Application of mineral and whole rock analysis in identification of petrogenesis of the pillow lavas in the Nain ophiolite

Ghodrat Torabi¹, Elham Abdollahi², Nargess Shirdashtzadeh¹

¹- Department of Geology, University of Isfahan
²- Department of geology, Islamic Azad University of Khorasgan
Email: Torabighodrat@yahoo.com

(Received: 27/10/2007, in revised form: 16/4/2008)

Abstract: Pillow lavas are one of the important rock units of Nain ophiolite. Rock forming minerals of Nain ophiolite pillow lavas are chloritized olivine, plagioclase, clinopyroxene (augite), Cr-spinel, magnetite, amphibole, chlorite, pumpellyite, epidote, prehnite and calcite. Whole rock geochemical analyses and composition of clinopyroxenes and chromian spinels of these rocks indicate that they are similar to mid-ocean ridge basalts. These lavas are basalt to andesite in composition and produced by high degree of partial melting of a depleted mantle lherzolite. According to their field studies, petrography, mineral and whole rock geochemistry, they have undergone sub-sea floor metamorphism and changed to spilite. Application of clinopyroxene thermometry shows that they have formed at 1058 to 1170 °C.

Keywords: Petrology, Ophiolite, Pillow lavas, Nain.
کاربرد آنالیز کانی و سنگ کل در شناسایی سنگزایی گدازه‌های بالشی افیولیت ناتین

قدرت ترایب، الیه عبداللهی، نرگس شیردشت‌زاده

1- گروه زمین‌شناسی دانشگاه اصفهان
2- گروه زمین‌شناسی دانشگاه آزاد خوارزمشاهیان
Torabighodrat@yahoo.com

(دریافت مقاله:۱۳۸۷/۱/۲۸، نشانه نهایی:۱۳۸۷/۸/۸)

چکیده: گدازه‌های بالشی، یکی از واحد‌های سنگهای افیولیت ناتین را تشکیل می‌دهند. کانی‌های تشکیل دهنده گدازه‌های بالشی افیولیت ناتین عبارتند از الیون کلریت‌های شده، پلاژیوکلاز، کلینوپروکسین (اوژیت)، اسپیت ر کروما، مگنیت، کاولین، پیولینیت، ای‌پونیت، برجسته، و کلیسنیت. نتایج آنالیز شیمیایی سنگ کل این واحدها و نسبی ترکیب کلینوپروکسینها و اسپیت‌ریز کروما دار مواد موجود در گدازه‌های بالشی، حاکی از شیآت این سنگ‌ها به پایان‌های پیش‌ترهای میان اقیانوس است. این گدازه‌ها با ترکیب بازالت‌های آندریتیت، ذوب‌های با بخار با دیالایی یک لرزشیت تیپ شده گوشته شکل گرفته‌اند. بررسی‌های شیمیایی و سنگ‌شناختی، مطالعه شیمیایی کانی‌ها و زیست‌شناسی سنگ‌کل، نشان از تبدیل این سنگ‌ها به استپیلیت در آت ندرک‌های کف اقیانوس دارد. مساحی کلینوپروکسین‌ها نشان می‌دهد که این کانی‌ها در دمایی در حدود ۱۰۵۸ تا ۱۱۷ درجه سانتی‌گراد تشکیل شده‌اند.

واژه‌های کلیدی: سنگ‌شناسی، افیولیت، گدازه‌های بالشی، ناتین

مقدمه
گدازه‌های بالشی موجود در افیولیته‌ها نشان‌های ضروری می‌باشد که در طول جغرافیایی ۵۵ تا ۳۰ میلیون سال پیش در محل تغییر روند گسل درون قرار دارد (شکل ۱ و ۲). این سنگ‌های افیولیتی از شمال شرقی تا رشته‌ای اسنجه سیرو دیده می‌شوند و سن آن می‌تواند به این صورت بیان شود: ۳۰-۰ میلیون سال پیش (۸-۷ میلیون سال پیش) و نتایج آنالیز شیمی‌ای سنگ‌کل این واحدها نشان می‌دهد که بیش از ۲۰ میلیون سال پیش دیگر از بالا به پایین به ترتیب شامل کاولین‌ها، پلاژیوکلاز، گداره‌بالشی، دایک‌های دیابازی، پلاژیوکلاز، کاولین، پیولینیت و بریدولین‌های غیره تشکیل داده شده‌اند. این سنگ‌ها به شکل گرشانه‌های پیش‌ترهای جدیدی نیز در آن تشکیل

