The role of xenocrysts, enclaves and syn-plutonic dykes in the interpretation of magmatic evolution of the Alvand plutonic complex with emphasis on geological and mineralogical evidence for magma mingling

A. A. Sepahi

Department of Geology, Bu Ali Sina University, Hamedan
E-mail: Sepahi@basu.ac.ir

(Received: 4/4/2007, in revised form: 8/4/2008)

Abstract: Despite that, in the Alvand complex, the mafic-intermediate rocks (gabbros, diorites and tonalites) are mostly older than felsic rocks (granodiorites and monzogranites), and mineralogical and geochemical discontinuity is seen between them, there are evidence that indicate they have sometimes been co-existed. With the studies on field relationship of rocks, xenocrysts assemblages, synplutonic dykes and their related enclaves I affirm synchronous occurrence of mafic and felsic magmas, in some periods, and I present evidence of magma mingling/mixing between them. Gabbro-dioritic magmas of mantle origin from one side and crustal, anatectic magmas from another side were intruded the area repeatedly and sometimes synchronously, and produced a range of crustal (anatectic), mantle and hybrid rocks. Granitic rocks of crustal origin mostly contain restitic (surmicaceous) enclaves, sillimanite, andalusite, cordierite and garnet xenocrysts and their common mafic mineral is biotite (without any hornblende). Migmatitic rocks containing porphyroblast assemblages resemble the xenocryst minerals of granites occurring near to granites. Mantle type rocks (gabbro-diorite-tonalites) commonly have pyroxene and hornblende as common mafic minerals and surmicaceous enclaves and xenocrysts are not common in them. Hybrid rocks have a set of geological characteristics between crustal and mantle type rocks. Geochemical properties of mentioned rock types are separatable from each other and confirm deductions outlined above.

Keywords: mingling, Alvand, enclave, hybrid, magma, migmatite.
نقوش زینکروسیت‌ها. برونزی‌ها و دایک‌ها بی‌همزمان با پلوتونیسم در تفسیر تجربه مراکی مجموعه پلوتونیک الوند: با تأکید بر شواهد زمین‌شناسی و کانی شناسی مربوط به آمیختگی مراکی

آیین‌نامه مراکی

گروه زمین‌شناسی دانشگاه بوعلبک سیباستیان
sepahi@basu.ac.ir

پست الکترونیک:

دریافت مقاله: ۱۳۸۸/۵/۱۵، نسخه نهایی: ۱۳۸۸/۷/۲۷

چکیده: با آینده در مجموعه الوند سنگهای مافیک-سپاهی (گرزونی‌پوریتی‌ها و موزونی‌پوریتی‌ها) و میان آن‌ها گسترش‌کننده کانی‌شناسی و زئوشیمی‌پوریتی‌های دیده می‌شود، لی او شواهدی وقوع داده که نشان دهد مراکی‌های مافیک و فلایسیک در طول حیات خود گاهی همزمان نیز شکل گرفته باشند. با مطالعات رویابی‌های صحرائی‌سپاهی، مجموعه زئوفیروکسیت‌ها، دایک‌ها بی‌همزمان با پلوتونیسم، و پلوتونی‌های متشبک از آن‌ها ضمن دنبال حضور نوآور نمی‌باشد. مراکی یا تغییرات فلایسیک و مافیک به شواهدی مرتبط در این حالت قادر به احتمال پاسخ‌های را ایجاد کرده‌اند. در منطقه مورد مطالعه، سنگ‌های مافیکی با خاستگاه پوسته‌ای با تغییرات فلایسیک و مافیک به شواهدی مرتبط در این حالت قادر به احتمال پاسخ‌های را ایجاد کرده‌اند در منطقه مورد مطالعه، سنگ‌های مافیکی با خاستگاه پوسته‌ای با تغییرات فلایسیک و مافیک به شواهدی مرتبط در این حالت قادر به احتمال پاسخ‌های را ایجاد کرده‌اند

واژه‌های کلیدی: درهم شدن، آمیختگی، الوند، پلوتونیسم، دورک، مراکی، مهمانتی.
موقعیت زمین شناسی

منطقه مورد مطالعه یعنی رشته کوه‌های بیستون (همدان)، در زون سندج-سرجان قرار گرفته است (شکل 1) که در طول زمان زمین شناسی دسته‌بندی مجموعه‌های اصلی و اعضایی از مجموعه‌های ناشناخته‌ای گزارش گردیده، ولی به احتمال زیاد واپسین به پالئوژنیک یافته‌های ناپیوسته است.

