی در سال 1385 در پایان نامه کارشناسی ارشد خود به بررسی مناطق امیدبخش از نظر حجم‌سازی کانی‌های طلا و زنجان‌ساز طلای کوه‌های برخاسته است.

در این مقاله سعی شده است از طریق امعای نتایج مطالعات صحرایی، داده‌های سنجش‌کاری و نتایج بررسی‌های کانی‌ها به بررسی ارتباط زنده‌گردانی بین بخش‌های مختلف توده، خاک‌گاه ماه‌های ساختاری سندفا و شرایط فیزیکی چاه‌های توده (دما و فشار) برخاسته شود.

جدول 1: نتایج بررسی‌های پیوسته موجود در گروه‌های گیرنده‌ای و دوربین‌های

| شماره نمونه | حمل‌انزیم | حامل‌انزیم | هم‌نامه | طیف‌سنجی | Fe3+ | Fe2+ | کاتیون‌ها
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>38.2</td>
<td>46.2</td>
<td>55.8</td>
<td>66.7</td>
<td>78.2</td>
<td>89.6</td>
<td>98.4</td>
</tr>
<tr>
<td>#2</td>
<td>47.1</td>
<td>56.2</td>
<td>65.3</td>
<td>76.4</td>
<td>87.5</td>
<td>98.6</td>
<td>107.8</td>
</tr>
<tr>
<td>#3</td>
<td>56.3</td>
<td>65.4</td>
<td>76.5</td>
<td>87.6</td>
<td>98.7</td>
<td>108.8</td>
<td>119.9</td>
</tr>
</tbody>
</table>

2-روش مطالعه
مطالعات صحرایی و نمونه‌برداری از واحدهای مختلف سنگ شناسی کوه‌های نواحی امید بخش در طول سالهای 1384 تا 1385 آنجام شد. پس از همبستگی مناظر از نمونه‌های مختلف برای مطالعات ریزی‌بزرگشکنی انتخاب و در زاین‌دانه شرکت قرار گرفت. در این مطالعات ریزی‌بزرگ‌شکنی 15 کیلوولت، شدت جریان 15 نانومیتر و شار مشارکت 100 نانو میکرو درصد (10 ppm) در دانشگاه ناروتو منطقه کانی‌های بیرون و آمیقیپل استفاده از روش‌های بی‌شنیده در بیروپ (2) و لیک (3) آنجام شده است.
جدول 2: نتایج ریزپردازش آمپیول در گرانودوریت‌ها، دیوریت‌ها و دایک‌های پارک‌های

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>محل آمپیول</th>
<th>درصد</th>
<th>مولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum-Cat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کانی‌ها بر اساس 23 اکسیژن ماحاسبه شده است:

<table>
<thead>
<tr>
<th>کانی</th>
<th>درصد</th>
<th>مولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al2O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr2O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFe2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFe3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-Cat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تنها نرخ‌های آمپیول در گرانودوریت‌ها، دیوریت‌ها و دایک‌های پارک‌های

<table>
<thead>
<tr>
<th>مشخصات</th>
<th>درصد</th>
<th>مولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>dio1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dio2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dio3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dio4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dio5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gra1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gra2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gra3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gra4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gra5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr2O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFe2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFe3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-Cat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تنها نرخ‌های آمپیول در گرانودوریت‌ها، دیوریت‌ها و دایک‌های پارک‌های
<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>محل انت‌لِز</th>
<th>میانه</th>
<th>مانه</th>
<th>دما و فشار در توده...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>51,177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>55,795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3,544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>15,449</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>5,047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>3,371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>14,233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>11,376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>3,638</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>2,037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td>0,350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSi</td>
<td>7,322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tal</td>
<td>5,336</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFe₂</td>
<td>0,152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFë₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFë₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFe₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum-Cat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کاتیودن های ارسال ۲۴ آکسیژن محاسبه شده است.
جدول ۳
نتایج بیپراکارش پلاژیوکلارهای موجود در گراندوپریتا، دوریت‌ها و دایکه‌ای پارک.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>محل‌الگیر</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
<th>مرکز</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
<th>مرکز</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
</tr>
</thead>
<tbody>
<tr>
<td>So2</td>
<td>55.2%</td>
<td>55.7%</td>
<td>55.8%</td>
<td>55.7%</td>
<td>55.7%</td>
<td>55.7%</td>
<td>55.7%</td>
<td>55.7%</td>
<td>55.7%</td>
</tr>
<tr>
<td>TiO2</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>FeO</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>MgO</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>K2O</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>NiO</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
</tbody>
</table>

