Preparation of SrTiO₃ thin films by spray pyrolysis technique and study of their structural and optical properties

N. Tajabor, M. R. Alinejad, P. Iranmanesh

Solid State research lab, Faculty of Science, Ferdowsi University of Mashad
Email: tajabor@ferdowsi.um.ac.ir

(Received: 9/6/2007, in revised form: 4/4/2008)

Abstract: Strontium titanate polycrystalline thin films were prepared by sequent deposition of three TiO₂/SrO/TiO₂ layers using spray pyrolysis technique. Deposition parameters such as: precursor solution, deposition temperature, flow rate of solution and annealing conditions were optimized to obtain homogeneous transparent films. Prepared thin films have granular microstructure. The optical transmittance and absorption spectra show that the films are absorber of the ultraviolet and transparent against visible lights. The transparency and grain size of the prepared samples increase by annealing process. The calculated optical band gap (3.38 eV) is in good agreement with the existing data.

Keywords: Strontium Titanate, Thin film, Spray pyrolysis.
ساخت لاشهای نازک SrTiO$_3$ به روش اسبری پایروبیلز و مطالعه خواص ساختاری و اپتیکی آنها

ناصر تجر، محمدرضا علی نژاد، پرویز ایرانمش
ناتیجه‌گیری‌های علمی پایه‌ای چهارمگاه تحقیقاتی حالت جامد
Email: tajabor@ferdowsi.um.ac.ir

چکیده: لاشهای نازک بسیاری از تیتانات استرائسیم با نشانه‌های صوتی متوالی TiO$_3$/SrO/TiO$_3$ به روش پایروبیلز تهیه شدند. برای تهیه لاشهای لاشه‌نشانی از جمله مواد اولیه، دما و پس‌دما، برای ساخت رشته پایدار یافته در بدست آوردن لاشه‌های همگن و ثابت، تعیین و بهینه شدند. لاشه‌های نازک تهیه شده دران رایزرسکتر دانه‌های هستند. طیف‌های اپتیکی تراکسیلی و در آسمان نشان دادند که لاشه‌ها امواج فرابنفش را جذب می‌کنند و در بر انتقال ماهی شفافند. زیربنای لاشه‌ها موجب بهبود شفافیت آنها و رشد بلورکا می‌شود. گراف نواری اپتیکی لاشه‌ها بس از بازیخت (780± 38nm) اندوزه‌گیری شد که با داده‌های موجود همخوانی خوبی دارد.

واژه‌های کلیدی: تیتانات استرائسیم، لاشه نازک، اسپری پایروبیلز

مقدمه
در جنگ دهه‌ای آخر لاشه‌های اکسید بروسبیکت با ثابت دی-الکتریک بالا توجه به سپاری را به خود جلب کرده‌اند. این اکسیدها در ساخت خازن، حفاظه‌های دیئمتیک قابل دسترس گسترش و سایر الکتروپتیکی و نمایشگرهای الکترولولوئیکی کاربرد دارند.

تیتانات استرائسیم (SrTiO$_3$) ماده‌ای پالای الکتریک است که در دمای اتفاق ساختار برای بروسبیکت معمولی دارد. ساختار این ترکیب در دمای کمتر از 150 K به شکل جهش‌گویی درمی‌آید. تیتانات استرائسیم از جمله مواد ناشناچرخک با ضرب برشکت و ثابت دی-الکتریک بالا، پایداری گرمایی و شیمیایی خوب، فعالیت نوری قابل قبول و نوری ذخیره‌بندی با سایر

تا کنن روش‌های متعدد برای ساخت لاشه نازک تیتانات استرائسیم به کار رفته است. از جمله این روش‌ها می‌توان به

لابلای اکسید بروسبیکت (SrTiO$_3$) نامید.

ابزار

لابلای اکسید بروسبیکت (SrTiO$_3$) محصول شرکت‌های متعددی در جهت ساخت لاشه‌های نازک استفاده می‌شود.

وضعیت

در حال حاضر، لاشه‌های نازک و جامد استرائسیم و انواع دیگر ماده‌های الکتریکی در زمینه‌های مختلفی از جمله طراحی و ساختن صفحات الکتریکی و صفحات الکتریکی استفاده می‌شوند.

در حال حاضر، لاشه‌های نازک و جامد استرائسیم و انواع دیگر ماده‌های الکتریکی در زمینه‌های مختلفی از جمله طراحی و ساختن صفحات الکتریکی و صفحات الکتریکی استفاده می‌شوند.