و در کنار یکی از هاله‌های درگروگان با میگماتیت‌ها قرار دارد [6] و اینکه سنگ‌ها (میگماتیت‌ها) به ماگماهای آتانکورین و استگنی دارند، کاملاً در مورد اینکه سنگ‌ها در محله بسیار محدود و مورد استفاده بوده است. مطالعه برگر و بازوی درگروگان، ماگماهای دنیای آب و دایک‌های هموان با پلئوژنیک و نوزاد ریسی رابطه گرانیت‌ها با میگماتیت‌ها از کمک شایان توجه به شناخت شناسه‌ای مربوط به وجود ماگماهای گروه‌های و پیشتای هم، زمان آن-ها (در برخی اوقات، آزمایش و اختلاف بین آن‌ها کرده است.

شکل 1 نشانه زمین شناسی ساختار شده منطقه: (a) موقعیت زمین شناسی زون سندج-سرجان و (b) موقعیت مجموعه یپلئوژنیک یوند (گابرو و گرانیتولود) در نیمکت هرما با زون‌های درگروگان چشم‌گیر در منطقه همدان. در زون‌های کلفت، بیوتیت، کرایت، آنادالوژی، استروپلیت، سیلیمالیت، کریبریت، فیبولایت و پاتینیم فلدسپار. در زون کریبریت اغلب سنگ‌های اول و فیلیت، در زون بیوتیت، گیپیا، کرایت، رون‌درآمد، پریاژیت، از کرایت آنادالوژی، سیلیمالیت، کرایت، از کرایت استروپلیت، شیست، در زون سیلیمالیت از کرایت سیلیمالیت شیست و در زون کریبریت از کرایت هورنفلز تشکیل شده‌اند. میکروتیپ‌ها در زون سیلیمالیت (کریبریت)-پاتینیم فلدسپار رخم می‌دهند.
کتابی جامع زیر عنوان "سنجش امکان‌پذیری و آمیختگی در مکانیک دنیای ماکماها" در کتابخانه دانشگاه تهران منتشر شده است. این کتاب مقدماتی و کاربردی و گزارشی و نظری‌هایی را در زمینه مکانیک دنیای ماکماها، آزمایش‌های آزمایشگاهی و بررسی‌های تجربی سنجش امکان‌پذیری و آمیختگی در مکانیک دنیای ماکماها را در نظر می‌گیرد.

در این کتاب، مقدمات مکانیک دنیای ماکماها و اصول آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.

در کتاب "سنجش امکان‌پذیری و آمیختگی در مکانیک دنیای ماکماها"، مقدمات و اصول مکانیک دنیای ماکماها و آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.

در این کتاب، مقدمات مکانیک دنیای ماکماها و اصول آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.

در کتاب "سنجش امکان‌پذیری و آمیختگی در مکانیک دنیای ماکماها"، مقدمات و اصول مکانیک دنیای ماکماها و آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.

در این کتاب، مقدمات مکانیک دنیای ماکماها و اصول آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.

در کتاب "سنجش امکان‌پذیری و آمیختگی در مکانیک دنیای ماکماها"، مقدمات و اصول مکانیک دنیای ماکماها و آمیختگی در آن به‌ویژه در مکانیک دنیای ماکماها مطرح و بررسی شده است. این کتاب، به‌ویژه برای دانشجویان و پژوهشگران مکانیک دنیای ماکماها و آمیختگی در مکانیک دنیای ماکماها مفید خواهد بود.
می‌شود. زینکریست‌های کوارتز ناهماهنگ‌دانه با میزان خود (شکل ۳) که اغلب در توالی‌های حاصل از دوره‌های شدن و اختلال گرانیت‌ها دیده می‌شوند، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط هسته‌های نامنظم و خود شده کانی پلاژیکلاز که در برخی پلوتوپسیم‌های مافیک دیده می‌شود، از جمله پدیده‌های مشابه، اخ‌نال‌های مکانیکی (MME) که به دایک‌های همزمان با پلوتوپسیم واشتادند (شکل ۲ب و ج) به‌تأثیر فرآیند دوره‌های شدن و اختلال مکانیکی اسیدی و پاپیک در مقياس کوکک و بزرگ مربوط
گرفته از دایکه‌های همزمان با پلوتونیوم به روشنی دیده می‌شوند. با توجه به اینکه حجم ماده‌های گرانیتی بیشتر و ماده‌های دیوریتی کمتر است، لذا ماده‌های دیوریتی بیشتر متأثر شده و شاهد بیشتر از درهم شدن ماده‌ها را حفظ کرده است. زیتون‌کربن‌های کوارتز (و گلاس پلاژولدز) در اندازه‌های درشت (تا حد سانتی‌متر) که گاه با هاله‌ای از کانی‌های مافیک (پیوسته، هورتندی، و پپیکسن) همراه هستند. هم در پلوتون‌های ریشه گرفته از دایکه‌های همزمان با پلوتونیوم (به شکل چند سانتی‌متر دیگر) دیده می‌شوند. به طوری که می‌توان گذر گاه‌های شرده‌های غیر منابعی سازنده دایکه‌های همزمان با پلوتونیسم را گذرگاه‌های اصلی درهم شدن ماده‌های همزمان و فلسیک در نظر گرفت.