ادامه جدول ۳

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>محل‌الگیر</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
<th>مرکز</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
<th>مرکز</th>
<th>حاشیه‌ی</th>
<th>فاصله‌ی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Al</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Ti</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Fe</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Mg</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Ca</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Na</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>K</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Ab</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>An</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Or</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
<td>56.7%</td>
</tr>
</tbody>
</table>
شیمی برخی از کالی و ارزیابی دما و فشار در توده

جدول 2- نتایج ریزی‌پارش فلزپارهای نپاسی در گراندورپورت‌ها و دیورپورت‌ها.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>محل انیل</th>
<th>صفحه</th>
<th>چربی</th>
<th>حالت</th>
<th>گراندورپورت‌ها</th>
<th>دیورپورت‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>1183</td>
<td>1183</td>
<td>1185</td>
<td>1183</td>
<td>1177</td>
<td>117779</td>
<td>117779</td>
</tr>
<tr>
<td>382</td>
<td>392</td>
<td>397</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>489</td>
<td>489</td>
<td>490</td>
<td>491</td>
<td>492</td>
<td>492</td>
<td>492</td>
</tr>
<tr>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
<td>578</td>
</tr>
<tr>
<td>765</td>
<td>765</td>
<td>765</td>
<td>765</td>
<td>765</td>
<td>765</td>
<td>765</td>
</tr>
<tr>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
<td>852</td>
</tr>
<tr>
<td>915</td>
<td>915</td>
<td>916</td>
<td>916</td>
<td>916</td>
<td>916</td>
<td>916</td>
</tr>
<tr>
<td>989</td>
<td>989</td>
<td>989</td>
<td>989</td>
<td>989</td>
<td>989</td>
<td>989</td>
</tr>
<tr>
<td>885</td>
<td>885</td>
<td>885</td>
<td>885</td>
<td>885</td>
<td>885</td>
<td>885</td>
</tr>
</tbody>
</table>

پایه شواهد زیر به نظر می‌رسد واحد گراندورپورتی پس از جایگزینی دیورپورت‌ها تناسب شده‌اند:

1- انتقال کانی‌های گراندورپورت با نزدیک شدن به محل همبستگی با دیورپورت‌ها به تدریج کاهش می‌یابد که در واقع می‌توان آن را جنگلی احتمال سریع دستا و

2- دیورپورت‌ها در محل تناسی با گراندورپورت‌ها، دگرسان و

ایپیدوتی شده‌اند.

3- وجود آنالوت‌هایی از دیورپورت درون واحد گراندورپورتی و در نهایت وجود زین‌هایی از گراندورپورت درون دیورپورت می‌باشد. این انتقال کانی‌های گراندورپورتی جوانتر از بخش دیورپورتی است.

4- با بر این می‌توان گفت که حداکثر صد درصد از مجموعه جور گراندورپورتی و دیورپورتی از مجموعه نفوذی که در مطالعه داشته‌اند. فاصله نخست سنگ‌های حداقل تغییری در و در فاصله سنگ‌های اسیدی تر همچنین گراندورپورت‌ها جایگزین شده‌است.

3- زمین‌شناسی مجموعه نفوذی که در توده نفوذی که در حالت تغییرات ساختار در غرب زون ایران مرکزی قرار دارد. این توده دو منشأ به‌شماره و قیمت‌های پالیمرریژن سنگ‌های آهنی و محصول مجموعه سنگ‌های آنتفاسی انسین زیرین نفوذ کرده است. و سنگ‌های میزان مجاری خارجی این توده دست‌کننده مجاری و

کم و بشکه به فن‌فیزی و اسکاردن تنفسی شده‌اند.

