Petrology and Petrogenesis of Igneous Bodies of Divan-Daghy, Ghareh-Gose North of Marand (East Azarbaijan)

S. Aamini¹, A. Ravankhah¹, M. Moayyed²

¹- Tehran, Tarbiat Moallem University, Faculty of sciences, Department of Geology.
²- Tabriz, University of Tabriz, Department of Geology.
E-mail: Sadramini@tmu.ac.ir

(Received: 20/5/2007, in revised form: 10/4/2008)

Abstract: Acidic and basic volcanic and intrusive rocks of Harzandat-Divan Daghy as individual masses, are located in North and Northwest of Marand (Harzandat) and South of Jolfa (Ghareh Gose-Divan Daghy) trending NW-SE. These rocks are located under Permian progressive deposits, which are covered by an igneous sole unconformity. Lithological composition of the acidic volcanic rocks ranges from dacite, rhyodacite to rhyolite, and basic volcanic rocks range from basalt to basaltic-andesite, where as plutonic rocks are of quartz-syenite. Major minerals of the acidic volcanic rocks and acidic intrusive bodies are quartz, plagioclase and K-feldspar and of the basic volcanic rocks are plagioclase, pyroxene and olivine. Minor minerals of these rocks are biotite, amphibole, sodic pyroxene, apatite, titanite and zircon. Emplacement of intrusions was in shallow depths as dyke, sill and small stocks and are of A-type. Studies show that acidic volcanic rocks are cognate to intrusive bodies and these rocks are A1 type. Basic volcanic rocks plot in two field on the discriminant diagrams for basalts: oceanic basalts and within plate basalts, therefore two possibilities may reinforced: 1) either these basalts are the remnants of early Paleo-Tethys oceanic-crust or 2) these basalts were erupted in post collision and within plate environments perior to acidic eruptions and intruding of acidic masses. With respect to shoshonitic characteristics of these basalts which have been determined on the basis of immobile elements, and considering absence of shoshonitic rocks in oceanic environments the latter idea seems to be more acceptable.

Keywords: Petrology, Divan Daghy-Ghareh Gose, Basalt, Shoshonite, Marand, A-type
سنگشناسی و سنگزایی توده‌های آذرین دیوان داغی - قره گوز شمال مرند (آذری‌یاپان شرقی)

صدراالدین امینی، علیرضا روانخوا، محسن مؤید

چکیده: سنگهای آتشنشانی اسیدی، بازی، و توده‌های نفوذی هرزندات - دیوان داغی به صورت لکه‌های پراکنده در شمال و شمالغرب مرند (هرزندات) و جنوب چالی (کوه‌های قره و دیوان داغی) با راسته تقریبی NW–SE و رخ همگونی شان و به گونه‌ای آدنین پی توزیع می‌شوند. ترکیب سنگ‌شناور سنگهای آتشنشانی اسیدی در حد داستی ت روکش‌سیتی و رولیت، ترکیب سنگ‌شناور سنگهای آتشنشانی باری در حد بازالتا ت آندریتا بازالتا، و ترکیب سنگ‌شناور توده‌های نفوذی در حد گوارنشینی آت است. کانهای اصلی سنگ‌های آتشنشانی اسیدی و توده‌های نفوذی اسیدی شامل کوارتز، بلژیکلاژ، فلدسپار پتاسیسی، و کانهای اصلی سنگهای آتشنشانی اسیدی شامل پلاژیکلاژ، پیروسیت، و در برخی نمونه‌ها اولپهین است. کانهای فروری و غارهایی از یونیت، آمفیبول، پیروسپت و سدیکی آبی، آبی‌نارنجی، و زیرکی ترکیب شده‌اند. یاکه‌های توده‌های نفوذی به صورت دایک، سیل، و استوکهای کجکی و کم معمول بوده و به انواع A1 تعقیب دارند. بررسی نمونه‌های میده که سنگهای آتشنشانی اسیدی همه‌هایی با توده‌های نفوذی بوده و به اینواع A1 تعقیب دارند. سنگهای آتشنشانی باری در نمونه‌های تفکیک کننده محیط زمین ساختی پیشانی در دو گروه بازالت‌های اقیانوسی و بازالت‌های درون قاره‌ای قرار می‌گیرند. از احتمال را تقیم می‌کنند: 1) از باقیمانده‌های الیزه‌ای اقیانوسی، پالژوئوسی اولارد و 2) بیش از فراوانی‌های اسید و توده‌های نفوذی اسیدی در محیط‌های پی‌سپرده و درون صفحات قوارن کرداند. از تاریخی به مدتی موشنگی آن‌ها به تاریخ‌بندی غربی و شرقی می‌شود که در منطقه شوشتر شهروندی این اپی‌ناک مد نشده و عدم مشاهده شوشنی‌ها در محیط‌های اقیانوسی، احتمال دوم مقدمات است.