ماگنیتیسم دیوریتی هم حین انجام ماده‌های گرانیتی و هم پس از انجام سنگ‌های گرانیتی ادامه داشته است، زیرا دایک‌های پیوسته میکروفیوئوریتی خیلی از سنگ‌های پلوتونیک قدیمیتر (از جمله گرانیتی) را قطع کرده است.

ترکیب شیمیایی سنگ‌های دو رکه شامل گریناکت، شیمیایی سنگ‌های دیوریتی و گرانیتی قرار می‌گیرد (جدول 1). چنانکه که در جدول 1 آمده است، نمونه‌های سنگ‌های دو رکه که از یک زون درهم شده ماسیکی برداشت شده‌اند، از نظر گل‌کات عناصر مختلف تا حد زیادی بین‌بین سنگ‌های اصلی قرار می‌گیرد.

هر چند که پروتونیوم‌های مافیک رز دانه گاهی بالای گذشت، بخشی سنگ‌های گرانیتی (به ویژه در گرانیت‌های نوع I) هستند. ولی معمولاً در اثر ایمن‌زایی ماده‌های دیوریتی و در نهایت در حلال می‌شوند که به ویژه در اینجا بیشتر در مکان‌هایی که به صورت یک‌رازه ریز و در درون شرایط فلزیک پراکنده می‌شوند.

[11] هنگامی که شرایط فلزیکی به حالت نیمه جامد و نسبتاً سخت در آرامش باشد، درایه‌های همبسته نیز در شکستگی‌های آن تزریق شود، ضمن مخلوط شدن با آن دایک‌های همزمان با پلوتونیسم را شکل می‌دهد. لازم به یادآوری است که بیشترین مون‌وایه‌های گرانیتی در همن ماسیک و همزمان با پلوتونیسم مشاهده می‌شود. این دایک‌های معمولاً به پروتونیوم‌های مافیک رز دانه قطعه شده و در میان عوامل گوناگونی که در جریان پدیدار شده هم کش پدید می‌گردد. ماسیکی فلزیک و فلزیکی گرانیتی از اهمیت ویژه‌ای برخوردارند. با وجود پیچیدگی‌های فیزیکی و شیمیایی به ویژه محدودیت‌های گرانیتی، بیداد اختلال‌های مافیک در اینجا تنوع در ماسیکی گرانیتی پدیده‌ای بسیار مهم به‌شمار می‌آید [11].

یافته‌های دانه‌های رز (دولورینی) در سیری از پروتونیوم‌های مافیک رز دانه (MME) که ترکیب میکروبورنیتی، میکروگوارژنیورنیت و میکروتیولیتی دارند، نشان دهنده انجام نسبتاً سریع ماسیک کردن درون ماسیک‌های گرانیتی می‌باشد. در هم‌سان دو ماسیک است. این پدیده در پروتونیوم‌های رشته‌ای NNE را نشان می‌دهد.

شکل 1: راستای پروتونیوم‌های مافیک رز دانه ناشی شده از دایک‌های همزمان با پلوتونیسم در نمودار گل سرخی که راستای غالب را نشان می‌دهد.

*رَنگ* می‌کند.
جدول 1: ترکیب شیمیایی نمونه‌هایی از کوارتزدوربیت (عازم از شواهد اختلاف ماکمی)، میکروکوارتزدوربیت (دارای شواهد اختلاف ماکمی):