در حال حاضر، لاشه‌های نازک و جامد استرائسیم و انواع دیگر ماده‌های الکتریکی در زمینه‌های مختلفی از جمله طراحی و ساختن صفحات الکتریکی و صفحات الکتریکی استفاده می‌شوند.
ساخت لايهماي تارک SrTiO$_3$

استون برای رنگ‌سازی به این ناحیه گشته شده مطالعه دایمی ۵۰×۱ مول بر لیتر بهره است.

لاهیمانتیا به صورت تک لاهی و دو لاهی متواجده TiO$_2$/SrO/TiO$_2$ نزدیک سلولری تک لاهیه TiO$_2$ و نزدیک سلولری متواجده TiO$_2$/SrO/TiO$_2$ بهبودی لاهیمانتیا به روش سعی و خطأ با لاهیمانتیا هر یک از تک لاهیه TiO$_2$ و نزدیک سلولری متواجده TiO$_2$/SrO/TiO$_2$ تولید شده که در جدول ۱ ارائه شده و شده نشده شدن.

نتایج تولید داد که لاهیه لاهیه نهایی دارای جسدگی (ویکسین) که بر یک لاهیه آلومینیا نسبت داده شده، مشاهده شد. در ادامه از لاهیه لاهیه استفاده برای هدایت نمونه سلولری، محلول اول به دو بخش تقسیم و نیمه از آن در شرایط بهینه به استر لاهیه شکل افتاده شد. سپس از دوگانه زمانی ۱۵ دقیقه محلول دوم به دو بخش تقسیم شده از آن نیمه دوم محلول اول در همان شرایط لاهیمانتیا شدن. پس از لاهیمانتیا کوره خاموش شد و لاهیه را تسخیر به دمای اقلیت راه شدند. سپس تعدادی از لاهیه شاهدشده بر زیر الایندشی شاهد به مدت ۴۵ ساعت در دمای ۵۰۰ درجه سانتی‌گراد.

ب) بررسی های ساختاری

ریزساختار نمونه‌ها با وسیله میکروسکوپ نوری قطع‌شده و میکروسکوپ الکترونی رویشی (مدل Leo 1450 VP بروسی) شد. مطالعه ترکیب ساختاری نمونه‌ها با یک طیف‌سنج انرژی میکروسکوپ الکترونی رویشی انجام گرفت. برای EDX ترکیب فازی و ساختار بلوری لاهیه، از پروتو برای طیف‌سنج که تابعی LMGP، موسسه مکس، مکس ref، طریقه‌ی برای نیز ترکیب فازی، فرآیند، انجام گرفت.

ب) اندازه‌گیری لاهیه اینتیکی

طیف اینتیکی تراکسیل و در آشامی نمونه‌ها با ترکیب در گستره ۸۰۰ تا ۵۵۰ سانتی‌متر اطلاعی در طیف‌سنج که تک باریکه (مدل 8453 اندامگیری نشده با استفاده از راه‌حل (۱) بر حسب دو طول‌موج جدول ۱

<table>
<thead>
<tr>
<th>پارامترهای بهینه لاهیمانتیا لاهیه تارک استاتسمنت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ورودی‌های</td>
</tr>
<tr>
<td>آگاهی اسیر</td>
</tr>
<tr>
<td>شش و دمای بستر</td>
</tr>
<tr>
<td>فشار گاز حامل</td>
</tr>
<tr>
<td>طولی</td>
</tr>
</tbody>
</table>
بحث و بررسی
جنده نمونه از ترکیب تری و دیتریوم ترکیبی صورت گرفته است. روش استرانتسکی-کرستافن و شناختی توزیع دانه‌ها تغییر یکنواخت، ولی اندکی نشان دهنده رشد بازیخ موجب شده تا رشد دانه‌ها و تغییر شکل آنها می‌باشد.
شود. سطح لایه‌ها پوسته و بدن ترک خوردگی است. همچنین نمونه‌های چنده‌گی نیز به روش استرانتسکی-کرستافن رشد می‌یابند که به صورت دانه‌های پراکنده در زمینه بکنش دارند. نمونه سالیمانی از بازیخ شده (شکل 2)، شفافیت و اندکی دانه‌ها تغییر کرده و حالت جذب‌گمی کمتر می‌شود. با افزایش توزیع دانه‌ها و اندکی افزایش شکل آنها می‌تواند منظم‌تر و به شکل کروی تبدیل شده است.