1- CEIM = Central-East Iranian Microplate
شده‌اند. بر پایه بررسی‌های صورت گرفته، سرپرستی‌ها و اولترامافیک‌های سرپرستی‌های صورت گرفته شده‌اند. به‌صورت متن و زیمت اصلی این آمده‌های بوده و سنگ‌های دگرگون به‌صورت تخته سنگ‌های بزرگ و کوچک در نقاط مختلف آن پراکنده‌اند. از جمله این سنگ‌های دگرگون می‌توان به مرمر، شیست، کوارتزیت، اسکارن، متان‌تار، اسپیلیت، متناور، آمفیوبیت، سرپرستی‌ها، رودینگ‌های، و لیستونیت اشاره کرد.

سنگ‌های بازی موجود در این افویلیت ناپایین نوست‌افراد زیادی مورد مطالعه قرار گرفته‌اند. از جمله می‌توان به بررسی‌های تحلیل‌های زئوسیم ناپایین، علمی و کمیاب سنگ‌های بازی موجود در این مجموعه افویلیت نوست [۶] و [۷] اشاره کرد.

گداره‌ها بازی که از انواع سنگ‌های مسن‌هستند که در افویلیت آمریکا تابی به فراوانی مشاهده می‌شوند. از جمله رخ‌نمونه‌ای این سنگ‌ها می‌توان به نقاطی جنوب شرقی سبیرو و جنوب غربی سهیل شاپک اشاره کرد (شکل‌های ۲ و ۳). مختصات جغرافیایی بین‌تنین رخ‌نمونه‌ی گداره‌های بازی افویلیت تابی در زیر آورده شده‌اند:

<table>
<thead>
<tr>
<th>NA=Nain</th>
<th>ASH-ZA=Ashin-Zavar</th>
<th>AN=Anarak</th>
<th>JA=Jandaq</th>
<th>KH=Khoy</th>
<th>NY=Neyriz</th>
<th>BZ=Band Ziarat</th>
<th>BF=Baft</th>
<th>RS=Rasht</th>
<th>FM=Fanuj-Maskutan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

شکل ۱ نمای افویلیتهای ایران و موقعیت منطقه مورد بررسی (برگرفته از [۴])، با اندکی تغییرات در مورد افویلیتهای ایران مرکزی.
شکل ۲ نقشه زمین‌شناسی شمال ناهین. موقعیت بهترین رخپویی‌های گدازه‌های بالشی به صورت دایره نشان داده شده‌اند.

شکل ۳ تصاویر صحرایی گدازه‌های بالشی افولیت ناپیین.

روش مطالعه
پس از بررسی‌های صحرایی، نمونه‌برداری از رخپویی‌های مناسب انجام شد. بر این اساس ۲۰ نمونه برای بررسی‌های سنگ‌شناسی انتخاب شدند و از آنها مقاطع نارنجی نهیه شدند. برای دستیابی به ترکیب شیمیایی کانی‌ها، نمونه‌های مناسب با

استفاده از یک دستگاه ریز پردازده الکتروریونی مدل JEOL JXA-8800R (WDS) دانشگاه گالاراوی زاین، با ولتاز سطح ۱۵ kV و شدت جریان ۱۵ nA مورد بررسی قرار گرفتند. در دستیابی فرمول ساختاری کانی‌ها و جدايش مقدار Fe۳+ از Fe۲+ بر اثر روش عصر سنگی [۱۸] استفاده شد.
به منظور بررسی بهتر و دقیق‌تر کانال‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.

به منظور بررسی بافت‌های موجود در این سنجک، این سنجک را در دو بخش جداگانه، یعنی BA و B-B ناحیه‌ای از جمله کانال‌های موجود در این سنجک مقایسه و نتایج آنها را در جدول ۱ تا ۴ آورده‌ایم. با استفاده از نتایج آنالیز واریانس، این سنجک را به طور مناسب به‌عنوان یک کانال‌های موجود در این سنجک نام‌گذاری نموده‌ایم.
همجنس میزان بالایی (تا 1/10) SiO$_2$ در جدول ۴ آورده شده‌اند. بر پایه این نتایج، میزان SiO$_2$ موجود در این سنگ‌ها در حدود ۵۰-۶۵/۷ به و در گستره بازالت تا آندزیت قرار دارد. مقدار قابل توجه LOI این سنگ‌ها به دلیل وجود کانی‌های آباد در اثر دگرگونی کف دریافت.