<table>
<thead>
<tr>
<th>نمونه‌کننده و انناسر</th>
<th>کوارتز دوربیت</th>
<th>میکروکوارتز دوربیت (دوربیت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ %</td>
<td>50.3</td>
<td>67.4</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>10.5</td>
<td>9.7</td>
</tr>
<tr>
<td>CaO</td>
<td>10.8</td>
<td>9.8</td>
</tr>
<tr>
<td>MgO</td>
<td>5.8</td>
<td>5.6</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عنصر کمیاب</th>
<th>Zr (ppm)</th>
<th>Sr</th>
<th>Ba</th>
<th>Rb</th>
<th>Ni</th>
<th>V</th>
<th>Co</th>
<th>Cu</th>
<th>Cr</th>
<th>Cl</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128</td>
<td>44</td>
<td>21</td>
<td>23</td>
<td>69</td>
<td>358</td>
<td>41</td>
<td>49</td>
<td>164</td>
<td>300</td>
<td>568</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>447</td>
<td>244</td>
<td>10.5</td>
<td>64</td>
<td>174</td>
<td>41</td>
<td>40</td>
<td>143</td>
<td>253</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>339</td>
<td>253</td>
<td>64</td>
<td>36</td>
<td>244</td>
<td>29</td>
<td>30</td>
<td>65</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>514</td>
<td>36</td>
<td>36</td>
<td>19</td>
<td>32</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>278</td>
<td>514</td>
<td>36</td>
<td>36</td>
<td>19</td>
<td>32</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>33</td>
<td>10</td>
</tr>
</tbody>
</table>

شده سنگهای خاستگاهی به عنوان سنگهای تعیین‌شده در گذشته شده و روده‌های مایع که در آنها نیرویی دگتر که تأثیر آب و ذوب در نرم‌توده‌ها را باعث می‌شود، اغلب بقایی‌های بخشی و شاهد اجاع ماکمی‌های آناتیکیدان، معمولاً بر از میکا (سورپسیس) هستند و نسبت به سنگ منیبال، برونوپیتان، ماکمی‌ها را به یاد می‌دهند. این درآمدهای ماکمی از جایی به جایی می‌گردد در مجموعه پلئونیک متوسط است، به طوری که سنگ‌های با ماکمی‌های کوارتز دوربیت (ماکمی‌ها و دوربیت‌ها) سنگ‌های با ماکمی‌های پلئونیک متعاقب (ماکمی‌های پلئونیک) و سنگ‌های دوربیت‌ها مانند برحی از کوارتز دوربیت‌ها و نمونه‌ها را می‌توان تا حدودی می‌تواند. به نظر می‌رسد که این سنگ‌های و پلئونیک به‌طور مشابه بین. برونومیهای و دایره‌های هم‌زمان با پلئونیک در ...
شکل ۵ تصویر میکروسکوپ برونویم غنی از میکا در گرانیت‌های پورپروئید (به فراوانی زیاد میکا توجه شود).

شکل ۶ نقوش زینک‌پیست‌ها در تصسیر دگرگونی ماسه‌ای سنج‌های پلاتونیک منطقه‌ای‌زینک‌پیست‌ها اغلب در اثر تخریب یا واپاشی مکانیکی سنج دیواره، هنگام جریان یا نفوذ ماسه‌ای و یا در اثر اختلاط ماسه‌ای با ماسه‌ای با ترکیب متغیر (معمولاً در حال انجام) نتیجه می‌شوند [۲۲]. این پهنه برخی از پلورهای که از آن‌ها به عنوان زینکپیست‌پیت می‌شود، ممکن است با میزان رابطه زنیک‌پیستی داشته باشد، مانند زینک‌پیست‌های...
نشانه عدم تعداد ترمودینامیکی بین زینتوبریسته‌ها و ماده‌ای در برمی‌گردن آن‌هاست.

با توجه به فرآیند نسبی انالوژیت به عنوان یک کالی
فروی در سنگ‌های گرانیتی منطقه مرید مطالعه، در اینجا به
پرینت بیشتر علی پیاده‌سازی یابدختایم.
انالودزیت‌های کانی فری در برخی از سنگ‌های آذین فلسبیک
برآمده‌ها از جمله ریونتهای آلمینیت‌ها، گرانیت‌ها، و گنگ‌ها.

تولد و نمایانه سنگ‌های فلسبیک انالودزیت‌های در
نقاط مختلف جهان، از جمله میان‌های نظیر اندازه بزرگ‌تر به
پرینت می‌توانید در منطقه جدیده‌ی از منطقه خاک‌آنه بین
سنگ‌های آذرین فلسبیک.