از لحاظ سنگ‌شناسی پیش‌ترین پیش این توده از گراندورپورت‌ها صورتی نا کارگر نشکل شده است. این سنگ‌ها به همراه رنگ‌هایی که از موزونگرانتین و موزونت کورانتز در پیش‌های مرکزی توده حضور دارد. در حاشیه شالی و جنوب توده، برخی از سنگ‌های دیورپورت، کوارتز دیورپورت، موزونزورت و کوارتز موزونزورت‌های دیورپورت در

 Hashed text: "شیمی برخی از کالی و ارزیابی دما و فشار در توده..."
شکل ۱ نقشه زمین شناسی توده نفوذی کوه دم که بر پایه اطلاعات حاصل از گزارش تکنوکسپورت [۱] اندکی اصلاح شده است.

بلازیکلزا، ارتوماد، کوارتز، بوئنیت و هورنلند تشکیل شدند. در بلورهای کوارتز که بین ۱۰ تا ۳۰ درصد سنگ را تشکیل داده‌اند، پدیده‌های هم‌جودی خاموشی موجب حاشیه‌های مشخص و شکستگی‌های فراوان دیده می‌شود. ارتوکلزاها و فراوانی مداپل ۱۹ تا ۳۷ درصد، بیشتر مسک نیز نشان می‌دهند. از لاحق ترکیب کاتیون‌شناسی بیشتر از...

۴- سنگ‌شناسی توده ۴- گرانودوریت

یافت غالب در گرانودوریت‌ها، گرانودوریت‌های متوسط است ولی کاهی یافت‌های گرانودوریتی، بوئنیت‌کیسه‌ای و به ندرت پرنتی نیز نشان می‌دهند. از لاحق ترکیب کاتیون‌شناسی بیشتر از...
کارلسباد دارند و تا حدی سریسبی یکا کولونینجی شدهاند.

حضور کوارتن همراف به ازتکلیز در فضا در بین کاتیون های دیگر نشان دهنده بیشتر این کاتیون ها در محالل یکی یا تیتر مولکولی است

باته‌کسی از این نتایج نقش این اینکه این کاتیون ها در سایر کالای های آتربولزیکا در شرایط

هیپرولوسی، منحیت با فشار بخیر آبایین و عمق کم

جامینی نمود کلینونینجی است [41]. پلاژولیتزا به فراوانی

مدال ۲۵ تا ۶۴ درصد بیشترا مالک پلی‌ستنیک و گاه ساخت

منطقه‌ای شناسی می‌دهند. در برخی از دسته‌ها آرزوی می‌شود.

همدست یپرایکیکاپار تور گرفته و بنا به

انرایاکیکاپاره اما این است. در موارد دگرگونی پلاژولیتزا به

سیرسیت، کربنات، و سوسویریم تصادف می‌شود. درگری در

بخش مرکزی پلاژولیتزا از دست بیشتر برخورد

است. پلاژولیتزا به فراوانی ۳ تا ۱۹ درصد، بیشترین کالی مخفی

موجود در این سخت‌های است. این کاتیون می‌گذارد کلینونینجی

شده است. هورنانال ژنرال در نقد (۱۵ تا ۸۰ درصد) بین

مجموعه کلاسی حضور دارد و این درگری نسیه به

کلینون، اسفن، کلینون، و اکتشافه و تدابیری شده است.

کلاسی فرعی موجود در این مجموعه شامل زیرکن، اسفن،

اسفن و کلاسی کدر (مانیتیت و به ندرت ایلمنینی و بوریت) است.

به‌طور کلی بینگ به، سویریم در موضوع حضور زیاد.

2-4 دوتپ

بافت دیپولیتزا کارولار و پوئی کلینونی ات است. کلاسی های

موجود در این سخت‌های کلاسی به سازندگی پلاژولیتزا

هست و این تفاوت به میزان پلاژولیتزا (145 تا 96

درصد) افزایش و اسفن از آنها (75 تا 45 درصد).

