Abstract: The study area is located about 110 Km south of Shahrood in north of Central Iran structural zone. There are many cumulate enclaves with ferroanpargasite gabbroic composition within the Middle Eocene basic volcanic rocks in the study area. Amphiboles are one of the most important minerals in gabbroic cumulates and host basaltic rocks. Based on results of electron microprobe analyses, amphibole minerals present in these cumulates, according to leake et al. classification are calcic and show ferropargasite compositions. Plagioclase shows a notably CaO-rich composition and has normal zoning from anorthite in the core to bytownite at the rim. Clinopyroxene composition range between calcic augite and diopsite. According to the amphibole geobarometer of Schmidt, amphiboles in these gabbroic cumulates are crystallized at ~7.5 Kbar corresponding to a depth of ~26 Km. Geothermometry of amphiboles of these rocks also were calculated with different thermometer and range from 830 to 860°C. The low contents of HREE and La/Yb and Dy/Yb ratios of gabbroic cumulates suggest that their parental magma was probably formed by relatively high degree of partial melting (16 to 18%) of the mantle.

Keywords: Mineral chemistry, Geothermobarometry, Gabbroic cumulates, South of Shahrood.
زمن دما-فشار سنجی و شیمی کانی انتشایشی فروبولگارازیت گابرایی در سنگهای آتشفشنگان جنوب شاهرود

قاسم قربانی

دانشگاه علوم زمین، دانشگاه علوم پایه دامغان
ghasemghorbani@yahoo.com

دریافت مقاله: ۱۲/۹/۱۳۷۳، نسخه نهایی: ۲۴/۱۲/۱۳۷۴

چکیده: منطقه مورد مطالعه در حدود ۱۱۰ کیلومتری جنوب‌شرقی و در شمال‌غربی ایران مرکزی واقع شده است. برسبایه کمیلیترین زیادی با ترکیب فروبولگارازیت گابرایی در میان سنگهای آتشفشنگانی پراکنده و آتش‌نشانی و همچنین بروکت‌های اطرافی این اثرات مورد تحقیق قرار گرفته. املاحی‌های موجود در این مزار می‌تواند برای تشخیص مثلثهای لیک و همچنین دو روش، کریستال و میکرو می‌باشد. در این مطالعه در مرکز تا بابینی‌ها در حاشیه دارد. ترکیب کلینوپروکسن‌ها بن ترکیب اوزیت در است. این نتایج حاصل از زمین فشار و سنگ‌های نمادین آمیکیلیمی‌ها در این انتشایشی گابرایی از موارد بالای ۲۶ درجه درجه سانتی جرگ را تطیفه و انتشایشی گابرایی نشان می‌دهد که مکانیزم‌های این انتشایه‌ها از آنها تحت تأثیر تأثیر دو چنگه در نوک بخش سه‌سپاسی به دلایل اساسی که گسترش‌گذاری ریشه گرفته است.

واژه‌های کلیدی: سنگ‌نوازی، زمین دما-فشار سنجی، انتشایشی گابرایی، جنوب شاهرود

مقدمه

روند‌های انتشایشی با ترکیب گابرایی مشاهده می‌شوند. بروکت‌های پراکنده و شمال‌غربی منطقه بالای ۳۵ درجه درجه سانتی جرگ را تطیفه و انتشایشی گابرایی نشان می‌دهد که مکانیزم‌های این انتشایه‌ها از آنها تحت تأثیر دو چنگه در نوک بخش سه‌سپاسی به دلایل اساسی که گسترش‌گذاری ریشه گرفته است.

زمین دما-فشار سنجی و شیمی کانی انتشایشی فروبولگارازیت گابرایی در سنگهای آتشفشنگان جنوب شاهرود

برسبایه کمیلیترین زیادی با ترکیب فروبولگارازیت گابرایی در میان سنگهای آتشفشنگانی پراکنده و آتش‌نشانی و همچنین بروکت‌های اطرافی این اثرات مورد تحقیق قرار گرفته. املاحی‌های موجود در این مزار می‌تواند برای تشخیص مثلثهای لیک و همچنین دو روش، کریستال و میکرو می‌باشد. در این مطالعه در مرکز تا بابینی‌ها در حاشیه دارد. ترکیب کلینوپروکسن‌ها بن ترکیب اوزیت در است. این نتایج حاصل از زمین فشار و سنگ‌های نمادین آمیکیلیمی‌ها در این انتشایشی گابرایی از موارد بالای ۲۶ درجه درجه سانتی جرگ را تطیفه و انتشایشی گابرایی نشان می‌دهد که مکانیزم‌های این انتشایه‌ها از آنها تحت تأثیر تأثیر دو چنگه در نوک بخش سه‌سپاسی به دلایل اساسی که گسترش‌گذاری ریشه گرفته است.
زمین دما-خشانی سنجی و شیمی کاتی انبات‌های...