شکل ۴ تصاویر میکروسکوپیک گدازه‌های بالشی افیولیت ملانز نابین‌ها (A) و پپل (B)؛ بازالت‌های الیبرن‌دار (C) و پپل (D)؛ بازالت‌های غنی از کلینزیت و پورپوریت (E) و پپل (F)؛ بازالت‌های غنی از پلاژولاز با (G) نشان داده‌اند. شکل ۵ تصاویر پپل (ppi) (مخفف لاسی کانی‌های پرگرده از ۱۹۱۹). این تصاویر نشان‌دهنده رخداد جدایی در ماهی‌های سنگ‌سنگ گدازه‌های بالشی هستند.
جدول ۱ نتایج آنالیز نفتکش کاوشی موجود در گدازه‌های بالشی ابیلیتی نالین

<table>
<thead>
<tr>
<th>Mineral</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>NiO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 1</td>
<td>58.33</td>
<td>5.10</td>
<td>5.74</td>
<td>3.87</td>
<td>1.16</td>
<td>2.11</td>
<td>0.77</td>
<td>1.07</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>2.11</td>
</tr>
<tr>
<td>Clinopyroxene 2</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 3</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 4</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 5</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 6</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 7</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 8</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 9</td>
<td></td>
</tr>
<tr>
<td>Amphibole 1</td>
<td></td>
</tr>
<tr>
<td>Amphibole 2</td>
<td></td>
</tr>
<tr>
<td>Amphibole 3</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 1</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 2</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 3</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 4</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 5</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 1</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 2</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 3</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 4</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 1</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 2</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 3</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 4</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 5</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 6</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 7</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 8</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲ نتایج فرمول ساختاری کانین‌های موجود در جدول ۱