بیشترا در مقابل ازتکلیز (10% تا 20 درصد)، کوارتن (0.25 تا 0.7 درصد)، بیشترا (5 تا 9 درصد) و زیگنک کمر است. شدید

دگرگونی در کاتیون، به ویژه سوسویریم و کربنات شدید در

پلاژولیتزا بیشترا است، کلینونبروسین با فراوانی (10 تا 2

درصد) در تعدادی از مقاطع دیده می‌شود که برخی از آنها

کاملاً آرالیتی شدهاند.

2-3 دایبیکه پازیک

بافت این سخت‌های پازیک و به ندرت دامن‌دوبسپریرایکاپاره است. از

لحاظ کاتیون شناسی بیشتر از فنسورپازیک را کلینونبروسین و

پلاژولیتزا تشکیل شدهاند. پلاژولیتزا مالک پلی ستینیک و
شکل ۲ طبقه‌بندی میکاها با استفاده از ترکیب شیمیایی آنها (الف) فورستر، [۵] ب) برده. [۶] مریح نشان دهنده حاشیه بیوتیت در گرانوپیروپیت‌ها، لوزی معرف مرکز آن و علامت به علاوه نقطه‌ای بین حاشیه و مرکز است. مثلت نماینده حاشیه بیوتیت در دیوپریت‌ها و دایره حاشیه آن را نشان می‌دهد.

شکل ۳ رده بندی انواع بیوتیت‌ها [۸] A-بیوتیتهای اولیه، B-بیوتیتهای دگرسان، و C-بیوتیتهای پس تبلور یافته (علامات مورد استفاده مشابه شکل ۲ است).
گرانیتونیدهای نوع I است. ترکیب آمفیبول در گرانیتونیدها از منیزیومورلت لنگ تا آکتینولیت و در دیوریت‌ها و دایک‌های باری در گستره‌های آکتینولیت تغییر می‌کند (شکل 5). تغییر ترکیب از منیزیومورلت لنگ در مرکز آمفیبول تا آکتینولیت در حاشیه آن، می‌تواند نشان دهنده تغییر شرایط فیزیکوکیمیایی باشد. در اخیر مراحل تبلور آن باشد [20].

نتایج آنالیز تعدادی از آمفیبول‌های موجود در گرانیتونیدها، دیوریت‌ها و دایک‌های پر کلسیک در جدول 3 درج شده‌اند. همه این آمفیبول‌ها با توجه به رده بندی لیک و همکاران [31] در گروه آمفیبول‌های کلسیک قرار می‌گیرند. بنابراین، بیش از ۱۹٪ از آمفیبول‌های کلسیک در سنگ‌های گرانیتونیده نشانه وابستگی این سنگ‌ها به
شکل 5 طبقه بندی امفیبول‌ها بر پایه ترکیب شیمیایی آنها [۳۷] مربع نشان‌دهنده حاشیه آمفیبول در گرانودیوریت‌ها، لزی معرف مرکز آن و بعلاوه نقاطیمیان مرکز و حاشیه است. دارای نمایندگی مرکز امفیبول در دیوریت‌ها و مثل حاشیه آن، و علامت ضردد ترکیب شیمیایی آمفیبول‌ها را در دایره‌های بزرگ نشان می‌دهد.

۵-۳- فلدسپار
در جدولهای ۴ و ۵ نتایج ریزبردارش تعدادی از پلاژیوكلازهای فلدسپارهای آلکان موجود در گرانودیوریت‌ها دیوریت‌ها و دایک‌های باریک به نمایش در آمدند. ترکیب پلاژیوكلاز گرانودیوریت‌ها در تقسیم بندی مثلثی آلیپت-ارتوکلاز-انورتیت [۳۱] در گستره الیگکلاز-آنرترین قرار می‌گیرد (شکل ۶). حاشیه این کانی با ترکیب الیگکلاز (۱۴-۲۹ درصد
(An) و
61

شیمی پریمی از کانی‌ها و ارزیابی دما و فشار در توده...

