Study on the structural changes occurred during the acid activation of Gharenaz bentonite as bleaching earth

M. Ghobadi, A. A. Yuzbashi, M. M. Kashani Motlagh

1- Energy Research Center & Materia, Tehran
2- Chemistry Department, Iran University of Science & Technology
Email: ghobadimitra@yahoo.com

Abstract: Gharenaz bentonite contains montmorillonite as the major mineral constituent and Ca as the major exchangeable cation. In the present study, the structural changes occurred in the course of acid activation of this bentonite was investigated by chemical analysis using ICP-AES and phase analysis using XRD methods. Chemical analysis showed that most of the exchangeable cations i.e. K⁺, Na⁺ and Ca²⁺, can be dissolved at low acid concentration whereas the dissolution of the octahedral layer cations, i.e. Mg²⁺, Fe²⁺ and Al³⁺, depends on the acid concentration. The acid treatment experiments on Gharenaz bentonite by sulfuric acid showed that removal of octahedral cations increases as the acid concentration raises up to 3 normal after which, it remains almost constant. However a further increase in the dissolution of these cations was observed at the acid concentrations more than 5 normal. XRD analysis of the activated samples indicated, i) the elimination of calcite mineral even at low acid concentration. ii) the formation of calcium sulfate (gypsum) and iii) decrease in the intensity of (001) peak of montmorillonite during the activation process, due to the partial destruction of the octahedral layers. In order to evaluate the optimum structural changes, the activated samples was used in bleaching of an edible oil. The results showed that the bentonite activated at 3 normal is most efficient in the bleaching process.

Keywords: bentonite, montmorillonite, acid activation, structural changes.
بررسی تغییرات ساختاری بنتونیت قره ناز در اثر فعال سازی اسیدی در جهت تولید خاک رنگر

میترا فردی، امیر علی یوزباشی، مهدي کاشانی مطلق

1- دانشگاه علم و صنعت ایران، تهران
2- دانشگاه علم و صنعت ایران، تهران
3- پست الکترونیکی: ghobadimitra@yahoo.com

چکیده: بنتونیت قره ناز استان زنجان حاوی مونت مورمونیت به عنوان اصلی ترین کالی و کلسیم به عنوان اصلی ترین کاتیون تغییر -Table:<ref>
<table>
<thead>
<tr>
<th>ICP-AES</th>
<th>Na<sup>+</sup></th>
<th>Mg<sup>2+</sup></th>
<th>Ca<sup>2+</sup></th>
<th>Al<sup>3+</sup></th>
<th>Fe<sup>3+</sup></th>
<th>K<sup>+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>23.4</td>
<td>27.6</td>
<td>11.8</td>
<td>14.9</td>
<td>7.6</td>
<td>6.2</td>
</tr>
<tr>
<td>(دریافت مقاله: ۱۳۹۲/۰۷/۰۳، نصح نهایی: ۱۳۹۲/۰۸/۲۳)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

پذیر این کار بر روی تغییرات ساختاری بنتونیت در اثر فعال سای اسیدی با آنانی شیمیایی Ca²⁺, K⁺, Na⁺, Mg²⁺, Al³⁺, Fe³⁺, Fe²⁺, و آنانی بین قهوه‌ای XRD قرار گرفته است. آنانی در نخستین روز از کاتیون‌های Ca²⁺ به عنوان اساس و است. در غلظت‌های ۳ تا ۱۵ نرمال، این تغییرات نمونه‌های موربونینیت، هست تا و مورد نظر. در نهایت نشان داد که: فاز کلسیم در سولفات‌های کلسیم (ریس) ایجاد شده است (۲۳ کاهش نسبی نیز در شدت قله (۲۰۰۱) مربوط به فاز مونت موربونینیت در اثر فعال سای اسیدی که ناشی از انحلال تدریجی کاتیون‌های لایه هست و تخریب جزئی از است مشاهده شد. در نهایت دست آورده تغییرات ساختاری بهبود، نمونه‌های موربونینیت شده در رنگری روغن خوراکی استفاده شدند. نتایج نشان داد که نمونه فعال شده در ۳ نرمال برای خاک رنگری مناسب‌ترین است.

واژه‌های کلیدی: بنتونیت، مونت موربونینیت، فعال سازی اسیدی، تغییرات ساختاری

مقدمه

بنتونیت جزو کالی‌های رسی است که به خاطر داشتن خواص ویژه کاربردهای متعددی در صنایع دارد و یژگی این رساه به دلیل ساختار کاتیونی تشکیل دهنده آن‌ها به عنوان موربونینیت است. واحد ساختاری این کاتیون‌های لایه‌ای از یک لایه هست و جهت تولید هست و بی‌سفزی تشکیل شده است (۱۲). در لایه‌های هست همگون پونه‌ای با طرفی طی مونت Fe³⁺ می‌شود. این

جانشینی منجر به عدم توامه الکتریکی می‌شود که در چند موارد بار منفی با جذب کاتیون‌های خارجی ماده

K⁺, Na⁺
توجه به مطالب یاد شده، تغییرات ساختاری ایجاد شده در اثر فعال سازی اسیدی بنتونیت قره ناز در اثر فعال سازی...

جانشین بیونهای تعویض یافته شده و بخشی از کاتیون‌های لاشه و جهت نیز جهت می‌شوند. شکل گیری این تغییرات منجر به ایجاد ساختاری منظم و سطح ویژه بسیار بالا و در نهایت قابلیت جذب بیشتر رس می‌شود [۳].