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral Type</th>
<th>Oxyn*</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe²⁺</th>
<th>Fe³⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Ni</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene 1</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 2</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 3</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 4</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 5</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 6</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 7</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 8</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 9</td>
<td>Augite</td>
<td></td>
</tr>
<tr>
<td>Amphibole 1</td>
<td>Tremolite</td>
<td></td>
</tr>
<tr>
<td>Amphibole 2</td>
<td>Tremolite-Actinolite</td>
<td></td>
</tr>
<tr>
<td>Amphibole 5</td>
<td>Tremolite-Actinolite</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 1</td>
<td>Pumpellyte</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 2</td>
<td>Pumpellyte</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 3</td>
<td>Pumpellyte</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 4</td>
<td>Pumpellyte</td>
<td></td>
</tr>
<tr>
<td>Pumpellyte 5</td>
<td>Pumpellyte</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 1</td>
<td>Albite</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 2</td>
<td>Albite</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 3</td>
<td>Labradorite</td>
<td></td>
</tr>
<tr>
<td>Plagioclase 4</td>
<td>Andesine</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 1</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 2</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 3</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 4</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 5</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 6</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 7</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
<tr>
<td>Cr-Spinel 8</td>
<td>Chromian Spinel</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳ محاسبه درصد اعضای پایانی محلول جامد در کلیوپروکسنس‌ها و پلاژیوکلازهای نیز محاسبه مقدار Fe۲⁺ # و Fe۳⁺ #. Cr# و Fe۲⁺ # در مورد اسپینلهای کروم‌دار موجود در جدول یک.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Wollastonite</th>
<th>Enstatite</th>
<th>Ferrosilite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene 1</td>
<td>۷۶.۵۵</td>
<td>۷۵.۶۳</td>
<td>۱۱۷.۰۰</td>
</tr>
<tr>
<td>Clinopyroxene 2</td>
<td>۷۷.۶۴</td>
<td>۷۵.۳۰</td>
<td>۱۷۲.۶۱</td>
</tr>
<tr>
<td>Clinopyroxene 3</td>
<td>۷۵.۷۵</td>
<td>۷۵.۴۰</td>
<td>۴۸.۵۰</td>
</tr>
<tr>
<td>Clinopyroxene 4</td>
<td>۷۰.۰۴</td>
<td>۷۵.۴۹</td>
<td>۴۸.۶۹</td>
</tr>
<tr>
<td>Clinopyroxene 5</td>
<td>۷۰.۴۲</td>
<td>۵۷.۵۹</td>
<td>۴۷.۴۹</td>
</tr>
<tr>
<td>Clinopyroxene 6</td>
<td>۷۸.۳۴</td>
<td>۵۱.۷۷</td>
<td>۴۱.۰۰</td>
</tr>
<tr>
<td>Clinopyroxene 7</td>
<td>۷۴.۰۷</td>
<td>۵۹.۰۰</td>
<td>۴۱.۵۶</td>
</tr>
<tr>
<td>Clinopyroxene 8</td>
<td>۷۴.۴۰</td>
<td>۵۳.۳۳</td>
<td>۷۱.۷۷</td>
</tr>
<tr>
<td>Clinopyroxene 9</td>
<td>۷۰.۲۲</td>
<td>۵۷.۵۵</td>
<td>۷۱.۱۱</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fe/(Fe + Mg)</th>
<th>Cr# = Cr/(Cr + Al)</th>
<th>Mg# = Mg/(Mg + Fe۲⁺)</th>
<th>Fe۲⁺ # = (Fe۲⁺ + Fe۳⁺)</th>
<th>Fe۳⁺ # = (Fe۳⁺ + Al + Cr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr-Spinel 1</td>
<td>۰.۳۲</td>
<td>۰.۳۴</td>
<td>۰.۳۳</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Cr-Spinel 2</td>
<td>۰.۵۵</td>
<td>۰.۵۵</td>
<td>۰.۵۵</td>
<td>۰.۵۵</td>
<td>۰.۵۵</td>
</tr>
<tr>
<td>Cr-Spinel 3</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
</tr>
<tr>
<td>Cr-Spinel 4</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
<td>۰.۲۲</td>
</tr>
<tr>
<td>Cr-Spinel 5</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Cr-Spinel 6</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Cr-Spinel 7</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
<tr>
<td>Cr-Spinel 8</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
<td>۰.۳۲</td>
</tr>
</tbody>
</table>

شکل ۵ (A) تركیب کلیوپروکسنس‌های موجود در گازدهای بالشی افیولیت نایبن (نمونه برگرفته از ۱۰۰۰)؛ (B) تركیب پلاژیوکلازهای موجود در گازدهای بالشی افیولیت نایبن; (C) موقعیت تركیبی میکروسپلانهای موجود در گازدهای بالشی افیولیت ملانز نایبن.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Albite</th>
<th>Anorthite</th>
<th>Orthoclase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase 1</td>
<td>۹۱.۶</td>
<td>۸۰.۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Plagioclase 2</td>
<td>۹۳.۳</td>
<td>۸۰.۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Plagioclase 3</td>
<td>۹۵.۰</td>
<td>۸۰.۸</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Plagioclase 4</td>
<td>۹۸.۴</td>
<td>۸۰.۸</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>
جدول ۴ جدول آنالیز سنگ کل گدازه‌های بالشی منطقه شمال‌شرقی برآمد و نوی کمالی‌ها

<table>
<thead>
<tr>
<th>نمونه‌نامه</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>64.5</td>
<td>-</td>
<td>0.5</td>
<td>0.16</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>p2</td>
<td>58.9</td>
<td>-</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>p4</td>
<td>54.3</td>
<td>-</td>
<td>0.6</td>
<td>0.3</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>p10</td>
<td>51.5</td>
<td>-</td>
<td>0.8</td>
<td>0.5</td>
<td>-</td>
<td>3.9</td>
<td>-</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>p11</td>
<td>45.7</td>
<td>-</td>
<td>1.3</td>
<td>1.1</td>
<td>-</td>
<td>7.9</td>
<td>-</td>
<td>1.7</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>p18</td>
<td>55.8</td>
<td>-</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>p19</td>
<td>53.3</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>p19-1</td>
<td>57.8</td>
<td>-</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>p22</td>
<td>56.5</td>
<td>-</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>p23*</td>
<td>41.3</td>
<td>0.5</td>
<td>1.6</td>
<td>0.7</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>p24*</td>
<td>15.2</td>
<td>0.8</td>
<td>1.7</td>
<td>1.8</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