واژه‌های کلیدی: سنگ‌شناسی، دیوان داغی - قره گوز، بازالتا، شوشنی‌ها، مرند.

A-type

مقدمه

گستره مور مطالعه بین طولهای جغرافیایی شرقی، ۵۲۰ تا ۳۲۵ و عرضهای جغرافیایی شمالی، ۴۸۰ تا ۳۸۰ قرار داشته است. رخ‌نمای سنگهای آتشنشانی و نفوذی مورد بررسی در دامنه‌های جنوبی و شمالی ارتفاعات قره گوز و دیوان داغی و در حد فاصل شهرستان‌های مرند تا جلفا و در شمالغرب ایران به چشم می‌خورد (شکل ۱).
آذرین بی، پویشیده می‌شود. لذا سن نسبی این رخداد مکانی به فاز هرسی نین (مرز دویستین - گرینلی) نسبت داده می‌شود. شاهد جهانی ناسیسی دیگر از جمله قرار نشته‌های پیشانی BA به جامعه پیشانی ریونی هسته‌ای آتش‌سوزی اسید در روزانه IRAN و نیز پیش‌روی نه‌نشسته‌ای گیاهان بر روی سنگ‌های آتش‌سوزی BA ناشناخته‌ی برای این سنگ‌های به روش‌های فیزیکی غرب‌ترین داغی (شناسه ده‌کردی که چاپ‌گیری این توده‌ها بیش از پریم و پس از دونین و به احتمال زیاد در طی فاز کوه‌های هررسی نین صورت گرفته است.

زمین‌شناسی و سنجش‌های نه‌نشته‌ای

روش کار
این کار یپوهشی در دو مرحله صحرایی و آزمایشگاهی صورت
پذیرفته است. در یک مدل آزمایشگاهی فیلیپس PW2404
(XRF) به کمک دستگاه
بنا به روش نشان داده شده در جدول 1
ارزش گردیده مورد تجزیه و تحلیل قرار گرفته بود.

| پمپمتر
| اکسیدها، درصد وزنی و سایر عناصر |
| Application |
| Rhyolite |

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sample name</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>BR-3</td>
<td>%</td>
<td>73.2</td>
</tr>
<tr>
<td></td>
<td>ER-15</td>
<td>%</td>
<td>82.5</td>
</tr>
<tr>
<td></td>
<td>AR3g2</td>
<td>%</td>
<td>73.2</td>
</tr>
<tr>
<td></td>
<td>DR-15</td>
<td>%</td>
<td>71.7</td>
</tr>
<tr>
<td></td>
<td>AR3f2</td>
<td>%</td>
<td>73.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>%</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>23.6</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td></td>
<td>%</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>7.6</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>%</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>1.1</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>%</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>3.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>%</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>3.9</td>
</tr>
<tr>
<td>K₂O</td>
<td></td>
<td>%</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>1.7</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>%</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>0.2</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>%</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>0.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td></td>
<td>%</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>0.3</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>ppm</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>ppm</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>ppm</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>ppm</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>ppm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>ppm</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>ppm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