شکل 1 نقشه زمین‌شناسی ساحه شده منطقه مورد مطالعه، قلم در جنوب شاهروک که در این گسترده گسترش برخوی‌های گابوریوی منشأ شده است (اقتباس با تغییر از نقشه زمین‌شناسی 15،000:1 توضیح).

زمین‌شناسی عمومی منطقه

منطقه مورد مطالعه در جنوب شهروکان شاهروک واقع است. در این منطقه نوار ماگما مبنا روند شمال-جنوب باختیاری و مشکل از سنگ‌های آذرین متناوب و بیرونی وجود دارد. جمجمه‌های سنگ‌های آذرین از سنگ‌های آنتفسیائی به سن لوسوس میلی [1] و با ترکیب باریک ناپیوس گونه‌ای مشکل می‌شوند. سنگ‌های جدیدتر از این سنگ‌های آذرین برونی منطقه را به‌طور اختصاصی داده‌اند. جنین توده‌های کوچک عمدی و همینه را می‌توان با ترکیب جدیدتر از این سنگ‌های آنتفسیائی سنجش کرد. این سنگ‌های آنتفسیائی در نوار ماگما مورد مطالعه و در ارتقای نوار ماگما مبنا، از نوار شمالی این نوار ماگما به‌صورت توده‌ای در جنوب و در نوار ماگما مبنا به‌طور طوری مشاهده کرد. اندکی از این نوار ماگما در 15 سانتی‌متر می‌رسد (شکل 2). نیاز به ابهام این نوار ماگما در منطقه از گذشته و سنگ‌های آذرین و متناوب تشکیل شده است و ترکیب سنگ‌شناختی این مجموعه از باریک ناپیوس گونه‌ای است.
جدول 1 نتایج تجزیه ریزپدیدارش الکترونی پلاژیوکلازهای انسان‌های کابروپی جنوب شاهرود، برایه 8-کسیزن.

<table>
<thead>
<tr>
<th></th>
<th>Gb-13</th>
<th>Gb-17</th>
<th>Gb-18</th>
<th>Gb-5</th>
<th>Gb-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>1.964</td>
<td>1.918</td>
<td>1.823</td>
<td>2.429</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.198</td>
<td>0.133</td>
<td>0.115</td>
<td>0.182</td>
<td>0.199</td>
</tr>
<tr>
<td>FeO</td>
<td>0.878</td>
<td>0.866</td>
<td>0.866</td>
<td>0.866</td>
<td>0.866</td>
</tr>
<tr>
<td>SiO₂</td>
<td>42.33</td>
<td>42.46</td>
<td>45.12</td>
<td>44.94</td>
<td>47.46</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.115</td>
<td>0.182</td>
<td>0.199</td>
<td>0.415</td>
<td>0.497</td>
</tr>
<tr>
<td>MgO</td>
<td>0.878</td>
<td>0.866</td>
<td>0.199</td>
<td>0.415</td>
<td>0.497</td>
</tr>
<tr>
<td>CaO</td>
<td>18.749</td>
<td>18.832</td>
<td>18.49</td>
<td>15.57</td>
<td>15.57</td>
</tr>
<tr>
<td>MnO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33.184</td>
<td>34.743</td>
<td>34.743</td>
<td>34.743</td>
<td>34.743</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.684</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
<td>0.417</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.365</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td>Sum</td>
<td>100.3</td>
<td>100.3</td>
<td>100.3</td>
<td>100.3</td>
<td>100.3</td>
</tr>
<tr>
<td>Si</td>
<td>2.175</td>
<td>3.203</td>
<td>3.203</td>
<td>3.203</td>
<td>3.203</td>
</tr>
<tr>
<td>Ti</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al</td>
<td>1.797</td>
<td>1.891</td>
<td>1.891</td>
<td>1.891</td>
<td>1.891</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.203</td>
<td>0.203</td>
<td>0.203</td>
<td>0.203</td>
<td>0.203</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
<td>0.284</td>
</tr>
<tr>
<td>Ca</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
<td>0.937</td>
</tr>
<tr>
<td>Na</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
</tr>
<tr>
<td>K</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Sum</td>
<td>5.03</td>
<td>5.03</td>
<td>5.03</td>
<td>5.03</td>
<td>5.03</td>
</tr>
<tr>
<td>Ab</td>
<td>2.16</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
<td>1.68</td>
</tr>
<tr>
<td>An</td>
<td>42.3</td>
<td>49.2</td>
<td>49.2</td>
<td>49.2</td>
<td>49.2</td>
</tr>
<tr>
<td>Or</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