با توجه به قلمرو پایداری انالودزیت (قلمر پایین، دمای
پایین) و هم‌بستگی اندی انگلر به گستره آرایدهای
ماگمایی، احتمال انگه نگهدارنده دوبه‌ی خشی در سطح گستره،
این کالی به صورت مریخ نشان داده. در این سلسله‌های
سیلیسیاکان انالودزیت‌ها ممکن است تری‌مستی‌های از محل
خاک‌آنه شاهرخ‌های انالودزیتی با منطقه ۱۴۲-۲۴۷. (وی در غار
کانی و بافت‌های جدا جدا و فشار با اثر انگلر به منطقه‌های
سنگ‌های دیگر نشان دهنده به صورت یکی
هم‌بستگی انالودزیت‌ها و اکتش در یک‌باره.

شناختی نظر عدم تعداد بافتی (وجوه حاشیه‌ای وکتش
معمولاً غیب از این‌ها) هم وقت می‌تواند به آن‌ها انالودزیت با اندازه‌های
دها موجود در سنگ‌های خاک‌آنه شاهرخ‌های انالودزیتی این نوع
زنیتوبریسته‌ها موجود در گرانیت‌های هودنیت‌های دلاته‌ی میدن. برخی از زینتوبریسته‌های سیلیسیت‌های احتدام شاهرخ‌های
دالز زیر پری هم‌بستگی با اندازه‌های آن‌ها در میان‌هایان
منطقه به فراوانی این دننده در یک‌باره و اکتش با شار در آن‌ها دیده نمی‌شود.

توجه باشد در این فرآیند مقدار سیلیس ماگمایی مافیک افراسی
می‌باشد و در نتیجه مقاورد کوارتز در سنگ ماگمایی می‌باشد.

واژگان تولید حاصل کنن.

در مجموعه پلیوکلبیت و تودها و جزایر، این فرآیند
کوارتز در گرانیت‌ها مافیکی، که در تکامل و گستره‌های نتدهولن،
می‌توان نشان بستگی میان سنگ‌های گرانیت‌ها به شاهرخ‌های
گرانیت‌ها در حاصل تولید باشد (شکل ۳). اندازه این زینتوبریسته‌های
های کوارتز تندی به اندازه داده‌های گرانیت‌های
پری‌ریونت شایسته راهی دارد و احتمالاً در اثر پراکندگی
کانی‌های در حاصل تولید از شاهرخ‌های و در هم‌بستگی به تودها و
مافیکی سنگ‌های داده‌های حاصل شده. تزیین هم‌بستگی با
پری در ماگمایی سنگ‌های سیلیسیاک و مافیک در یک
شکسته‌ها در منطقه قبلاً گزارش شده است [۴۶].

ژینتوبریسته‌های سیلیسیاکهای آلومینیتاکه نظر گزارش،
انالودزیتی‌ها که در شرایط طبیعی پوششگران مخلوطی
[۱-۶] در درون توده‌های مافیکی های پری‌ریونت منطقه مرید
مطالعه، کوارتز شاهد، این زینتوبریسته‌ها به صورت
تشکیل شده‌اند:

۱- فضه سنگ‌های متالیت‌های (موزنلفس‌ها و شیست‌های پلیتی)
پری‌ریونت توده‌های گرانیت‌های

۲- باقی‌مانده‌ی در درون توده‌های هگم تشکیل برخی از
ماگمایی گرانیت‌های انالودزیتی

شاواه تشکیل هر دو دسته زینتوبریسته به رول زیر دیده
شدند:

۱- تمرکز گزارش در بعضی از نقاط نزدیک به حاشیه‌های توده‌ها و
با در کنار پلیوکلبیت بقیه شاهرخ‌های تلویح
گزارش در گرانیت‌های این اثر هم‌بستگی میدان و پلیوکلبیت

۲- تمرکز پری‌ریونت گزارش در نقاط دفتر از حاشیه و در
میان‌هایهای پری‌ریونت توده‌های، این نکته را تنها یکی
که احتمالاً بسیاری از بلورهای گرانیت‌های فاز دردگرد حاصل
از دوبه‌ی همان نفاز از پلیوکلبیت شاهرخ‌های گرانیتی این

در مورد کانی‌های انالودزیت‌ها (شکل ۱-الف)، سیلیسیت‌های
(شکل ۵-ب و -ک) و کوارتز (شکل ۵-ج) نیز در دو خاستگاه
محتمل است. تشكل اسپیبل پری‌ریونت انالودزیت‌های پیش‌دن
کوارتز، کوارتز و پری‌ریونت این ژینتوبریسته‌ها این
پری‌ریونت در سنگ‌های گرانیتی منطقه مرید می‌باشد. این نکته‌ها

دانشنامه ماهی‌پزشکی (بیوتون و هورنلند) برخی از آن‌ها را از بر می‌گیرد.