آماده جدول ۴

<table>
<thead>
<tr>
<th>نمونه‌نامه</th>
<th>Cr</th>
<th>Ni</th>
<th>Co</th>
<th>Sc</th>
<th>V</th>
<th>W</th>
<th>Mo</th>
<th>As</th>
<th>Ag</th>
<th>Au</th>
<th>Ta</th>
<th>Hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>56.5</td>
<td>-</td>
<td>1.9</td>
<td>1.2</td>
<td>0.1</td>
<td>2.2</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P2</td>
<td>58.5</td>
<td>-</td>
<td>1.5</td>
<td>1.5</td>
<td>0.2</td>
<td>2.6</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P4</td>
<td>51.3</td>
<td>-</td>
<td>1.6</td>
<td>1.6</td>
<td>0.3</td>
<td>2.9</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p10</td>
<td>54.7</td>
<td>-</td>
<td>1.1</td>
<td>1.1</td>
<td>0.4</td>
<td>3.3</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p11</td>
<td>47.8</td>
<td>-</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
<td>3.7</td>
<td>-</td>
<td>1.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p18</td>
<td>50.1</td>
<td>-</td>
<td>1.7</td>
<td>1.7</td>
<td>0.6</td>
<td>4.1</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p19</td>
<td>51.0</td>
<td>-</td>
<td>1.8</td>
<td>1.8</td>
<td>0.7</td>
<td>4.5</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p19-1</td>
<td>55.8</td>
<td>-</td>
<td>1.9</td>
<td>1.9</td>
<td>0.8</td>
<td>4.9</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p22</td>
<td>47.7</td>
<td>-</td>
<td>2.1</td>
<td>2.1</td>
<td>0.9</td>
<td>5.3</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p23*</td>
<td>51.8</td>
<td>-</td>
<td>2.3</td>
<td>2.3</td>
<td>1.0</td>
<td>5.7</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p24*</td>
<td>45.1</td>
<td>-</td>
<td>2.5</td>
<td>2.5</td>
<td>1.1</td>
<td>6.1</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

آماده جدول ۵

<table>
<thead>
<tr>
<th>نمونه‌نامه</th>
<th>Th</th>
<th>U</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>p2</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>p4</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>p10</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>p11</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>p18</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>p19</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>p19-1</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>p22</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>p23*</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>p24*</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>

بپی‌وزن در [0.1]
بررسی زئوپوئیم این سنگ‌ها با انگر تولیدی بودن آنها و شیب‌تهات NMORB به است. ترسیم نمودار پهن‌باند عناصر نادر خاکی نسبت به کندریت، واحکار غنی نتیجه بودند این سنگ‌ها از REE (به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها نسبت به و NMORB به ویژه HREE (به ویژه) به مرز ۱۰ برای است (شکل ۲-۲۰). نمودار پهن‌باند شدید آنها N1-EMORB نشانگر شیب‌تهات بیشتر سنگ‌های مورد مطالعه به NMORB است.
شکل 7 (A) نمایش ترکیب سنگ كل گدازه‌های بالشی افیولیت ملاز نابین در نمودار Ta/Yb نسبت به Ce/Yb (برگرفته از [12]); (B) نمایش ترکیب سنگ كل گدازه‌های بالشی افیولیت ملاز نابین در نمودار Ta/Yb نسبت به Th/Yb (برگرفته از [12]); (C) نمایش ترکیب سنگ كل گدازه‌های بالشی افیولیت ملاز نابین در نمودار Th-HF/3-Ta (برگرفته از [15]); (D) نمودار بهنجارسازی عناصر نادر خاکی نسبت به کدروی EMORB نمودار بهنجارسازی عناصر نادر خاکی نسبت به NMORB (E) نمودار بهنجارسازی عناصر نادر خاکی نسبت به (F)NMORB.