لحظه بی‌پایان: نمونه‌هایی از سنگ‌هایی که در سطح تغییرات لیتولوژیکی توده‌های مورد مطالعه بررسی شدند، و برای تغییرات مشاهده شده، تعداد 150 نمونه برای بررسی
سنگ‌شناسی برداشت شدند. از نمونه‌های برداشت شده مقطع تازی تهیه و مورد بررسی قرار گرفته. در این کار

نمونه‌هایی از سنگ‌هایی که در سطح تغییرات لیتولوژیکی توده‌های مورد مطالعه بررسی شدند، و برای تغییرات مشاهده شده، تعداد 150 نمونه برای بررسی
سنگ‌شناسی برداشت شدند. از نمونه‌های برداشت شده مقطع تازی تهیه و مورد بررسی قرار گرفته. در این کار

Downloaded from ijcm.ir at 4:46 +0330 on Wednesday November 6th 2019
<table>
<thead>
<tr>
<th>Application</th>
<th>Rhyolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
<td>BR-12</td>
</tr>
<tr>
<td>Compound</td>
<td>Unit</td>
</tr>
<tr>
<td>SiO₂</td>
<td>%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>%</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>%</td>
</tr>
<tr>
<td>MgO</td>
<td>%</td>
</tr>
<tr>
<td>CaO</td>
<td>%</td>
</tr>
<tr>
<td>Na₂O</td>
<td>%</td>
</tr>
<tr>
<td>K₂O</td>
<td>%</td>
</tr>
<tr>
<td>MnO</td>
<td>%</td>
</tr>
<tr>
<td>TiO₂</td>
<td>%</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>%</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
</tr>
<tr>
<td>Ga</td>
<td>ppm</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
</tr>
<tr>
<td>Sn</td>
<td>ppm</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
</tr>
<tr>
<td>Rb</td>
<td>ppm</td>
</tr>
<tr>
<td>Sr</td>
<td>ppm</td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
</tr>
<tr>
<td>Zr</td>
<td>ppm</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
</tr>
<tr>
<td>Yb</td>
<td>ppm</td>
</tr>
<tr>
<td>Sc</td>
<td>ppm</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
</tr>
<tr>
<td>Sm</td>
<td>ppm</td>
</tr>
<tr>
<td>Ta</td>
<td>ppm</td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
</tr>
<tr>
<td>Sample name</td>
<td>BR-16</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Compound</td>
<td>Unit</td>
</tr>
<tr>
<td>SiO₂</td>
<td>%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>%</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>%</td>
</tr>
<tr>
<td>CaO</td>
<td>%</td>
</tr>
<tr>
<td>MgO</td>
<td>%</td>
</tr>
<tr>
<td>K₂O</td>
<td>%</td>
</tr>
<tr>
<td>Na₂O</td>
<td>%</td>
</tr>
<tr>
<td>MnO</td>
<td>%</td>
</tr>
<tr>
<td>TiO₂</td>
<td>%</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>%</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
</tr>
<tr>
<td>Hf</td>
<td>ppm</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
</tr>
<tr>
<td>Rb</td>
<td>ppm</td>
</tr>
<tr>
<td>Sc</td>
<td>ppm</td>
</tr>
<tr>
<td>Sm</td>
<td>ppm</td>
</tr>
<tr>
<td>Sr</td>
<td>ppm</td>
</tr>
<tr>
<td>Ta</td>
<td>ppm</td>
</tr>
<tr>
<td>Tb</td>
<td>ppm</td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
</tr>
<tr>
<td>Yb</td>
<td>ppm</td>
</tr>
<tr>
<td>Zr</td>
<td>ppm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample name</th>
<th>CR-2</th>
<th>BR-18</th>
<th>BR-13</th>
<th>ER-3</th>
<th>CR-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>Unit</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>SiO₂</td>
<td>%</td>
<td>50.47</td>
<td>59.77</td>
<td>35.71</td>
<td>54.82</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>%</td>
<td>13.08</td>
<td>14.34</td>
<td>14.24</td>
<td>15.34</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>%</td>
<td>18.94</td>
<td>13.95</td>
<td>9.50</td>
<td>9.6</td>
</tr>
<tr>
<td>CaO</td>
<td>%</td>
<td>4.57</td>
<td>5.91</td>
<td>2.93</td>
<td>8.75</td>
</tr>
<tr>
<td>MgO</td>
<td>%</td>
<td>5.95</td>
<td>1.85</td>
<td>1.81</td>
<td>1.85</td>
</tr>
<tr>
<td>K₂O</td>
<td>%</td>
<td>0.10</td>
<td>0.87</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Na₂O</td>
<td>%</td>
<td>0.76</td>
<td>0.32</td>
<td>0.32</td>