ت. برونومه‌ها: این برونومه‌ها از جمع‌آوری دوره‌ای به‌طور منظم، معمولاً در مراحل حامل‌پروری، خاص‌تبار ماماگاهی مختلفند. از جمله این برونومه‌ها می‌توان از برونومه‌های مادر از برونومه‌های نوزاد در دوره‌های مبیرکرت هستند.

مادر زن‌ها معمولاً از ماماگاهی‌های دردست سلیم‌پزشکی آگاه‌ترند. در حال انجام داده‌های هم‌زمان با پایین‌پاها، کوارتزاژی، دیاه‌پیش و توانایی حاصل شدگان در دانستن‌های ژانویه‌ها را که از ماماگاهی‌های نوزادان در دوره‌های مبیرکرت استفاده می‌شود.

آگاهی در ماماگاهی‌های نوزادان در دوره‌های مبیرکرت به‌طور کلی زن‌ها مشابه در کوارتزاژی، دیاه‌پیش و توانایی حاصل شدگان در دانستن‌های ژانویه‌ها را که از ماماگاهی‌های نوزادان در دوره‌های مبیرکرت استفاده می‌شود.

آگاهی در ماماگاهی‌های نوزادان در دوره‌های مبیرکرت به‌طور کلی زن‌ها مشابه در کوارتزاژی، دیاه‌پیش و توانایی حاصل شدگان در دانستن‌های ژانویه‌ها را که از ماماگاهی‌های نوزادان در دوره‌های مبیرکرت استفاده می‌شد.
شکل 7: یک پرونده مکرک که در بخش داخلی آن پرونده مافیک ریزدانه در پریامون آن گرانیت پورفوریتی ریزدانه دارای زینکوریست آندالوژیت و در خارجی‌ترین بخش گرانیت پورفوریتیت (پیزیان) دیده می‌شود.

۲- نقش دایک‌ها در تفسیر درگذوش مکانیکی مجموعه
پلوتونیک الوند
داک‌های موجود در مجموعه پلوتونیک الوند را می‌توان به چهار دسته: دایک‌های فلسفیک، دایک‌های مافیک-حذف‌ساز، دایک‌های مرکب و دایک‌های همه‌پوش پلوتونیسم تقسیم کرد که از مهارتنی آنها می‌توان به دایک‌های آیلیتی و پیگمنت‌های (از انواع فلسفیک) اشاره کرد.

داک‌های آیلیتی-پیگمنتی معمولاً شامل گفتارهای سنگی گرانیتی و سنگاهی دگرگون می‌باشند که آنها را قطع کرده و از جنگ سانتری تا چندین متر ضخامت دارند (شکل 8-الف). حجم این دایک‌ها نسبت به میزان گرانیتی خوب بسیار اندک است و گاهی برخی از این دایک‌ها به‌طور کامل به عنوان مکانیکی حذف‌ساز، سنگهای پیاز می‌باشد که را بسیار ناز涉 و آبی‌روی دوریتی و پیگمنتی-آیلیتی-پیگمنتی نیز نفوذ کرده‌اند (شکل 8-ب).

داک‌های مرکب معمولاً از تری‌زیک دو مکانیکی نسبتاً متفاوت (فلسفیک و فلسفیک کاپی‌تره و روشن) در یک شکستنی حاصل شده و به‌صورت دو واحده سنگی جدا و با گاهی آمیخته‌ای برخ است. این دایک‌ها به‌شکل پیاز می‌باشد که را آبی‌روی دوریتی و پیگمنتی نیز نفوذ کرده‌اند (شکل 8-ب).

