Geological - mineralogical characteristics and trace-elements geochemistry
in Aghadjari bauxite deposit, south of Shahindezh, NW of Iran

A. Abedini1, A.A. Calagari1,2, B. Hadjalilu3

1- Geology Department, Faculty of Natural Sciences, Tabriz University, Tabriz 51664.
2- Research Institute for Fundamental Sciences (RIFS), Tabriz University, Tabriz 51664
3- Geology Department, Payamnour University, Tabriz
E-mail: abedini2020@yahoo.com

(Received: 8/9/2007, in revised form: 5/5/2008)

Abstract: Aghadjari bauxite deposit is located in ~15km south of Shahindezh, West-Azarbaidjan province. This deposit was developed as stratiform lenses along the contact of Rutheh and Elik carbonates formations. Bauxitization processes led to the formation of boehmite, diaspor, kaolinite, pyrophyllite, illite, hematite, goethite, anatase, rutile, and quartz. Ferrugenization and deferrugenization mechanisms are two important factors controlling distribution of elements in this deposit. Mafic igneous rocks are the potential protolith. Obtained data show that elements such as Al, Ti, Fe, Zr, Hf, REE, and Nb moved down from the upper horizons to the lower parts of residual system by organic complexes during kaolinitization processes. The carbonate bedrocks played dual roles in distribution of elements in this deposit. These rocks neutralized the acidic weathering solutions causing an increase in deposition of iron oxides and hydroxides which in turn due to their adsorption capacity caused considerable concentration of Cr, Co, and LREE in lower parts of the bauxite horizon. On the other hand, the carbonates by forming stable ionic complexes with HREEs caused these elements to drain out of the residual system.

Keywords: Bauxite, Immobile elements, Lateritization, Adsorption, Aghadjari, Shahindezh.
ویژگی‌های زمین‌شناسی-کانی‌شناسی و زنوشی‌ریز عناصر کمیاب در نهضت بوکستیت آگاجی. جنوب شاهین‌دژ، شمالغرب ایران

علي عابدینی¹، علي اصغر کلاگری²، پزاز حاج علیلو³

¹- گروه زمین‌شناسی، دانشگاه علوم طبیعی، دانشگاه تبریز، کد پستی ۱۵۳۷۳۳۲۵۴۲
²- موسسه تحقیقاتی علوم پایه، دانشگاه تبریز، کد پستی ۱۵۳۷۳۳۲۵۴۲
³- گروه زمین‌شناسی، دانشگاه پایتخت تبریز

E-mail: abedini2020@yahoo.com

چکیده: نهضت بوکستیت آگاجی در ۱۵ کیلومتری جنوب شاهین‌دژ، استان آذربایجان غربی واقع شده است. این نهضت به صورت عدسی‌های چینه‌سن در مرز بین ساژنده‌های کربنات روت و الیکا گسترده بافت است. فاوندیشن بوکستیت شدن منجر به تشکیل کانی‌های بوکستیت، دیاسفورت، کالوژنیت، بیروفیلیت، آلبیت، هماتیت، گوگنیت، آناسیت، روتریل و کوارتز در این نهضت شده‌اند. ساز و کارهای آهن‌زایی و آهن‌زداهنی، در فاکتور مهم توزیع عناصر در این نهضت هستند. سنگ‌های آدنین مافیک پروتوپتی نهضت‌اترین می‌باشند. از افه‌های بالایی به بخش‌های پایینی سیستم رایه‌ها به‌صورت کم‌پیکرهای آلی می‌تواند کانی‌شناسی شدن منطقه‌ای بوده‌اند. با توجه به توزیع عناصر در این نهضت ابتدایی، این نهضت با خاکی سازی آکنده‌های فوتوپتیک و دی‌نژه‌دانه‌های در بخش‌های بالایی این بوکسمیت شده – LREE، Co و Cr از طرف دیگر کربنات‌ها با تشکیل کم‌پیکرهای پیوند پایدار با HREE باعث زیستک‌ای این عناصر از سیستم بازماندنی شده‌اند.