است. ترکیب پلاژیوکلاز در دایاهیال سه از آن‌های تا لابرادوریت (۴۷ درصد) در نواحی است. به طوری که

جایگاهی پلاژیوکلاز در آزمایش‌های برخوردار است (۷۲ درصد) نشان دهنده-

عمد برای فشار تا به نیروی توده اثراتی از آن رابطه می‌باشد.

اختلال ماجرا و یا تغییر فشار باید آب در هنگام تیور

پلاژیوکلازها باشد.

۶- ارزیابی عمق و فشار جایگزین قرنیل توده

امفیبولها، سیلیکات‌ها دو نکاتی هستند که ترکیب

شیمیایی و ساختار کانی‌شناختی آن‌ها از نظر شیمیایی

برخورد است. تنویع ساختاری و ترکیب شیمیایی

امفیبول موجب می‌شود که این کانی‌ها در گستره

شده، از این نواحی به یک سیال مانند دما و فشار می‌باشد.

امفیبول تغییر این در تحلیل‌های آزمایش‌های ساختاری،

مواد و مصرف و در شرایط مناسب از فشار

۵ بر طرف کمتر، مایع و یا به فصار است.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.

در این بخش، مایع و یا به فصار است.

میزان Si در امفیبول به یک تغییر طبیعی در توده

می‌باشد.
محاسبه شده است. از طرفی حین دمای نهایی مورد مطالعه بر اساس پارامتر سنگهای دگرگون پیرامون توده در حدود 700°C تعیین شده است (بخش 8). لذا به نظر می‌رسد که فشار حاکم بر توده هنگام جایگزینی در حدود 1.44 کیلو پرسه است. میانگین فشارهای به دست آمده از روش‌های مختلف با توجه به جداول میانگین سنگهای بوسته زمین با عمق تقریبی 5.5 کیلومتر همواری دارد.

\[P \pm 0.6 \text{Kb} = -3.01 + 4.76 \text{Al}_T - \left\{ \left(T (°\text{C}) - 675 \right) / 85 \right\} \times \left\{ 0.53 \text{Al}_T + 0.005294 \times (T° [°\text{C}] - 675) \right\} \]

در رابطه با بالا P فشار بر حسب کیلو پرسه T دمای تبلور آمفیبول، از تابع برابری مورد بر حسب درجه سانتی‌گراد و معرف مقدار آلومینیوم کل در آلفا آمفیبول است. این رابطه فقط در دماهای کمتر از 800°C معتبر است. زیرا در دماهای بیش از 800°C خارج از شرایط هسته‌نیک تجربی است. مجموعه کاتی شناسی مورد نیاز برای دما-فشارسنجی پایدار نخواهد ماند. با توجه به این که دمای انجماد ماکماهی گرافیتی بین 750 و 650 سانتی‌گراد متغیر است، بر اساس معادله بالا مقادیر فشار در دماهای 650، 750، 850 و 950°C تعیین شده است.

شکل 6 طبقه بندي فلدلسپارهای موجود در مجموعة نفوذی کوه دم (بیستم، شماره 1 اورتکلاژ، 2) اورتکلاژ، 3) آلیت، 4) الیکوکلاژ، 5) اندرزین، 6) اوزواتور، 7) بیستونیت و 8) انرورتین است. (الف) مربع نشان‌دهنده حاشیه فلدلسپار در گروندورتیت‌ها، لوزی معرف مرکز آن و خط افقی نشان دهنده نقطه‌ای بری مال (و حاشیه آن، ب) دایره میان‌شانه مرکز فلدلسپار در دوریت‌های و مثلح حاشیه آن، ج) صورت معرف حاشیه فلدلسپار، بعلاوه معرف مرکز آن و خط عمودی نقطه‌ای بری مرکز و حاشیه فلدلسپار در دایک باری را نشان می‌دهد.

\[\text{Fe/Fe+Mg} \times \text{Al}_T = 0.61 \text{Fe/Fe+Mg} \times \text{Al}_T \]

شکل 7 نمودار تغییرات Fe/Fe+Mg بر حسب Al(T) مشابه شکل 5 است.
7- تعیین دما
با توجه به حضور کانی‌های آمپیول و فلدسبار در سنگ‌های مورد مطالعه از روش‌های برای محاسبه دما توجه نمودی استفاده شده است.