در عمل فعال سازی معمولاً از اسیدهای سولفوریک یا کلریدرسی استفاده می‌شوند. به منظور افزایش بهره‌های فراوانی‌های فعال سازی بیشتر در دماهای بالا مورد گیرند. با توجه به اینکه هر یک از بنتونیت‌ها فشار متناوب را در ارتباط با فعال سازی نشان می‌دهند، بنابراین لازم است تنها مطالعه عوامل مؤثر، شرایط بهینه برای رسیدن به پتینر خواص جذب آنها با توجه به مسائل اقتصادی فراهم آید [۴]. مطالعات گسترده‌ای برای فعال سازی بنتونیت‌ها شناخت عوامل مؤثر، و ارتباط آنها با ساختار فیزیکی و شیمیایی بنتونیت فعال سازی انجام شده است. در بیشتر موارد، مربوط به فعال سازی بنتونیت، عملیات شیمیایی انجام شده با محیط‌های اسیدی فلزهای مختلف، منجر به بهبود ساختار تخلخل و توزیع اندازه آنها و نیز افزایش قابل توجه سطح ویژه و در نهایت افزایش کنگاش که بنتونیت مورد مطالعه شده است، بهینه می‌شاند. بهبود فلزهای اسید مورد حساب می‌شود. منجر به ویژه‌بر در این فعال سازی در مورد همه بنتونیت‌ها از راه‌کشیدن یک بسیار مفید بیشتر به صورت ساختاری بنتونیت به ویژه فاز اصلی آن عمل می‌شود. مولکول‌های است. همچنین نوع کاربرد بنتونیت فعال شده و ناخالصی‌های همراه کاهی و مقدار آنها نیز از عوامل دیگر در تعیین شرایط بهینه فعال سازی است [۴].

<table>
<thead>
<tr>
<th>جدول ۱: ترکیب شیمیایی بنتونیت قره ناز</th>
<th>ترکیب شیمیایی</th>
<th>درصد وزنتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>68.93</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.14</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>5.89</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3.54</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>SO₃</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>L.O.I</td>
<td>15.04</td>
<td></td>
</tr>
</tbody>
</table>
شکل ۱: الگوی برآش برتو ایکس نمونه بنتونیت مورد مطالعه و فازهای شناسایی شده: Cr, کرومیت، C, مونتمورولینت، M, مسک، Mo, مسک، کلیپیت، کلیپیت، A, اپتیت.

شکل ۲: الگوی برآش برتو ایکس نمونه گرما داده شده، نمونه اصلی، نمونه‌ای که تحت تأثیر اتانول گلیکول قرار گرفته است.

از کل ۲۰۰ گذراییده و دوزش شد. عملیات فعل‌سازی استیمپلی با نمایش نمونه با محلول‌های اسید سولفوریک، با غلظت مورد نظر، انجام شد. این محلول به نسبت مابین به جامد (V/W) و در مدت ۲ ساعت در دمای حدود ۹۰ درجه سانتی‌گراد سپس محلول مورد دوم فرمایی و روش مایع مانده به آب متقاطع شستشو داده شد. محلول به دست آمده برای تعیین در کلیه آزمایش‌های اندازه‌گیری با آب مقطر و مواد شیمیایی با خلوص آزمایش‌گاهی استفاده شد. در آزمایش‌های رگرگی، از روان خام سویا، به کلنگ‌های دسته دارد در کارخانه روان نباتی ناب برای رگرگی تهیه می‌شود استفاده شد.

نمونه گرما داده نمونه تابی در آب مقطر قرار گرفته و به مدت ۴۰ ساعت به دوش زده شد تا به صورت تعیق درآید، سپس
محاسبه شد.

جدول 2: شرایط آزمایش در 18 گرمی روتنیتی.

<table>
<thead>
<tr>
<th>شرایط پهنه</th>
<th>دور در دقیقه</th>
<th>دمای حمام</th>
<th>مقدار عدید</th>
</tr>
</thead>
<tbody>
<tr>
<td>15(min)</td>
<td>90</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

شکل 2: دارد تغییر در وضعیت 18 گرمی روتنیتی در نقاط مختلف باعث می‌شود.
طرح ۲ درصد اکسیدهای موجود در نمونه‌های خام و فعال شده

<table>
<thead>
<tr>
<th>غلظت‌سنجی (دی‌هگاز‌های)</th>
<th>نمونه خام</th>
<th>فعال شده</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>1.81</td>
<td>2.65</td>
</tr>
<tr>
<td>MgO</td>
<td>0.69</td>
<td>1.24</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.96</td>
<td>1.35</td>
</tr>
<tr>
<td>CaO</td>
<td>0.56</td>
<td>1.71</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.55</td>
<td>0.30</td>
</tr>
<tr>
<td>K2O</td>
<td>0.22</td>
<td>0.40</td>
</tr>
</tbody>
</table>

با توجه به جدول ۲ مشاهده می‌شود، درصد اکسیدهای سودم، تیتانیم، رنگ‌برنگ و کلسیم بسیار بالا است. این امر منجر به افزایش مقدار اکسید است که به‌طور کلی باعث افزایش مقدار اکسید می‌شود. به‌طور کلی نتایج نشان دهنده وجود ۳ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۲ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۱ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۲ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۱ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۲ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۱ خلاصه افزایش مقدار اکسید در موارد مختلف است. ۲ خلاصه افزایش مقدار اکسید در موارد مختلف است.

[10] اطلاعات آزمایشگاه کنتل کیفیت، شرکت کشت و توسعه دانه‌های روزی تهران.