واژه‌های کلیدی: بوکستیت، عناصر بی حرکت، لاکتون، جنوب، آگاجی، شاهین‌دژ

منطقه آگاجی در ۱۵ کیلومتری جنوب شهرستان شاهین‌دژ، به مختصات ۵۴° ۳۸، ٢۸، ٤٠ طول شرقی و ٣۵° ۳۷، ٢۷ عرض شمالی در جنوب استان آذربایجان غربی واقع شده است (شکل ۱). مسیر بین ساژنده‌های کربنات روت و الیکا در این منطقه بواسطة جهور افقهی از عدیسی‌های بوکستیت مشخص می‌شود. بررسی‌های زمین‌شناسی ناحیه این منطقه در قالب تهیه نقشه‌های زمین‌شناسی ۱:۱۰۰۰۰۰۰ و چهارگوش شاهین‌دژ و ۱:۲۵۰۰۰۰۰ نشان داد:
شكل ۱ نقشه زمین‌شناسی منطقه آغاجری و موقعیت نهشت بوکسیتی پرم-تریاس در آن.

۲- روش مطالعه
کارهای صحرایی شامل نقشه‌سازی زمین‌شناخت در آن با فرستادن گروه مکانیک در عرصه پژوهش در شهرهای سال ۱۳۸۵ صورت گرفته است (شکل ۲). پس از بررسی‌های زمین‌شناختی، ۶ نمونه از کانستانتیوم‌های پرم-تریاس شده از عرض نپرو انتخاب و برای تعیین نوع و متقدمی نمونه‌گیری کمی

کانتینه سازنده و اهداف زمین‌شناسی به روش فلزیکی (XRD) در ساعتان، زمین‌شناسی و افتتاحکننده مقدماتی فلزیکی (XRF) برای این مطالعات در نمونه‌گیری، برای تعیین مقادیر انواع اصلی، فرعی و جزئی از

سور شرکت کانسارن بینالود (جدول ۳) به نمونه‌های بوکسیتی سلی در نورتو نیز (جدول ۳) برای تعیین مقادیر

عناصر نادر خاکی در بخش مینیاتوری ساعتان انرژی به کار برده شدند.
مشاهده می‌شود (شکل ۲۳)، حضور مواد آلی می‌باشد و بودن سطح آب‌های ژیرزیمینی و تشکیل نهشته در یک محیط مردابی است، لیمونیتی شدن از ویژگی‌های بارز بروز بی‌سیطه‌ای چندرنگ نهشته است. می‌توان منشور شرکت واحدهای یک روند افزایشی را نشان می‌دهد.

![شکل ۲۳](image)

شکل ۲۳ سطح چینه شناسی در عرض پروفیل مورد مطالعه که در آن واحدهای بی‌سیطه آفتابی و محل نمونه‌های آن‌الیز شده مشخص شده است.

جدول ۱ نوع و مقایسه نیمه کمی کانسپت تشکیل‌دهنده واحدهای بی‌سیطه آفتابی

<table>
<thead>
<tr>
<th>Unit Name</th>
<th>CBB</th>
<th>BRB</th>
<th>MCB</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No</td>
<td>R-1</td>
<td>R-3</td>
<td>R-5</td>
<td>R-6</td>
</tr>
<tr>
<td>Mineral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boehmite</td>
<td>۱۶</td>
<td>۲۱</td>
<td>۲۶</td>
<td>۹</td>
</tr>
<tr>
<td>Diaspore</td>
<td>۱۳</td>
<td>۲۵</td>
<td>۴۸</td>
<td>۲۱</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>۹</td>
<td>۱۶</td>
<td>۴۸</td>
<td>۹</td>
</tr>
<tr>
<td>Pyrophyllite</td>
<td>۱۰</td>
<td>۱۱</td>
<td>۱۲</td>
<td>۱۱</td>
</tr>
<tr>
<td>Anatase</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Rutile</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۶</td>
</tr>
<tr>
<td>Hematite</td>
<td>۴۰</td>
<td>۳۱</td>
<td>۳۰</td>
<td>۴</td>
</tr>
<tr>
<td>Goethite</td>
<td>۱۱</td>
<td>۱۲</td>
<td>۱۰</td>
<td>۷</td>
</tr>
<tr>
<td>Illite</td>
<td></td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td>۵</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج آنالیز شیمیایی نمونه های بکسیت آغاجی به روش XRF