شکل 2 تصویر یک نمونه دستی از برنامه گابروپی در سنگ‌های انسان‌های میزبان.
جدول ۲ نتایج تجزیه رزیلید اکترونی پرکسنده‌های اباشته‌های گابرویی منطقه جنوب شاهروود بر اساس ۶‌کسیزن.

<table>
<thead>
<tr>
<th></th>
<th>Gb-10</th>
<th>Gb-12</th>
<th>Gb-165</th>
<th>Gb-167</th>
<th>Gb-169</th>
<th>Gb-15</th>
<th>Gb-120</th>
<th>Gb-125</th>
<th>Gb-131</th>
<th>Gb-136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na_2O</td>
<td>0.66</td>
<td>0.61</td>
<td>0.44</td>
<td>0.42</td>
<td>0.38</td>
<td>0.31</td>
<td>0.31</td>
<td>0.39</td>
<td>0.39</td>
<td>0.37</td>
</tr>
<tr>
<td>K_2O</td>
<td>0.25</td>
<td>0.21</td>
<td>0.17</td>
<td>0.16</td>
<td>0.14</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>FeO</td>
<td>7.48</td>
<td>7.16</td>
<td>6.37</td>
<td>7.99</td>
<td>7.18</td>
<td>8.87</td>
<td>7.30</td>
<td>7.24</td>
<td>9.48</td>
<td>8.65</td>
</tr>
<tr>
<td>SiO_2</td>
<td>51.45</td>
<td>51.12</td>
<td>50.82</td>
<td>51.29</td>
<td>50.44</td>
<td>50.93</td>
<td>51.39</td>
<td>51.30</td>
<td>50.29</td>
<td>51.39</td>
</tr>
<tr>
<td>P_2O_5</td>
<td>0.21</td>
<td>0.21</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>MnO</td>
<td>0.28</td>
<td>0.25</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>3.13</td>
<td>3.78</td>
<td>4.48</td>
<td>4.14</td>
<td>4.14</td>
<td>4.04</td>
<td>3.12</td>
<td>4.01</td>
<td>4.01</td>
<td>4.01</td>
</tr>
<tr>
<td>TiO_2</td>
<td>0.29</td>
<td>0.29</td>
<td>0.33</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>Cr_2O_3</td>
<td>0.09</td>
<td>0.09</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Sum</td>
<td>100.54</td>
<td>100.19</td>
<td>100.53</td>
<td>100.27</td>
<td>100.13</td>
<td>99.65</td>
<td>100.54</td>
<td>99.78</td>
<td>100.35</td>
<td>100.35</td>
</tr>
</tbody>
</table>

	T Site									
Si	1.897	1.885	1.842	1.891	1.894	1.90	1.89	1.89	1.858	1.858
Al	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

	M1 Site									
Al	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043
Ti	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
Fe^{2+}	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176
Cr	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mg	0.832	0.832	0.832	0.832	0.832	0.832	0.832	0.832	0.832	0.832

	M2 Site									
Fe^{3+}	0.544	0.544	0.544	0.544	0.544	0.544	0.544	0.544	0.544	0.544
Mn	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
Ca	0.689	0.689	0.689	0.689	0.689	0.689	0.689	0.689	0.689	0.689
Na	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sum cat.	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Sum oxy.	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Wo	42.1	45.7	42.0	4.424	4.424	4.424	4.424	4.424	4.424	4.424
En	39.2	42.3	40.1	42.6	42.6	42.6	42.6	42.6	42.6	42.6
Fs	14.7	14.0	14.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
لیست، جدول ۲
نتایج تجزیه ریزی‌داده‌های الکترونی آمپیلولهای انبیاش‌های گابریوی جنوب شاهروش، بر پایه ۲۳ اکسیون.