<td>0.79</td>
</tr>
<tr>
<td>MnO</td>
<td>%</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>TiO₂</td>
<td>%</td>
<td>3.23</td>
<td>3.95</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>%</td>
<td>0.47</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
<td>44.0</td>
<td>37.7</td>
<td>3.3</td>
<td>7.44</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Eu</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hf</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>0.21</td>
<td>0.24</td>
<td>0.24</td>
<td>0.19</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
<td>0.23</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>0.05</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Rb</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sc</td>
<td>ppm</td>
<td>0.25</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Sm</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sr</td>
<td>ppm</td>
<td>3.72</td>
<td>4.55</td>
<td>2.96</td>
<td>5.16</td>
</tr>
<tr>
<td>Ta</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Tb</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Yb</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Zr</td>
<td>ppm</td>
<td>3.46</td>
<td>3.46</td>
<td>3.46</td>
<td>3.46</td>
</tr>
<tr>
<td>Application</td>
<td>Syenite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample name</td>
<td>CR-13</td>
<td>CR-12</td>
<td>CR-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>62.6</td>
<td>66.78</td>
<td>61.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.27</td>
<td>17.79</td>
<td>18.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.55</td>
<td>5.97</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>10.9</td>
<td>11.8</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>29.6</td>
<td>31.2</td>
<td>3.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.72</td>
<td>4.98</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>4.32</td>
<td>5.04</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>7.3</td>
<td>7.99</td>
<td>8.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.18</td>
<td>0.14</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.19</td>
<td>1.10</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.27</td>
<td>0.82</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.24</td>
<td>0.82</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.18</td>
<td>0.18</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>0.32</td>
<td>0.48</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>0.16</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.19</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>0.25</td>
<td>0.35</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.92</td>
<td>0.93</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شرح بررسی‌ها
بررسی‌های سنگ‌شناختی سنگ‌های آنتفنشانی استدی نشان می‌دهد که بافت غالب در این سنگ‌ها پورفریک بوده (شکل 24) و کانتینشانی اصلی این سنگ‌ها شامل کوارتز، پلاژیوکلاز، و فلدسپار پتاسیم است. پلاژیوکلازهای موجود دارای مولکولهای جند ترکیبی مخصوص، شعاعی و صلیبی (شکل 23) بوده و در برخی از نمونه‌های پرینت نیز مشاهده می‌شود. همچنین از هم‌رشته کوارتز و فلدسپار پتاسیم باتریگر فرمایش نیز در این سنگ‌ها شکل‌بندی شده است (شکل 24). کلیه سنگ‌های موجود در این سنگ‌ها زیرکن، آنتیت و اولیوین غی از آهن (فیالیت) شکل‌بندی می‌شوند.

در سنگ‌های آنتفنشانی باری بافت کلی میکروپلیتی با بین دانه‌ای بوده (شکل 36) و کانتینیشن اصلی این سنگ‌ها شامل...
پلزیوکلاز، بروکسن و در برخی از نمونه‌ها اولیوین است. پلزیوکلاز‌های موجود در اکثر مکل‌های چند ترکیبی و در جلچم‌های بوده و در برخی از نمونه‌ها، رشد ایدینگست و کلسه‌ای روز دو بریست بلورهای پلزیوکلاز دیده می‌شود. بلورهای پلزیوکلاز هم به صورت سالم و هم دگرسان بوده و در بعضی از نمونه‌ها، پلزیوکلازهای اپیدوتپوز مشاهده می‌شود.