بحث و برداشت

علاوه بر برسی ترکیب سنگ كل، از نتایج آنالیز کانی‌های اولیه و آذرین سالم نیز می‌توان به عنوان شاخص می‌خیز زمین ساخت جهانی اشاره کرد. در ادامه به برسی می‌خیز زمین ساخت جهانی کلینیکروکندها و استپنهای کروم دار موجود در این سنگ‌ها می‌تواند به عنوان شاخص می‌خیز زمین ساخت جهانی اشاره کرد. در ادامه به برسی می‌خیز زمین ساخت جهانی کلینیکروکندها و استپنهای کروم دار موجود در این سنگ‌ها می‌تواند به عنوان شاخص می‌خیز زمین ساخت جهانی اشاره کرد.
گداره‌هاي بالي‌پيروز يتاین با استفاده از تركيب اين کانيها به شرح زير برپاداها ميشود.
(الف) در بررسی محیط زمین ساخت ماده بپایه تركيب گداره‌پيروز يتاین می‌توان به جمله پيشگانان اين روش: [۲۷] اشاره كرد. پس از آن نيز از آنها مورد زيادي به بررسی ارتباط بين تركيب گداره‌پيروز يتاین كليفت و محیط زمین ساخته‌کننده آن در آن شکل گرفته و برپاداهاه. به عقیده [۲۶] تفاوت در ميزان Ti مي‌توان باينانگ نوع افيلييت بايش. پایه اين روش بر اين استوار است كه فعاليت یک عنصر در گداره‌پيروز يتاین كه از يک ايگن سمبول مي‌شود، با فعاليت همان عنصر در آيگن مناسب است و آن را به صورت Nم‌دنه به اين ترتيب تفاوت‌هاي شيميايی بين آيگن سری‌های مي‌گوري مي‌باشد. به همراه برف‌هاي لوله‌کاری گداره‌پيروز يتاین کشي نيز كه در زمينه اين سنگها شركت مي‌كنند [۲۷] از آنجا كه زيکي سرگي، شناساي و زوشنيگي سنگهاي آتشنشانی ميكنن است که مستقيماً با محیط زمين ساختني آنها رابطه داشته باشد، لذا در درگزارشي بعدي از قبل واکنشها در دماي پايين بازاره با آب دريا، واکنشهای با دمای بالا و گرمانگي بازاره با آب دريا، و درگردن ناحيي كي ميکنن است و زيگي‌های زوشنيگي و كاني. شناساي اوبي سنگهاي آتشنشانی را تحت تاثير قرار دهد و تشخيص زمين‌های زمين‌ساختني كليفت‌ها و صورتوخشمشکل كند [۲۷] به عنوان مثال درگردنگي زيبر درباري بازاره (اسبيليتها) موجب مي‌شود كه اين سنگهاي نيز كه از نظر Si تهي شده و از نظر عنصر MgCa نيز كه منابعي بازي‌ها.