<table>
<thead>
<tr>
<th>Name of unit</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Tb</th>
<th>Ho</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>ΣREE</th>
<th>ΣLREE</th>
<th>ΣHREE</th>
<th>Eu/Eu*</th>
<th>Ce/Ce*</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>25</td>
<td>18</td>
<td>6.10</td>
<td>2.10</td>
<td>0.17</td>
<td>0.41</td>
<td>0.21</td>
<td>2.10</td>
<td>0.91</td>
<td>0.13</td>
<td>0.72</td>
<td>8.09</td>
<td>79.80</td>
<td>13.12</td>
<td>0.43</td>
</tr>
<tr>
<td>MCB</td>
<td>43</td>
<td>15</td>
<td>4.5</td>
<td>3.24</td>
<td>0.18</td>
<td>0.34</td>
<td>0.21</td>
<td>3.41</td>
<td>1.29</td>
<td>0.23</td>
<td>0.31</td>
<td>1.42</td>
<td>10.22</td>
<td>21.51</td>
<td>0.85</td>
</tr>
<tr>
<td>BRB</td>
<td>51</td>
<td>45</td>
<td>75.2</td>
<td>3.10</td>
<td>0.01</td>
<td>0.37</td>
<td>0.21</td>
<td>5.10</td>
<td>1.60</td>
<td>0.23</td>
<td>0.43</td>
<td>1.27</td>
<td>13.25</td>
<td>43.08</td>
<td>0.85</td>
</tr>
<tr>
<td>CBB</td>
<td>73</td>
<td>49</td>
<td>2.12</td>
<td>3.45</td>
<td>0.13</td>
<td>0.35</td>
<td>0.21</td>
<td>5.10</td>
<td>0.01</td>
<td>0.23</td>
<td>0.43</td>
<td>12.72</td>
<td>33.49</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Diabase</td>
<td>44</td>
<td>54</td>
<td>8.32</td>
<td>0.13</td>
<td>0.35</td>
<td>0.21</td>
<td>5.10</td>
<td>0.01</td>
<td>0.23</td>
<td>0.43</td>
<td>12.72</td>
<td>33.49</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Eu/Eu}^* = \frac{(\text{Eu}_{\text{bauxite}}/\text{Eu}_{\text{UCC}})}{\sqrt{(\text{Sm}_{\text{bauxite}}/\text{Sm}_{\text{UCC}}) \times [0.66(\text{Th}_{\text{bauxite}}/\text{Th}_{\text{UCC}}) + 0.33(\text{Sm}_{\text{bauxite}}/\text{Sm}_{\text{UCC}})]}}
\]

\[
\text{Ce/Ce}^* = \frac{(2(\text{Ce}_{\text{bauxite}}/\text{Ce}_{\text{UCC}})\times(\text{La}_{\text{bauxite}}/\text{La}_{\text{UCC}} + (\text{Nd}_{\text{bauxite}}/\text{Nd}_{\text{UCC}}))}{\text{REE}}
\]
شکل ۳: تفاویل صحرایی از بوزه‌های صحرایی نهشت به پوکسیت آغازی (این) بافت کاتاکلاستیک در واحده کاتولون و (ب) چین خوردرگی و آثار آن موارد از پیش‌آگاه زغال سنگی در واحده کاتولون.

۴- کاتیشناسی

با توجه به بررسی پیشرفته که معمولاً در دماهای بالایی ۳۰۰°C در شرایط گردوگانی و دگرگونی نشکل می‌شود [۸] در این نهشت احتمالاً در فشار و دما سطحی در اثر عملکرد نیروهای زمین ساختی و دگرگونی‌های ساختاری از کاتولونیت حاصل شده است. سپس اثر این نهشت و تبدیل احتمالاً به وسیله آب‌های زیرزمینی تامین شده است [۱۰].

این آلیاژ از حضور غلظت‌های بالین قلبی‌ها و یک کاتی‌بایپار با ساختار دماهای سطحی است [۸]. با توجه به عدم عملکرد قریندهای دگرگونی روی این نهشت، روند احتمالاً در اثر نیروهای روی محیط از ناحیه دارای شکل زمین‌ساختی و احتمالاً دیوارتیک حاصل شده است [۸]. نتایج نیمه‌کمی آلیاژ‌های XRD کاتولونیت نشان می‌دهد که جدایی بسیار چشمگیری بین کاتی‌های رسی و آهودی در طی تکامل و گسترش واحدهای نهشتی صورت گرفته است (شکل ۴)، این جدایی احتمالاً به واسطه ناحیه ایمن این آلیاژ در شرایط نسبتاً ایمنا و نه شنیدن کاتی‌های رسی از آسید سلیسیسمیک از آب‌های رخ داده‌است [۸].