شکل ۲ (a) بافت پورفضیک در سنگهای ان‌اش‌فرازی اسیدی منطقه. نور XPL. ماکل شعاعی و صلیبی در پلزیوکلازهای سنگهای ان‌اش‌فرازی (b) XPL. بلافاصله پورفضیک در سنگهای ان‌اش‌فرازی اسیدی منطقه، نور XPL. (c) XPL. بلافاصله گرمان‌فریک در سنگهای ان‌اش‌فرازی (d) XPL. بلافاصله منطقه، نور XPL. اسیدی منطقه. نور XPL.

شکل ۳ (a) بلافاصله میکروتی‌ای در سنگهای ان‌اش‌فرازی بازیک منطقه. نور XPL. اولیوین ایدینگسته شده در سنگهای ان‌اش‌فرازی بازیک منطقه، نور XPL.
در توده‌های نفوذی نیز بافت غالب، گرانولار (شکل ۲۴) بوده و کانی‌های اصلی موجود شامل کوارتز، پلاژیوکلاز، و فلدسپار پنتیسم است. این سنگ‌ها، تغییرات یافته در شکل کوارتز به صورت منفرد با ابزارهای فیزیکی بیشتر فرآیند یافته بود. تغییرات بین رویه‌های را باوجود آورده است. بلورهای سالم پلاژیوکلاز، بنا بر پایه شناخت و بسیاری از این سنگ‌های گروه‌های یافته هستند. در برخی از نمونه‌ها دانه‌ای هم رویه‌های گرانولاری با کوارتزنده (بافت گرانولار) (شکل ۲۵). کانی‌های فرعی موجود شامل زیرکیان، آپاتیت، بیوتیت و آمالسیت است. بطریک یک بیوتیت‌های کانی‌های شده و می‌توانند به کلیسیت و کانی‌های نزدیک شده‌اند.

برای بررسی‌های صحرایی و زئوپتاییمات، مجموعه‌های سنگی در ارتفاعات دیوان داغ قره‌گوز در گونه سنگی مختلف شامل سنگ‌های انفیتی، سنگ‌های انفیتی‌یازد و سنگ‌های نفوذی قابل توجه بندی هستند. سنگ‌های انفیتی اسیدی ترکیبی در حد داسیت تا روپاسیت و سنگ‌های انفیتی‌یازد ترکیبی در حد بین‌ریت تا اندزیت ساخته و نفوذی ترکیبی در حد کوارتز سینیت دارند.

با مقایسه درجه‌های حاصل از بررسی‌های سنگ‌شناسی و زئوپتاییمات، سنگ‌های منطقه با متغیرهای سنگ‌شناسی و زئوپتاییمات گونه‌های مختلف گرانولاری، می‌توان استنباط

\[
\text{XPL} \quad \text{b) بافت گراقلاز در کوارتز سینیت، نور} \quad \text{XPL} \quad \text{a) بافت گراقلاز در کوارتز سینیت، نور}
\]

\[\text{شکل ۵} \quad \text{a) بافت گراقلاز در کوارتز سینیت، نور} \quad \text{b) بافت گراقلاز در کوارتز سینیت، نور}
\]
بازی بیشتر از نوع شوشوئینی است که که در آثار دغرسانتی و تحرک عنصر اصلی ویژگی نیمه قلبی نشان می‌دهد.
برای تعیین دگرگونی‌های ماده‌ای و عوامل مؤثر در تولید ماگما و نیز تعیین شرایط فیزیکی-شیمیایی مکان خاستگاه از نمودارها عکس‌برنگی به‌هم‌جاشده به SHM و ORG استفاده شده است.