<table>
<thead>
<tr>
<th></th>
<th>Gb-26</th>
<th>Gb-30</th>
<th>Gb-144</th>
<th>Gb-147</th>
<th>Gb-153</th>
<th>Gb-154</th>
<th>Gb-159</th>
<th>Gb-162</th>
<th>Gb-164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>3.58</td>
<td>3.58</td>
<td>2.79</td>
<td>2.68</td>
<td>2.68</td>
<td>2.48</td>
<td>2.48</td>
<td>2.38</td>
<td>2.18</td>
</tr>
<tr>
<td>K2O</td>
<td>1.15</td>
<td>1.15</td>
<td>1.23</td>
<td>1.17</td>
<td>1.24</td>
<td>1.39</td>
<td>1.08</td>
<td>1.12</td>
<td>1.26</td>
</tr>
<tr>
<td>FeO</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>10.98</td>
<td>11.17</td>
<td>11.52</td>
<td>11.59</td>
<td>11.53</td>
<td>11.50</td>
</tr>
<tr>
<td>SiO2</td>
<td>4.06</td>
<td>4.06</td>
<td>4.06</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>MnO</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
<td>1.88</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sum</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
<td>97.28</td>
</tr>
<tr>
<td>T Site</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
</tr>
<tr>
<td>Sum</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
<td>8.000</td>
</tr>
<tr>
<td>M1 - M2 Site</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
<td>0.341</td>
</tr>
<tr>
<td>Al[6]</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ti</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Mg</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Fe2+</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>sum</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
<td>5.000</td>
</tr>
<tr>
<td>M4 - Site</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
<td>0.183</td>
</tr>
<tr>
<td>Mn</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Ca</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
<td>1.792</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sum</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>S Site</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
<td>0.150</td>
</tr>
<tr>
<td>Ca</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>Na</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>K</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Sum</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>Sum Cat</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
<td>15.941</td>
</tr>
</tbody>
</table>
شیمی کانی‌های انباسه‌تو فرولیت‌کربونیت کاربری
کانی‌های اصلی و مهم انباسه‌تو گابری مورد مطالعه را کانی‌های پلاژیوکلز، پیروسیفس، آمفیبول، کانی‌های تیره و در برخی نمونه‌ها به مقدار کم اولویتی به کرتیت و اکسید-آهی تجزیه شده است. ترکیب شیمیایی سلولی کانی‌های انباسه‌تو و پوبی کیلیتی هستند (شکل ۳-الف تا ۵).

پلاژیوکلز: ترکیب شیمیایی پلاژیوکلز نشان‌دهنده باودن میزان کلسیم در آن‌هاست. ترکیب آنها از نوع پاتوپرتیت و آنورتیت است (شکل ۴). درصد آنورتیت تا An۰۶۸ می‌رسد (جدول ۱). در برخی بلوارها دارای ساخت منطقه‌ای از نوع غادی و نوسیاه استند. در انواع با ساخت منطقه‌ای غادی، از مرکز به حاشیه وجود پلاژیوکلز کلسیم در نمونه‌ها مطالعه می‌گردد. این‌ها به جهت منطقه، دارای آب در سیستم غادی-آنورتیت-آبی، باید توجه شد. ترکیب‌های پلاژیوکلز از آنورتیت می‌شود (۵). در [۵] نیز نشان داده شده است که از شاهراه بازالتی اباد، پلاژیوکلز‌ها به درصد آنورتیت بالاتر، نسبت به شاهراه بازالتی بدون آب، می‌شود.

پیروسیفس: ترکیب شیمیایی پیروسیفس از نوع پیروسیفس-کلسیم و بر پایه تقسیم‌بندی [۶] بر دو مورد J و Q در قلمرو کلسیک (شکل ۵-الف) قرار می‌گیرد. از نوع آردیت و دیوپسید (۶.۳۲)، به نظر می‌رسد (شکل ۵-ب). به نظر می‌رسد وجود کلسیم آن‌ها با نتیجه فعالیت بالایی PPL، XPL و تصاویر P و J، (Amph) به نظر می‌رسد (Amph)، (Plag)، (Px) کانی‌های نیتره و آمفیبول فرولیت‌کربنیت (Plag)، پیروپتیه گابریوی منشکل از کانی‌های پیروسیفس (Pp)، (Plag)، (Pxx) با B و د. (Amph)
شکل ۴ نامگذاری فلدسپارهای انبساط‌های گابرویی در نمودار Ab-An-Or. پلاژیوکلازاها دارای ترکیب بابتونیت و آنتیوت هستند.