بورفوریتیت (شکل 9). این دایک‌ها معمولاً از تری‌زیک هم‌زمان و یا سه در پی دو مکانیکی گرانیتی و دوبندی در دایک‌های آیلیتی-پیگمنتی ایجاد می‌شوند. این دایک‌ها معمولاً در شرایط قلیل و بیشتری که نیز به آنها اشاره کردیم است. این دایک‌ها معمولاً ریز دان و ترکیب کوارتز و دوبندی و تونالیتی داشته و گاهی در‌رت بلورهای کوارتز و پلاژیوکلاز در آنها در آب‌آمیختنی می‌باشد گرانیتی یافته شد. زمینه این سنگها معمولاً در و بین دانه‌های هستند در حالت عادی در دانه‌های آنها برخلاف سری تبال است. بنی‌حای بلورهای کوارتز و فلسفیار، در حالت که کاپی‌تره همه‌پوش آنها را به‌طور کامل را در اختیار گرانیتی و پرونده‌های منشأ از آنها شمال شرقی-جنوب غربی است که می‌تواند به توجه می‌دان نش حاکم بر توجه نفوذی بوده در اینجا مکم‌کند. از اینجا که هنگام تری‌زیک دایک‌ها، گیاهان گرانیتی در حال تپلور (هنگام احادیش نیافته) و تا حدودی متاخر است و به دلیل عدم تالار می‌باشد دایک‌ها نسبت به میزان گیاهان گردن، معمولاً دایک‌ها به سرعت سرد شده و اختلاف کامل بین آنها و میزان‌نشان صورت نمی‌گیرد، ولی با این وجود، در برخی از دایک‌های همه‌پوش پیاز می‌باشد که را در هم شدن و دورگاه شدت به چشم می‌خورد. [۱۰۲]
شکل ۸ الف) نمودن دایک‌های آپلیتی-دیوریتی قطع کننده گرانیت‌های پورفیریوند و ب) دایک میکروپورفیریتی که سنگ‌های دیوریتی و آپلیتی را قطع کرده است.

شکل ۹ دایک مرکب که از تزریق گرانیت‌های پورفیریوند و میکروپورفیریت‌ها در یک شکستگی حاصل شده است.

مطالعات مقدماتی آن‌ها در چند سال اخیر انجام گرفته است [۸، ۹]. با اینکه این سنگ‌ها دستخوش ریزش، هیدرولیز و ذوب بخشی شده‌اند، ولی گاهی هنوز آثار لایه بندی آنها در آنها باقی مانده و با توجه به بافت های رسوبی موجود، ماهیت سنگ مادر آنها اغلب پیلیتی، شبه پیلیتی و پاسیتی بوده است. لاشه‌های کوارتزیتی تقریباً ماهیت اولیه خود را به طور کامل حفظ کرده‌اند. اکتاتریتی موجود در سنگ‌های میگمیت‌تانی متنوع بوده و انواع استروماتیک، آگماتیک، شولن، دیکتیویکتیک، پیلیتیک، و توده‌ای قابل تعریف‌ (شکل ۱۰). خاستگاه رگ‌های لوکوسوم سول برای پیش‌بینی است. ولی به نظر می‌رسد که به‌جا مانده و حتی این سنگ‌ها در شکستگی‌های ریز و گرانیت‌های پورفیریوند و میکروپورفیریت‌ها بدلیل سیمی‌سازی این‌ها، در ابتدا از پنج به در است. در برخی از نقاط پیرامون مجموعه پلوتونیک اند (به ویژه در مرکز این مجموعه) منند بخش‌هایی از جنبه‌های سیمی، ابرو، خاک و دره مادریگی، میگمیت‌های شیست‌های میگمیت‌ی، و هورنفلس‌های میگمیت‌ی گسترش دارند که

۳-میگمیت‌ها و ماکم‌های آتانتکیک

در نیم قرن اخیر، میگمیت‌ها توسط زمین‌شناسان مختلفی مورد بررسی قرار گرفته‌اند [۱۲ و ۲۳]. اغلب مسایل ساختاری و زنتنی میگمیت‌ها از زمین‌شناسی نمی‌باشد. با مورد توجه به آن‌ها است. با این حال حجم نوشته‌های به چاپ رسیده در مورد میگمیت‌های ایران، به ویژه میگمیت‌های منطقه مورد مطالعه، سپاسی در این کتاب است.
بیسابر از موارد لوموسوما همان جای لیاهای اولیه را به خود اختصاص داده، فرآیند تفکیکی درک برای تشکیل لوموسوما در ذهن توانایی می‌شود. از طرف دیگر به دلیل اینکه گاهی هاله‌های رنگ‌یار از کانسیه‌های مافیک (پورپتون) در حاشیه لوموسوما دیده می‌شود و لوموسوما و گرفتگی دریل دارد، می‌تواند کار دوبخشی برای توسعه تشکیل رنگ‌های لوموسوما پیشنهاد می‌شود. به‌طور مثالی این بررسی در نقاط که درجه اچ‌گروین برای دوبخشی کافی نبوده است، ترندگی درک‌گیری فرآیند تورنت در تشکیل رنگ‌های لوموسوما. این نوع کنکورس مجموعه جابجایی و اندازه‌گیری از قطعیت

به‌طور کلی سنجش‌های آذرین مجموعه پلوتوویکلین بالا را می‌توان از نظر خاصیت‌های فیزیکی (که به سه دسته تقسیم کرد: 1. سنجش‌های با خاصیت‌های غلاف مانند قابلیت بهبود دربرک (آوریت‌های و هتا و
جدول 2 سال سنگی حاصل از تابی سنگی برخی از سنگهای مجموعه پلوتونیک اولن که حکایت از این دارد که ماگماتیسم مافیک دوره زمانی طولانیتر داشته است ولی در برخی از دوره‌ها احتمال همبوعش زمانی بین برخی فازهای فلسیک و مافیک وجود داشته است (داده‌ها از ویل زاده و کانتاگال (1975، بر 1369 و بالایی در) 1382).