مقایسه نمودار عکس‌برنگی گروه عنصر کمیاب به‌هم‌جاشده (گرافیتولودهای پشت‌های‌های اقیانوسی) در نسبت مغناطیسی اسیدی هم‌ریزی با نمودار نفوذی اسیدی به همراه نمودار اثر نفوذی، نمودارهای مربوط به سنگ‌های گرافیتولودهای از محیط‌های مختلف زمین‌ساختی

[۱۰۰۱ نشان می‌دهد که سنگ‌های مورد مطالعه هم‌ریزی با الکوی گرافیتولودهای سری ماده‌ای سنگ‌های آنفلاتسی و توده‌های نفوذی در نمودار [۱۱۱۱، نسبت مغناطیسی (شکل ۹۱) و قلبی نسبت به سپری Q [۹۱، قلبی‌کننده شده است (شکل ۳۱). با توجه به گسترش پدیده‌گرایی در سنگ‌های آنفلاتسی بازی و تا حدودی در سنگ‌های آنفلاتسی اسیدی و نمودار نفوذی، برای Ta، Yb، Ce، Th و استفاده شده است. سنگ‌های آنفلاتسی اسیدی در نمودار Ce/Yb-Ta/Yb [۳] نمودارهای وابسته به سنگ‌های آنفلاتسی بازی در این نمودار بیشتر در کویر شوشوئینی قرار می‌گیرند (شکل ۹۸). بنابراین می‌توان نتیجه گرفت که سری ماده‌ای سنگ‌های آنفلاتسی

شکل ۵ موقعیت نمودارهای مرذور مطالعه و توده‌های هم‌ریزی وابسته بر پایه نسبت‌های عنصر اصلی و کمیاب [۱۰] (علاوه‌داهنده نشان دهنده سنگ‌های آنتفلاتسی)

شکل ۶ تفکیک سنگ‌های آنتفلاتسی اسیدی و توده‌های نفوذی منطقه به زیر گروه‌های A1 و A2 و موقعیت نمودارهای مرذور مطالعه در آن [۱۰] (داهنده N)
درون صفحه‌ای WPG (دراز (شکل 2 (a, b) بالا) برای عنصر LIL در این نمونه‌ها و تهی شدن گیا از HREE تا وان به دلیل نقش پوسته‌ای و یا تکثیر ماده‌ای مولک‌سنجی‌های انسپشیالی اسیدی و توده نفوذی از مذاب‌های حاصل از پوسته زرین و در اثر استفرار ماکم‌های باری، و یا به دلیل نخ ره‌ک ره دوبل و درجه

![Diagram](image)

در این نمونه‌ها نویم (WPG) (دراز (شکل 2 (a, b) بالا) برای عنصر LIL در این نمونه‌ها و تهی شدن گیا از HREE تا وان به دلیل نقش پوسته‌ای و یا تکثیر ماده‌ای مولک‌سنجی‌های انسپشیالی اسیدی و توده نفوذی از مذاب‌های حاصل از پوسته زرین و در اثر استفرار ماکم‌های باری، و یا به دلیل نخ ره‌ک ره دوبل و درجه

![Diagram](image)

در این نمونه‌ها نویم (WPG) (دراز (شکل 2 (a, b) بالا) برای عنصر LIL در این نمونه‌ها و تهی شدن گیا از HREE تا وان به دلیل نقش پوسته‌ای و یا تکثیر ماده‌ای مولک‌سنجی‌های انسپشیالی اسیدی و توده نفوذی از مذاب‌های حاصل از پوسته زرین و در اثر استفرار ماکم‌های باری، و یا به دلیل نخ ره‌ک ره دوبل و درجه

![Diagram](image)

در این نمونه‌ها نویم (WPG) (دراز (شکل 2 (a, b) بالا) برای عنصر LIL در این نمونه‌ها و تهی شدن گیا از HREE تا وان به دلیل نقش پوسته‌ای و یا تکثیر ماده‌ای مولک‌سنجی‌های انسپشیالی اسیدی و توده نفوذی از مذاب‌های حاصل از پوسته زرین و در اثر استفرار ماکم‌های باری، و یا به دلیل نخ ره‌ک ره دوبل و درجه

![Diagram](image)