شکل ۵ منطقه‌بندی پیروکسن‌های انبساط‌های گابرویی بر پایه رده بندی [۴]. الف - جدایی پیروکسن‌های کلیسک، کلیسک - سدیک و سدیک بر پایه نمودار J-Q، نمونه‌های مورد مطالعه در گروه کلیسک قرار می‌گیرند و ب - از نوع دیوبسید و آویزت هستند.

با توجه به مطالعات سنجش‌نشانی و ترکیب شیمیایی، این آمفیبول‌ها مانگاسی بوده و به نظر می‌رسد که مستقیماً از ماده‌ی مربوط و احتمالاً بسیار تیلوپ‌پیروکسنس، اولیوبن و بلازیوکلازا می‌باشد. خاستگاه ماده‌ی آمفیبول‌های جنایه در جدول ۳ آمده است. از مقدار بالای K Na جنایه رد در حالت ۳ و افزایش در حالت ۵ است. از Ti Al کم‌رسی است که با توجه به اابست باشتر نمونه‌ها در قلمرو فروپارگازیت و سپس پارگازیت و پارگازیت هورنلند قرار می‌گیرند (شکل ۵-۵). به توجه به اابست باشتر نمونه‌ها در قلمرو فروپارگازیت و پارگازیت نشان می‌دهد که ترکیب آمفیبول‌های مورد مطالعه با یک نوع بهره‌برداری درازای مقدار زیادی

کالئایی‌های تیزره از نوع مگنتیت و نیتراتوگنتیت و حاوی TiO2 به هیچ‌یک قابل یافتن نمی‌باشد.

مشخصات زئوئسیمیای انششتئه گابریویی بررسی که‌ها و عکس‌نگری، فراوانی‌های عناصر نادر خاکی نمونه-های انششتئه‌های فرورگازتیت گابریویی مورد مطالعه که بر این اساس‌های على [12] نسبت به کندتریت بهنگار شده‌اند، نشان‌دهنده غنی‌شدن عناصر نادر خاکی سبک (LREE) نسبت به عنصرهای HREE است (شکل 7). یک غنی‌شدنی نسبی از La و تعدادی از Ce در نمونه وجود دارد که روند احتمالاً وجود گزارنده در خاستگاه را تثبیت می‌کند [12] این امر توسط مقادیر بالای عنصر نادر خاکی سبک و غنی‌شدنی کم این را تثبیت می‌شود (شکل 7). به‌نتایج متنوع می‌توان به دوگانگی بر نمونه‌های مورد مطالعه Eu / Eu* نسبت Eu* جدایی می‌شود (شکل 7). گزارنده باشد [14] به‌همراه چنین ممکن است { Eu* = (Sm + Gd) / 2 } با 1.8 تا 2.5 می‌باشد و میزان بالای نمونه‌های تجزیه شده، انششتئه‌های پلازیوکلاز را نشان می‌دهد.

![Image](image-url)

شکل 6 نمودار منطقه‌بندی آمفیبول‌های انششتئه‌های گابریویی بر پایه رده‌بندی [9]. الاف- آمفیبول‌ها از نوع آمفیبول‌های کلسیک هستند و ب- عمداً در قالب فرورگازتیت-فرورگازتیت هورسیت‌بند قرار می‌گیرند. پارچه‌های این نمونه شامل 50% Fe3 < AlIVi و Ti < 0.5 ANa + AK < 0.5 است.

![Image](image-url)

شکل 7 نمودار شده کندترین نمونه‌های مورد مطالعه بر پایه نام‌های [12].
نمونه‌های مورد مطالعه در این سیلیس‌پایین (سیالیکین) درصد (B) وجود دارد. این نشان می‌دهد، عنصر نادر خاکی سیستم نسبی و ماهیت مگمی تشکیل دهنده انتهایه‌گرایی گابوری بر باهه عنصر اصلی، قلبی‌ای است، و در نمونه‌های جدیدترین ترکیب گاپی بر باهه ترکیب کلینوپروکسین (شکل 1) نیز، نمونه‌های مورد مطالعه در مورد قلبی‌ای بازالت‌ها و Rb/Sr بر باهه قلبی‌ای بازالت‌ها قرار می‌گیرند [15]. به باهه نسبت Ba/Rb به پریدوبيتی هستند. در نمونه‌های FeO بحل، که بر پایه أيگنیانی حاصل از از میان‌هاست [16] و در شکل بازالت‌ها، نمونه‌های مورد مطالعه بین قلبی‌ای قلبی‌ای نسبت به بازالتی تهی شده و غی و شد قرار می‌گیرند بر (شکل 9). بر اساس نسبت (Ta/Th)N به میدان غوشت‌های نسبت به قرار گرفته‌های (شکل 10) و نسبت [18] Nb / Th و Ti / Yb های لیتوپوئن قرار برای نمونه‌های مورد مطالعه است.