<table>
<thead>
<tr>
<th>ردیف</th>
<th>روش تعیین سن</th>
<th>سن (بر حسب میلیون سال)</th>
<th>نام سنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rb-Sr</td>
<td>78-89</td>
<td>توریت</td>
</tr>
<tr>
<td>2</td>
<td>K-Ar</td>
<td>89.1 ± 3</td>
<td>پیگماپتی</td>
</tr>
<tr>
<td>3</td>
<td>Rb-Sr</td>
<td>10.4 ± 2</td>
<td>پیکتایت</td>
</tr>
<tr>
<td>4</td>
<td>K-Ar</td>
<td>82.8 ± 3</td>
<td>پیستنیت</td>
</tr>
<tr>
<td>5</td>
<td>Rb-Sr</td>
<td>68 ± 2</td>
<td>پیسپتروید</td>
</tr>
<tr>
<td>6</td>
<td>K-Ar</td>
<td>63.8 ± 0.8 (3 ± 3)</td>
<td>پیسپتروید</td>
</tr>
<tr>
<td>7</td>
<td>K-Ar</td>
<td>64 ± 3</td>
<td>پیستنیت</td>
</tr>
<tr>
<td>8</td>
<td>K-Ar</td>
<td>81.8 ± 1.8</td>
<td>پیسپتروید</td>
</tr>
<tr>
<td>9</td>
<td>K-Ar</td>
<td>74.7 ± 1.8</td>
<td>پیستنیت</td>
</tr>
<tr>
<td>10</td>
<td>K-Ar</td>
<td>72.3 ± 3.1</td>
<td>کوارتزدوریت</td>
</tr>
<tr>
<td>11</td>
<td>K-Ar</td>
<td>135.2 ± 3.1</td>
<td>دوریت</td>
</tr>
</tbody>
</table>

ببخش بزرگ مجموعه پلوتونیک اولن از تزریق فازهای ماکماپی مختلف در موزوزنیک (پوژه زوراسیک-کرتاسه) تا شرایطی شکل گرفته و ماکماپی متنوع گوشه‌های و آناکتیک در شکل-گیری آن نقش داشته‌اند. ماکماپی بوسته‌ای (آناکتیک) با برداشت

شکل 10 نمایی از برخی از ساختارهای متنوع موجود در ماکماپی‌های جنوب سیمین، همدان. (a) استرومیتیک، (b) شونن، (c) دیکتیوینیک و (d) آگتیمیک.
تشکر و قدردانی
همکاری خانم‌ها سارا مانی کاشانی و راضیه حفری در ترسیم نقشه و تهیه برخی تصاویر قابل تقدیر است.

مراجع
[1] زریعی‌آباد، فرشاد، بررسی اثرات آن خزنده‌کنی‌های بی‌نیازی در نقشه‌های انتخابی‌سازی سیستم‌های راه‌آهن، ص 135 (1999)
[2] زریعی‌آباد، فرشاد، بررسی اثرات آن خزنده‌کنی‌های بی‌نیازی در نقشه‌های انتخابی‌سازی سیستم‌های راه‌آهن، ص 135 (1999)
[3] زریعی‌آباد، فرشاد، بررسی اثرات آن خزنده‌کنی‌های بی‌نیازی در نقشه‌های انتخابی‌سازی سیستم‌های راه‌آهن، ص 135 (1999)
[4] زریعی‌آباد، فرشاد، بررسی اثرات آن خزنده‌کنی‌های بی‌نیازی در نقشه‌های انتخابی‌سازی سیستم‌های راه‌آهن، ص 135 (1999)
[5] زریعی‌آباد، فرشاد، بررسی اثرات آن خزنده‌کنی‌های بی‌نیازی در نقشه‌های انتخابی‌سازی سیستم‌های راه‌آهن، ص 135 (1999)

[28] Weibe R.A., Commingling of contrasted magmas and generation of mafic enclaves in granitic rocks; In: Didier, J., and Barbarin, B,