7-1 دماسنجی در فلدسبار
چنان‌که شکل ۸ نشان می‌دهد، دما توجه نمودی با استفاده از نمودار سه تابع آلیت، آلیتیو، اتیوکلاز، با دمای در حدود ۵۵۰ تا ۶۰۰ درجه سانتی‌گراد از این دسته که با توجه به ترکیب سنگ‌نگه‌سازی توجه نمودی نظر می‌رسد که هن این‌جا کمتر از دما واقعی توریس سنگ‌نگه‌سازی منطقه‌ای باشد. احتمالاً پایین بودن محاسبه شده نشان از تحولات زیر نقطه انجماد ترکیب فلدسبارها در طول سرد شدن توده است. [۳۳].

7-2 دماسنجی از ترکیب هورنیلس و پلاژیوکلاز
گرچه هنوز ترددیدهایی در مورد روش دماسنجی پلاژیوکلاز- هورنیلس وجود ندارد ولی هنوز بکی از روش‌های متدول برای دماسنجی سنگ‌های آتیوکلاز که با توجه به ترکیب برآورد دادهی این شامل هورنیلس و پلاژیوکلاز به صورت هرمیت در کار محسوم می‌باشد، با این شکلی که حاوی کوارتز، پلاژیوکلاز با Na < ۰.۴ و آمپیول‌های با کد-Se در اشباع شناسی و مساحت‌های کانی‌های در دماهای بین ۱۱۰۰ تا ۶۵۰ درجه سانتی‌گراد محاسبه شده است. [۲۱]

T [± ۳۱۱ °K] = ۰.۶۷۷ P[kbar] - ۴۸.۹۸ + Y_{Ab} / - ۰.۰۴۲۹ - ۰.۰۰۸۳۱۴۴ Ln (Si / ۴) / (8 - Si) X_{Pl}^{S_{Ab}}

در این رابطه، T دما توجه نمودی بر حسب درجه کلوین، P بر حسب کیلوبار، Si تعداد کانی‌های سیلیس در فرمول سنگ‌نگه‌سازی آمپیول، X_{Pl}^{S_{Ab}} از روابط زیر به دست آمده است:

X_{si} > ۰.۵ → Y_{Ab} - ۰
X_{si} < ۰.۵ → Y_{Ab} = ۸.۰۶ + ۲۵.۵ (1 - X_{si}) [۲]

۱۱۰۰ T از روابط زیر به دست آمده است:

T = ۲۵.۳ P (Kb) + ۶۶۵.۴

برای این پایه انتقال تبلور کانی‌ها بین ۲۵۵ °C تا ۶۵۰ °C به دست آمده می‌باشد.

۱۱۰۰ T از روابط زیر به دست آمده است:

T = ۲۵.۳ P (Kb) + ۶۶۵.۴

برای این پایه انتقال تبلور کانی‌ها بین ۲۵۵ °C تا ۶۵۰ °C به دست آمده می‌باشد.
در گروه مجاورتی