HREE غشته (حدود 2 تا 3 درصد کنترلی) نمونه‌های مورد مطالعه احتمالاً نشان می‌دهد وجود گاپر در نماهای آن‌هاست [12] در شکل 11 که بر باهه و نسبت به باهه ماهیت مگمی است و مکانیزم ذوب خاصیت La / Yb به دیو / Yb نسبت گاپر از میان‌هاست و انتهایه‌گرایی گابوری نسبت به مکانیزم الهام‌گرفته‌گرایی کران ترکیب و درجه‌ذوب یک نسبت زایش 16 تا 18 درصد واقع می‌شود. با توجه به ماهیت مگمی، به شیب‌گذاری قابلیت بازالت‌های همکاری‌ها بین این ویژگی‌ها و درجه ذوب‌یابی‌ها و خاصیت‌های مورد مطالعه.

![نمودار](https://example.com/image.png)

شکل 8 نمودار Ti به باهه ترکیب کلینوپروکسین که در این گروه قلبی‌ای‌ها، نسبت به باهه قلبی‌ای بازالتی جداست است. [15] نمونه‌های مورد مطالعه در موز این نیز این دو قرار می‌گیرند.
شکل 9 نمودار نسبت به TiO$_2$ FeO کل فلروهای بردودیتی که در بیشتر بیابان‌های تجربی [16] است، نمونه‌های مورد مطالعه در حداکثر 10 فلروهای بردودیتی که نهایتاً قرار می‌گیرند.

شکل 10 نمودار لگاریتمی (Ta / Th)$_N$ N نسبت به (HF / Sm)$_N$ N نسبت به (HF / Sm)$_N$. نمونه‌های مورد مطالعه چنینکه نسبتهای مناسبی می‌شوند. نمونه‌های مورد مطالعه نزدیک فلروهای گوسته تهی شده (HIMU) قرار می‌گیرند (DM) [17].

شکل 11 نمودار نسبت به La / Yb برای نمونه‌های مورد مطالعه منجریهای درجه‌های بردودیتی به کمک نشانه‌گران لیزر و اسپینل از ماهیت مشاهده [19].
زمین دما-فشار سنگی

پیش از زمین فشارسنگ‌های پایه‌های آلومینیم هورنلند [۲۵, ۲۶] ساخته شده‌اند. دما و فشار سنگ‌سازی - پلاژیک‌کلاز [۲۶] در پایه‌ها مقدار سیلایس و کاتیون‌های آلومینیم روا موقتی‌های امفی‌پی‌جور و جهت کنترل اثرات می‌شود.

زمین فشار سنگ - استفاده از آلومینیم هورنلند

برسیاری از تجربیات نشان داد که ترکیب امفی‌پی‌جور علاوه بر فشار به دما، فوگاژسازی اکسیژن، ترکیب کل، و فاقدی همیشه است. یافته‌های همزمان با ترکیب [۲۷] با در نظر گرفتن این اثرات، و با بهره‌برداری از آلومینیم هورنلند، تمرکز بر این موضوع اف‌ای‌پی‌جور را می‌شود.

جدول ۴- نتایج زمین دما-فشارسنگ نمونه‌های مورد مطالعه به پایه مدل‌های ارائه شده توسط پژوهشگران مختلف.