ژورنال گداره‌هاي بالي‌پيروز يتاین با استفاده از تركيب اين کانيها به شرح زير برپاداها ميشود.
(الف) در بررسی محیط زمین ساخت ماده بپایه تركيب گداره‌پيروز يتاین می‌توان به جمله پيشگانان این روش: [۲۷] اشاره کرد. پس از آن نیز از آنها مورد زیادی به بررسی ارتباط بین تركيب گداره‌پیروز يتاین کلسیک و محیط زمین ساخته‌کننده آن در آن شکل گرفته و برپاداهاه. به عقیده [۲۶] تفاوت در میزان Ti می‌توان باینانگ نوع افیلیت باشند. پایه این روش بر این استوار است که فعالیت یک عنصر در گداره‌پیروز يتاین که از یک ایگن سمبول می‌شود، با فعالیت همان عنصر در آیگن مناسب است و آن را به صورت Nم‌دنه به این ترتیب تفاوت‌های شیمیایی بین آیگن سری‌های می‌گوری می‌باشد. به همراه برف‌هاي لوله‌کاری گداره‌پیروز يتاین کشي نیز که در زمینه این سنگها شرکت می‌کنند [۲۷] از آنجا که زیگی سرگی، شناسایی و زوشینیگی سنگ‌های آتشنشانی می‌کنن است که مستقیماً با محیط زمین ساختنی آنها رابطه داشته باشد، لذا در درگزارشی بعده از قبل وانشها در دمای پایین بازاره با آب دریا، واکنش‌های با دمای بالا و گرمانگی بازاره با آب دریا، و درگردن ناحیه‌ای می‌کنن است و زیگی‌های زوشینیگی و کانی. شناسای اویل سنگ‌های آتشنشانی را تحت تاثیر قرار دهد و تشخیص زمین‌های زمین‌ساختنی کلیفت‌ها و صورتوخشمشکل کنند [۲۷] به عنوان مثال درگردنگی زیبر درباری بازاره (اسبیلیت‌ها) موجب می‌شود که این سنگ‌ها از نظر Si تهی شده و از نظر عنصر MgCa نیز که منابعی در راک و NaMgFe می‌باشد. در ویژه برف‌ها و که به بازی‌ها NaMgFe و NaCa یا نا تمحور کردند [۲۶] صورتوخش بوده و TiO2 و Al2O3 نا تمحور کیان در نیازی گردنگی (برگرفته از [۲۶] و [۲۷]) نیز منابع نیز نیمه قلیایی هستند (شکل ۲۸-۸) به همچنان بر پایه مادی F2 و F1 (برگرفته از [۲۶]) نیز. (A
اaniel A (A) ترکیب کلینوپیروسکنن به موقع در گردانهای بالشی افولیت شمال نابین در نمودار Al_2O_3 نسبت به SiO_2 (برگرفته از [۲۴۲]) و (B) ترکیب کلینوپیروسکنن به موقع در گردانهای بالشی افولیت شمال نابین در نمودار SiO_2 نسبت به TiO_2 (برگرفته از [۲۴۲]) و (C) ترکیب اسپینل‌های موجود در گردانهای بالشی افولیت شمال نابین در نمودار TiO_2 نسبت به MgO (برگرفته از [۲۳۷]).
خوبی مشخص است. اسپینل‌ها شامل گروهی از سنگهای که از لحاظ رخ‌داده و عملکردی باید سبب به‌بینی سه‌گانه ونیز، یک از بازی‌ها در سری‌های شیشه‌ای، تولید سیستم، و در نهایت بالاترین کلیسیت، نفوذ مشکی می‌شود. به طور کلی می‌توان از شاخص اسپینل‌های سنگی وجود سیلیسیت‌ها، تحقیق در این‌باره، تغییرات پلی‌کالری، متغیری سایری که به سمت سنگ‌های شاسی‌زده و فراوانی این‌ها شده‌اند. در شکل 11 و 16، این تغییرات شناسایی گردیده و این نتایج مورد بررسی قرار گرفته‌اند. نشان‌هایی که در این‌ها قرار گرفته‌اند و از سنگ‌های شاسی‌زده و بازی‌های شیشه‌ای نشان‌دهند، با توجه به کمتر بودن میزان ذوب مشخص از سنگ‌های شاسی‌زده و فراوانی این‌ها می‌توان این اتفاقی معنی‌داری نیست. بررسی میزان SiO₂ و TiO₂ گستره‌های بالایی و ترکیب Fe₂O₃ و ZrO₂ از نیاز مستلزم می‌باشد. مدل‌های فیزیکی از این نتایج در کریستالولوژی و ترکیب قرار می‌گیرند.

بررسی اشیاء که در اثر حضور گازهایی بالایی، نشان‌دهند از مرطوبیت در محیط آبی و معنای مربوط به کف افکنی‌ها و دیگر بافت‌های نرم‌ها و سخت‌هایی حاصل از سری‌های در نمای اندازه حاصل می‌گردد. با این توجه که این نتایج نشان‌دهنده این اشیاء را از رشته‌های بالایی، شیمیایی و این‌ها اشیاء از این سنگ‌های بالایی به

\[T(K) \pm 30 = \frac{23166(\pm 447) + 39.28(\pm 4.27) \times P(Kbar)}{13.25(\pm 0.32) + 15.32(\pm 2.90) \times Ti + 4.50(\pm 0.83) \times Fe - 1.55(\pm 0.29) \times (Al + Cr - Na) + (\text{Lna}^{\text{en}} \times P)^{2}} \]

\[a_{\text{en}}^{\text{CrI}} = (1 - Ca - Na - K) \times (1 - \frac{1}{2} (Al + Cr + Na + K)) \]
شکل 10 نمونه‌های گازدهای بالشی در نمودار \(\text{TiO}_2 \) نسبت به \(\text{Fe}_2\text{O}_3 \) (برگرفته از [72]).

شکل 11 تبادل‌هایی که هنگام اسپری کردن گازدهای بالشی رخ می‌دهند (برگرفته از [82]).