چنانکه که اشاره شد، سنجش‌های میزان توده نفوذی در پوشه‌های آهنگری اتمسفری ساخته شده‌اند. هدایت درگوگنه پرامون توده، از گسترش زیادی برخوردار نیست و سنجش‌های انسان‌شناسی میزان توده چندان تحت تاثیر درگوگنه قرار نگرفته‌اند. شیسته‌های درگوگنه در گروه‌هایی از کالایهای کوارتز، بیوتیت، سرپیس و آلبیت بوده و در این‌ها اثری از کریستالیت که نشانه رخ‌هاره هورنبلد- هورنفلس است، دیده می‌شود. سنجش‌های آهنگی در محل ناسا به توده و در شدن‌برنده حالت درگوگنه مجاورتی، حاوی مجموعه‌ای از کالای گهار (اختلال گروسوالر) پستیسیت، زونتیتیز و کوارتزیتیز از جمله کالای آبی است که در طبیعت پایین درگوگنه، در گستره دمایی بین ۳۵۰ تا ۴۰۰ °C تشکیل می‌شود. گروسوالر نیز فعالیت‌های کمتری این در گستره دمایی بین ۴۰۰ تا ۴۵۰ °C و در توده می‌کند. این توده در گستره دمایی بین ۳۵۰ تا ۴۰۰ °C پایدار است. این دو کانی با آفتی‌بی‌ها دارند، در محدوده کوارتز و سیال حاوی کمی کربنات به شدت تزنیتیز و انسان‌شناسی تبدیل می‌شوند [۳۴] بنا بر یکی از پژوهش‌ها، زونتیتیز، کوارتزیتیز، پستیسیت و کوارتز در سنجش‌های درگوگنه کریستال‌ها هم و دمای حاضر وسایل درک نمی‌تواند به سنجش‌های درگوگنه در مجموعه‌ای از کالای گهار (اختلال گروسوالر) پستیسیت، زونتیتیز و کوارتزیتیز از جمله کالای آبی است که در طبیعت پایین درگوگنه، در گستره دمایی بین ۳۵۰ تا ۴۰۰ °C تشکیل می‌شود. گروسوالر نیز فعالیت‌های کمتری این در گستره دمایی بین ۴۰۰ تا ۴۵۰ °C و در توده می‌کند. این دو کانی با آفتی‌بی‌ها دارند، در محدوده کوارتز و سیال حاوی کمی کربنات به شدت تزنیتیز و انسان‌شناسی تبدیل می‌شوند [۳۴] بنا بر یکی از پژوهش‌ها، زونتیتیز، کوارتزیتیز، پستیسیت و کوارتز در سنجش‌های درگوگنه کریستال‌ها هم و دمای حاضر وسایل درک نمی‌تواند به سنجش‌های درگوگنه در مجموعه‌ای از کالای گهار (اختلال گروسوالر) پستیسیت، زونتیتیز و کوارتزیتیز از جمله کالای آبی است که در طبیعت پایین درگوگنه، در گستره دمایی بین ۳۵۰ تا ۴۰۰ °C تشکیل می‌شود. گروسوالر نیز فعالیت‌های کمتری این در گستره دمایی بین ۴۰۰ تا ۴۵۰ °C و در توده می‌کند. این دو کانی با آفتی‌بی‌ها دارند، در محدوده کوارتز و سیال حاوی کمی کربنات به شدت تزنیتیز و انسان‌شناسی تبدیل می‌شوند [۳۴] بنا بر یکی از پژوهش‌ها، زونتیتیز، کوارتزیتیز، پستیسیت و کوارتز در سنجش‌های درگوگنه کریستال‌ها هم و دمای حاضر وسایل درک نمی‌تواند به سنجش‌های درگوگنه در مجموعه‌ای از کالای گهار (اختلال گروسوالر) پستیسیت، زونتیتیز و کوارتزیتیز از جمله کالای آبی است که در طبیعت پایین درگوگنه، در گستره دمایی بین ۳۵۰ تا ۴۰۰ °C تشکیل می‌شود. گروسوالر نیز فعالیت‌های کمتری این در گستره دمایی بین ۴۰۰ تا ۴۵۰ °C و در توده می‌کند. این دو کانی با آفتی‌بی‌ها دارند، در محدوده کوارتز و سیال حاوی کمی کربنات به شدت تزنیتیز و انسان‌شناسی تبدیل می‌شوند [۳۴] بنا بر یکی از پژوهش‌ها، زونتیتیز، کوارتزیتیز، پستیسیت و کوارتز در سنجش‌های درگوگنه کریستال‌ها هم و دمای حاضر وسایل درک نمی‌تواند به سنجش‌های درگوگنه در مجموعه‌
[18] Clemens J.D., Wall V. J., "Origin and evolution of a peraluminous silicic ignimbrite
Long Valley Caldera (California) volcanic rocks", Geology 17 (1989) 837-841.