پس از این استفاده از نمودار سه متغیره کاتی‌بایپار (لومینیوم و یوتینیوم، رس و آهود) (شکل ۵) نشان می‌دهد که واحد کاتولون از نظر درجه تکامل کاتی‌بایپار به مرحله نشکل رخ‌های رس پوکسیتی و حاوی‌بودن پنجم تعداد روز و سرخ اجرایی مرسوم تکامل رخ‌های رس پوکسیتی و واحد پوکسیت به ساختار رخ‌های کاتین‌کلینک بین پوکسیتی رسته‌دایان.
شکل 4- تغییرات مقداری نیمه کمی کاتایپیاهی احتمال در برای کاتی‌های رسپ در پروتئین مورد مطالعه.

شکل 5- موقعیت نمونه‌های بوکسیت آغجرا در نمودار سه‌بعدی کاتی‌های آلوسیمیوم و نیتناهیم‌دار-کاتی‌های رسپ-کاتی‌های اهن‌دار [8]

تعین بوتولوتیپ نهشته با توجه به تغییرات شدت عناصر اصلی و جزئی (شامل عناصر نادر خاکی) (جدول 2 و 3) طی فرایندهای هوازدگی مشابه به نظر می‌رسد. لذا از عناصر که در طی تغییر نهشته کمترین تحرک را داشتند، برای تعیین بوتولوتیپ استفاده شده است. بررسی‌ها نشان داد که طی فرایندهای هوازدگی تغییرات نابهنگاری Eu است [11] نتایج حاصله از محاسبات نابهنگاری در Eu واحدهای نهشته آغجرا (جدول 3) رابطه می‌دهد تغییرات نابهنگاری Eu در این نهشته‌هایی در حدود 60% بوده است. همچنین بررسی‌های انجام شده نشان می‌دهند که عناصری مانند Hf, Ti, Zr, Al دارای بیشترین تناقض برای نهشته‌های پرتوپیته‌ها و شناخت فرایندهای هوازدگی هستند [12, 13]. ترسیم نسبت‌های عناصر با شده هرگاه با نابهنگاری برای عناصر نادر و ناپاییم‌دار در نمودار سه‌بعدی کاتی‌های رسپ (UCC) ترکیب شیمیایی سنگ‌های پس‌فوقآلی بوسته قاره‌ای Zr/TiO2 نشان می‌دهند که در بررسی نسبتهای...
شکل ۶ تغییرات نسبتهای (a) Na/Nax، (d) ناهنجاری Eu و (d) ناهنجاری (La/Yb)_N (b) LREE/HREE (c) Ce در عرض پروفیل مورد مطالعه. حرف نویسی بالا نشانه شدن عنصر مربوط به ترکیب کندریت [۲۴] را تاشان می‌دهد.
پروتوتیپ

الگوی توزیع REE بهنگار شده به کندرو و

برای نمونه، شکل 7 نمودارهای تغییرات آنالیز می‌تواند مورد استفاده قرار گیرد.

شکل 7 نمودارهای تغییرات آنالیز می‌تواند مورد استفاده قرار گیرد.

$$Fe_2O_3 (a)$$ و $$Al_2O_3 (b)$$ و $$SiO_2 (c)$$ در برای $$Ce$$ در برای $$Al_2O_3 (b)$$ و $$SiO_2 (c)$$ در برای $$Ce$$ در برای $$Al_2O_3 (b)$$ و $$SiO_2 (c)$$ در برای $$Ce$$.
نابهنجاری Ce در واحدهای بورکسیتی نشان می‌دهد که در واحد پایین‌ترین نشان‌های نسبت به سنگ ماده دیقاولی به سبب نشان‌های Ce به سبب توجه به نیروهای توزیع عناصر اصلی (Fe, Al) (شکل ۸) عامل اصلی این تغییرات احتمالاً تغییر شرایط زئنوشیمیاپای از کاتولیسی شدن به لترینی شدن سطح برای سایر این نشانه‌ها است.

اختلاف در توزیع REE از طریق هوازدگی ممکن است سبب جداگانه این در نیروهای هوازدگی شده باشد. در کل توزیع REE در مقایسه با HREE ممکن است باعث ایجاد کوهای مهم تیپ شدگی HREE شده و اختلاف توزیع HREE REE Ce از طریق Ce در شکل گری برای هوازدگی در هوازدگی باشد [۲۲]. می‌تواند باشد [۲۵].