در این نمونه‌ها نویم (WPG) (دراز (شکل 2 (a, b) بالا) برای عنصر LIL در این نمونه‌ها و تهی شدن گیا از HREE تا وان به دلیل نقش پوسته‌ای و یا تکثیر ماده‌ای مولک‌سنجی‌های انسپشیالی اسیدی و توده نفوذی از مذاب‌های حاصل از پوسته زرین و در اثر استفرار ماکم‌های باری، و یا به دلیل نخ ره‌ک ره دوبل و درجه
احتمال زیادی مجموعه‌ای از اتم‌های Cr و Ni در ستون‌های آلیکسی‌بی‌سنتورهای دگرگون در کوه‌های میان‌رودان می‌تواند به وسیله گسل جنوبی میشو حریر آنها منشأ شده است. به‌طوری‌یک توالی اولویتی خلقتی منطقه S-type از نوع قرار گرفتن رود دارای منطقه زمین‌پدیده (Suture Zone) این منطقه از زمین‌پدیده از ماین‌های جنوبی میشو و ترتیب را به عنوان حاشیه فعال فوران‌شکل، و پوسه‌ها را از اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسل‌های یک‌ماین برد به شدت به سمت شمالغرب از حالت مواری خارج شده و احتمالاً به پایین به کبدیرو و شناسه‌ها می‌پردازد. واگاه اعضا ایجاد شده، رخت‌نشانی‌های مشابهی در رستای خط‌رده‌ای باد شده تا مرز آب و ترمیم در مناطق هزینه‌ها و کوه‌های دیویان داخل دیده می‌شود. درمانده‌های میشو A-type مطالعه اشکال‌هایی که ستون‌های آتش‌نشانی باریک را دیواری از دیما برد، و پوسه‌ها را اوراسیا در نظر گرفته. ادامه گسلم...
شکل ۱۱ تفکیک محیط زمینی سنگهای آتش‌شعلی اسیدی و توده نفوذی منطقه با استفاده از نمودارهای مانیار و پیکولی [۱۱] (دابره‌ها نشان دهنده سنگهای اسیدی و مثلثی‌ها نشان دهنده توده نفوذی).

شکل ۱۲ تعیین محیط زمین‌ساختی سنگهای آتش‌شعلی اسیدی و توده نفوذی منطقه و موقعیت نمونه‌های مورد مطالعه در آن [۱۲] (دابره‌ها نشان دهنده سنگهای اسیدی و مثلثی‌ها نشان دهنده توده نفوذی).

قرار می‌گیرد [۱۲] در کوههای مورو و میشو رخخمون سنگهای مافیک و اوتلامافیک درونگن به احتمال زیاد به بقایای بوسته اقیانوسی بالانتاسی بار مربوط که طی رخداد هرسی نین روی بوسته ایران که از گندوانا جدا و به اوردایا ملحق شده است رانده شد [۱۱] با استفاده این مسئله می‌توان سنگهای بایز رخخمون باقی‌مانده در کوههای دیوان داغی و زیر کرز را ادامه بقایای بوسته اقیانوسی فرض کرد که این صورت گوناگونی‌های A منطقه و سنگهای آتش‌شعلی هم‌خون را می‌توان به توده‌های نفوذی پس‌بازخورده نسبت داد. لازم به بیان است که مثال این تودها در کوههای مورو و میشو (الکالی‌گرانیت و سنگهای مافیک) توده‌های مافیک-اوتلامافیک درونگن قاطع می‌کند و به عنوان توده‌های گونه‌A مربوط به رودبار برخوردار ایران با اوراسیا در نظر گرفته شده‌اند [۱۱].