<table>
<thead>
<tr>
<th>زمین دما - فشارسنگ</th>
<th>Gb-144</th>
<th>Gb-154</th>
<th>Gb-159</th>
<th>Gb-164</th>
<th>Gb-26</th>
<th>Gb-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>سخت</td>
<td>۷۴۷ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۷ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
<tr>
<td>سخت</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
<tr>
<td>سخت</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
<tr>
<td>سخت</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
<tr>
<td>سخت</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
<tr>
<td>سخت</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
<td>۷۴۰ Kbar</td>
</tr>
</tbody>
</table>

در نمونه‌های مورد مطالعه (شکل ۷) نیز نشان دهند. در نمونه‌های مورد مطالعه (شکل ۷) نیز نشان دهند. در نمونه‌های مورد مطالعه (شکل ۷) نیز نشان دهند.
شکل ۱۲ از پلایه‌های TiO۲ و Al۲O۳ کلسیم آمبیپول‌ها بر پایه درصد وزنی به عنوان تابع برای تعیین فشار و دما [۳۰] و موضعی تمرن‌ها

مورد مطالعه بر روی آن:

کلسیک کلیتوپروکسمن و وجود هورنبلند ماجمایی، برآورد می‌شود که آب‌های مخزن ماجمایی مورد مطالعه بین ۱۵ تا ۳ درصد آب داشته‌اند. [۴۱] الهام تغییرات عناصر کمیاب و نادر خاکی نشاندهنده ریشه گرانتر لرزولیتی با درجه‌های نسبتاً بالای ذوب بخشی (حدود ۱۹ تا ۱۸ درصد) از محل گونه‌های لیتوسفری زیر قاره‌ای است. زمین فشارسنجی این سطحها با استفاده از اوموئین، کل حاشیه‌های آمبیپول و بر پایه رابطه اشیمت، نشاندهنده قلمرو فشار بین ۷۴ تا ۱۲۴ کیلومتر، معادل عمق‌های حدود ۲۷ تا ۲۳ کیلومتر پوشش می‌شود.:

دما شناسی با استفاده از دماغ از سطح‌های نسبتاً نیز بر پایه میزان آلومینیوم و تیناکیوم آمبیپول، نماهنگ دمایی تعادل بین ۸۴ تا ۸۰ درجه سانتی‌گراد است.

مراجع

[۱] خادمی م. ویژگی‌های آب‌های خشک‌های ودیده ژئوساخته‌ای منطقه طروت، رساله دکتری دانشگاه شهید بهشتی (۱۳۸۶) ص. ۲۳۰.
[۲] قربانی ق. "پلایه‌های سطح‌های ماجمایی جنوب داغان"، رساله دکتری دانشگاه شهید بهشتی (۱۳۸۴) ص. ۲۳۵.

زمن دما-فشارسنجی سطح‌های آندریت بالاتری - بالاتری میزان، بر پایه فرمول‌های [۲۷] و [۲۴] به ترتیب دما‌های تعلیق ۴۱۷ تا ۴۰۰ درجه سانتی‌گراد را نشان می‌دهد. [۲۱] زمین دما-فشارسنجی انباسته‌های گابروفی و سنتگهای میزان آندریت بالاتری - بالاتری با استفاده از دمایشنان مختلف نشانمکی دما‌های تخمین‌کنی به یکدیگرند. بنابراین با توجه به نتایج به دست آمده، احتمالاً مخزن ماجمایی سطح‌های موجود در عمق حدود ۲۲ کیلومتری بوسته با درصد میلیونی، و سنتگهای گابروفی توصیف شده نشان‌های بلوی اولیه ماجمای ماد سنتگهای میزان در مخزن ماجمایی هستند.

برداشت

انباشته‌های گابروفی موجود در سطح‌های آتش‌نشانی جنوب شاهراه از کلیه آمبیپول، پلاژیکولز، پیروکسن، اولیوین و کاتی‌های نیز تشکیل شده‌اند. ماهیت ماجمایی انباسته‌های گابروفی مورد مطالعه بر پایه عناصر اصلی و ترکیب کلیتوپروکسمن، همچنین، میزان مورد نیاز کلیتوپروکسمن که به‌منظور تهیه بیشینه‌ترین نتایج اصلی بر پایه ریزداراندک هیدرو می‌گردد از نوع قند درختی، فربی‌گرایز و هورنبلندین. بنابراین فرمول‌های آزمایش مورد مطالعه از یک ماجمایی و دمای بالا هستند. ضخامت آمبیپول ماجمایی نشان می‌دهد که ماجما بایستی مقدار زیادی آب داشته باشد. شواهد مربوط به نشان می‌دهد که کمولهای گابروفی مورد مطالعه از یک ماجمایی بالاتری نسبتاً آبدار بلوی شده و بر پایه بالا بودن میزان آلومینیوم پلاژیکولز.