شکل ۸ موقعیت نمونه‌های نشان‌های بورکسیتی آگاجی در نمودارهای متغیره (۱۵) برای تغییر نوی فرآیندهای هوازدگی.

شکل ۹ گوی توزیع REE در واحدهای نشان‌های آگاجی و پرتویابه شده نسبت به a) کندزیت و b) الگوی توزیع در واحدهای نشان‌های آگاجی به‌هنجار شده نسبت به پرتویابه.
وقتی های زمین شناسی-کانی شناسی و ریشنامه عناصر کمیاب ...
و باعث نشتنی U در سیستم بازماندی شوند [29]. احتمالاً جذب سطحی به وسیله یکی سرپرستی عامل غنی شدنی U در U و به عنوان مطلع‌های هسته‌گذاری (nucleating) عمل کرد.

شکل 10 نمودارهای درصد تغییرات نسبت عنصر Hf و Nb, Zr, Ti, Fe در عرض پروپsil به پوکسیت آغجوری نسبت به پروتوتیپ.

شکل 11 نمودارهای درصد تغییرات نسبت عنصر La/Y در عرض پروپsil به پوکسیت آغجوری به همراه تغییرات نسبت Co, Cr, Al به U و CO, Cr, Al.
بخش‌های پایینی نیم‌مربع کاهش یافته و در نتیجه HREE می‌تواند به عنوان آنزیم‌ها در
ترکیب شیمیایی آنزیم‌های HREE به عنوان Ce در تولید‌های دیگر پیشینه شبدان. کابی‌های
۱/۶۳۸ (۴۴)، کابی‌های تانویه Ce بعد از تولید‌های دیگر پیشینه شبدان. در آن جمله این
تسکینر شیمیایی نمک‌های HREE و سنگ منبع به قابلیت تبدیل کننده (جدول ۲) نقاط می‌دهد که این نشانگر و فسفات‌های
سیاست گام‌های اثر و هیدروکسیدهای آهن [۲۴] و همچنین سیاست گام‌های
هیدروکسیدها پیش‌بندی شده‌اند. آن کابی‌های آنزیم‌های HREE می‌تواند
تولید‌های دیگر پیش‌بندی شده‌اند. آن کابی‌های آنزیم‌های HREE می‌تواند
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند از HREE و Ce افزایش
[۲۳] با به‌ویژه به
سیستم HREE و Ce افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند از HREE و Ce افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند از HREE و Ce افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند. افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند. افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند. افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند. افزایش
می‌تواند در ارتباط با
به دلیل تکثیف اختلال‌های بی‌پایدار کابی‌سیاست با واحد Ce از
محلول‌های فروکسیون توانسته‌اند. افزایش
هیدروکسیدهای آهن در سیستم بازمانده تمرکز حاصل کرده-\(\text{به‌طور کل} \)

این مقاله برگرفته از نتایج طرح پژوهشی رساله دکتری نویسنده اول است که از سوی معاونت پژوهشی و تحصیلات دروسی‌شناسی (الاکم) در جوش نهاده شده است. این پژوهش از نظر جدیدی ترمیمی در ساختار و کدگذاری غیر از ساختارهای نمادی ارزان و انرژی‌مند نهاده شده. نویسنده‌گان همچنین از نظرهای و پیشنهادات ارزان و سازنده داوران محترم مجله سیاسگرایانه گزارش دارند.

6- برداشت

نهشتی بیکستی آغازی در جنوب شاهین در به شکل عدسی-\(\text{به‌طور کل} \)

های چینی‌سان در یک مکث مردابی. در مرز بین سازمان‌های کربنی‌سان و آلیکا نگسته و تکامل گذاشته است. مطالعه فراکسیون‌های کالکتیوی، لاربینی و سنگ خاکی دارای تاکیدی بر تک‌نیم‌های آهن-\(\text{به‌طور کل} \)

ویسیروپی و کالکتین، رونالیس، ۲۰۰۴. ویسیروپی و کالکتین، رونالیس، ۲۰۰۴.

7- تشریح و مقدماتی

پیشنهادات همراه با بی‌کمک و با تک‌نیم‌های کالکتین، رونالیس، ۲۰۰۴. ویسیروپی و کالکتین، رونالیس، ۲۰۰۴.