با توجه به همیافتاً سنگهای آتش‌شعلی باری و سنگهای آتش‌شعلی اسیدی، با توجه به اینکه سنگهای آتش‌شعلی اسیدی هم از خروجی توده‌های نفوذی منطقه‌اند، از طرفی سنگهای آتش‌شعلی بازی که با توده‌های نفوذی قطع شده‌اند، Ti-Zr-Sr در نمودارهای جدا کننده سنگهای بارزیا، نمودار NW-SE مرز ایران و ترکیه و در راستای ادامه می‌پاید که به خشی از آن بر گسل نتریز و یا گسل جنوبی کوههای میشو
بررسی مدل زمین‌ساختی جهانی ارائه شده برای تحلیل پالیوتیس اول نشان می‌دهد که توده گرانیتروپیدی گونه A مورد مطالعه بعد از برخورد قاره - قاره شامل گرفتگی و مشابه نوع و میشه است. بر بایا این مدل در یک زمانی زمینی که کالدونینی‌ها هستند، ایران از گندوانا جدا شده و با فرآیندها به شمال پوسته یافتنی پالیوتیس اول، این اکتیوسی بین خرد ورقه ایران و اوراسیا به سه، و پس از برخورد قاره - قاره در بالادوگی پس از برخورد توده‌های گرانیتروپیدی گونه A مورو و میشه و دیوان داغی و فرآیندهای جایگزینی کرده‌اند [۱۴] (شکل ۱۵).

۲- با توجه به سرشت شوشنیتی ماکمای مولد سنگهای Zr/Y-Zr یافته‌ها در موقعیت‌های درون ورناخ (شکل ۱۶) می‌توان چنین فرض کرد که پس از روداد برخورد این نیز که مهم الحاق پوست نیز به اوراسیا واقع شد، ممکن است فاصله و در اثر تداوم حركت‌های کششی ناشی از بالادوگی پوسته، فعالیت‌های آتش‌سوزی درون ورناخ و پساب‌بندی آغاز شد و به دنبال آن گرانیتروپیدی گونه A پس از فعالیتهای کوه‌های و جایگزینی پوسته جایگزینی کرده‌اند. با توجه به سرشت شوشنیتی سنگهای آتش‌سوزی باری و عدم همراهی توده‌های اولتراواپیک با این رخ‌مناها، مدل دوم مقبول است.

شکل ۱۲ نمودار متمایز کندنگی پازالت‌ها بر اساس Ti/Zr-Sr و موقعیت نمونه‌های مورد مطالعه در [۱۵].

شکل ۱۳ نمودار متمایز کندنگی پازالت‌ها بر اساس Ti/Zr-Sr و موقعیت نمونه‌های مورد مطالعه در [۱۶].
برداشت

1- در منطقه مورد مطالعه، نتیجه‌های اکتشافی با ترکیب کوارتز سپینیت با نهنشت‌های کربناتی و شیلی دوینی در ده‌های جلفا هم‌مرجع درست داشته و سنگ‌های اکتشافی اسیدی با ترکیب
داسیت تا بروداسیت و روی‌پوش هم‌خون با نتیجه‌های نفوذی و
پاتری با ترکیب پارکات تا آندزیت با نتیجه‌های پیچش‌برنده
برمی‌باشد که این پتیت آتیین به‌نوع شیبی در می‌شود. لذا سن نسبی
این رخ‌های مکانی با فاکس‌های نی (مرز دوینی - کربونیفور)
نسبت داده می‌شود.

2- مکانی مول سنگ‌های اکتشافی اسیدی و نتیجه نفوذی
اسیدی آتیت کلایای زئیت (به علت هضم بی‌پوزشی) و سنگ‌های
انشافی بازی پویا، اکتشافی است.

3- سنگ‌های اکتشافی اسیدی هم‌خون با نتیجه نفوذی و نتیجه
اسیدی اسیدی معنی مول بی‌پوزشی گونه A بوده و در زیر
گروه A قرار می‌گیرد، لذا می‌توان یک‌تی این سنگ‌ها
منشا خاص‌گونه‌های داشته و اکتشافی‌های درونی صخه
ای و با در ارتباط با فعالیت‌های بالا‌مدگی پس‌سپارخورد چاپی‌گری

سنجش‌نامه و سنگرایی نتیجه‌های آذرین دیوان داغی - قره‌گوز شمال مرند (آذربایجان شرقی)

شکل 15 مدل زمین‌ساختی جهانی حول پالئوئوسکل وول [14].