جدول ۵ میزان دمای محاسبه شده در فشارهای ۱ تا ۶ کیلوبار برای کلینوپروکسنهای موجود در گازدهای بالشی افقولت نایین با استفاده از روش [62].

<table>
<thead>
<tr>
<th>Pressures (Kbar):</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinopyroxene 1</td>
<td>1063</td>
<td>1073</td>
<td>1082</td>
<td>1084</td>
<td>1086</td>
<td>1089</td>
</tr>
<tr>
<td>Clinopyroxene 2</td>
<td>1058</td>
<td>1060</td>
<td>1063</td>
<td>1065</td>
<td>1067</td>
<td>1069</td>
</tr>
<tr>
<td>Clinopyroxene 3</td>
<td>1158</td>
<td>1160</td>
<td>1163</td>
<td>1165</td>
<td>1168</td>
<td>1170</td>
</tr>
<tr>
<td>Clinopyroxene 4</td>
<td>1134</td>
<td>1136</td>
<td>1138</td>
<td>1140</td>
<td>1143</td>
<td>1145</td>
</tr>
<tr>
<td>Clinopyroxene 5</td>
<td>1084</td>
<td>1087</td>
<td>1089</td>
<td>1091</td>
<td>1094</td>
<td>1096</td>
</tr>
<tr>
<td>Clinopyroxene 6</td>
<td>1091</td>
<td>1093</td>
<td>1095</td>
<td>1097</td>
<td>1099</td>
<td>1101</td>
</tr>
<tr>
<td>Clinopyroxene 7</td>
<td>1089</td>
<td>1092</td>
<td>1094</td>
<td>1096</td>
<td>1098</td>
<td>1100</td>
</tr>
<tr>
<td>Clinopyroxene 8</td>
<td>1144</td>
<td>1147</td>
<td>1149</td>
<td>1152</td>
<td>1155</td>
<td>1157</td>
</tr>
<tr>
<td>Clinopyroxene 9</td>
<td>1119</td>
<td>1121</td>
<td>1124</td>
<td>1126</td>
<td>1128</td>
<td>1131</td>
</tr>
</tbody>
</table>
بررسی‌های صحرایی، سنگ‌نخانی و صیم‌سنگ‌ها و کانی‌ها نشان می‌دهد که گزاره‌های باقی موجود در اپیولیت‌های نایبن پس از تشکیل در کرتاسه بالایی، در تاسیس مستقیم با آب دریا قرارگرفته و نتایج‌های شیمیایی را با آن انجام داده‌اند. حاصل این نتایج کاهش میزان CaO و افزایش میزان Na₂O که در نهایت باعث تبدیل این سنگ‌ها به سپیلیت شده است در اثر پیدایش سپیلیت‌شنده، تمامی الیوین‌ها و پلیژولوکالزاها دسترسی درک نمی‌شده و برخی از پیرکسنها و تمام اسپیلیت‌های کروم در تحت تاثیر دگربخشی فیزیکی تبدیل‌شده‌اند. حضور دگروسان نتایج بهبود می‌بخشد. این سنگ‌ها یکی پلیژولوکالزا، کاربردی شدن الیوین‌ها و تبدیل شدن برخی از کلینونبورسک‌ها به اسفینول‌پتاس، با سبب افزایش عناصر حاصل (Na₂O + K₂O) موجود در این سنگ‌ها، همه از شواهد رخداد دگروسان کف اقیانوسی و تبدیل این سنگ‌ها به سپیلیت در رخسات سیستم سبز سبک کل و بررسی ترکیب کلینونبورسک‌ها و اسپیلیت‌های کروم در نشان می‌دهد که گدازه‌های بالایی موجود در اپیولیت‌های نایبن مشابه N-MORB ها هستند. همین بررسی‌های نشان می‌دهد که این گدازه‌ها بالایی دارای ماهیت تولیدی بوده و از یک خاستگاه گوشته‌ای تهی شده ریشه گرفته‌اند.

مراجع

settings”, Contributions to Mineralogy and Petrology 63 (1977) 161-173.

Ford Complex, Ireland”, Contributions to Mineralogy and Petrology 139 (1967) 325–38

settings”, Contributions to Mineralogy and Petrology 63 (1977) 161-173.