شکل 1 ترکیب تری و دیتریوم ترکیبی TiO۲/ SrO/ TiO۲ شده در دمای ۲۰۰ درجه سانتی‌گراد.

شکل 2 ترکیب تری و دیتریوم ترکیبی TiO۲/ SrO/ TiO۲ شده در دمای ۵۰ درجه سانتی‌گراد.

شکل 3 تصاویر میکروسکوپی نوری لایه‌های تهیه شده در شکل‌های ۱ و ۲ نشان داده شده‌اند. بهترین نتیجه که برخی از این نمونه‌ها از دانه‌های مختلف و زیستی روش استرانتسکی-کرستافن نشان می‌دهند که می‌تواند ناشی از پیشرفت تغییرات مکانیکی و تغییرات شکل و جریان یکسان باشد. شکل‌هایی از شکل‌های اضافه‌ای شامل می‌باشد که در نمونه TiO۲/ SrO/ TiO۲ نشان داده شده‌اند.

اهدا، چاپ: پرتو X نکلاژهای آب و بیشتر ۲۰۰ درجه سانتی‌گراد.

اهدا، چاپ: پرتو X نکلاژهای آب و بیشتر ۲۰۰ درجه سانتی‌گراد.

اهدا، چاپ: پرتو X نکلاژهای آب و بیشتر ۲۰۰ درجه سانتی‌گراد.
شکل ۳ تصور TiO$_2$/SrO ساختن شده در دمای C$^\circ$ ۵۰۰ بر استر شیشه‌ای (الف) پیش از بازیخت و (ب) پس از بازیخت.

شکل ۴ طرح‌های پراش بر سurface نمونه TiO$_2$ و TiO$_2$/SrO نشان‌دهنده به روش استرپولیزاسیون در دمای C$^\circ$ ۵۰۰ بر استر شیشه‌ای.

طبیع تراکسیل‌ی و در آشامی لایه‌ها در شکل ۵ نشان داده شده. مشاهده می‌شود که بیشینه تراکسیل و در ناحیه مرن (800 nm تا ۴۰۰) رخ می‌دهد. بازیخت موجب جابجایی لیتیوم به سمت طول موج‌های بلندتر و افزایش تراکسیل شده است که می‌تواند ناشی از بهبود ساختار بلوری، کاهش تناص ساختاری و رشد دانه‌ها باشد. در طبق تراکسیلی نمونه‌ها (به ویژه لایه نازک SrTiO$_3$)، قریب‌های تداخلی مشاهده نشده که ناشی از پتانسیل و همواری‌های لایه‌ها نهایی شده است. پس از یافتن دو مکان طول موج با بهبود درصد تراکسیل از منحنی‌های آنها، و با استفاده از رابطه (۱)، ضخامت لایه‌ها برآورد شد که نتایج حاصل در جدول ۲ ارائه شده.
شکل ۵ طرح‌های پرتو X نمونه X ۴h & RDE# درجه‌بندی شده به روش اسپری پاروژ در دمای ۵۰۰ C بر بستر شیشه‌ای (۱) پیش از پاروژ و (۲) پس از پاروژ.

جدول ۲ شکاف پاروژ شده نمونه‌های مختلف

<table>
<thead>
<tr>
<th>t (nm)</th>
<th>نمونه لاشه‌ ای کهار</th>
<th>TiO۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱۶</td>
<td>باریکت شده TiO۴</td>
<td></td>
</tr>
<tr>
<td>۲۱۱</td>
<td>TiO۴/SrO/TiO۴</td>
<td></td>
</tr>
<tr>
<td>۲۱۶</td>
<td>باریکت شده TiO۴</td>
<td></td>
</tr>
</tbody>
</table>

امدنه با مقادیر تجربی گزارش شده هم‌خوانی خوبی دارد.

[۶ نا ۱۱] نتایج حاصل در جدول ۲ دیده می‌شوند. گراف نواری محاسبه‌ شده برای تمام نمونه‌ها گذار مستقیم ۸۰۰ = r (شکل‌های ۷ و ۸) را تایید می‌کند. نتایج به دست
در شرایط مناسب شناسایی، رادیکال‌های جذب شده در سطح ستر شکل جذبی سطحی تازه برای شکل‌سازی ارائه می‌شود. بدیهی است که بازیخ پیام برای مناسب تغییر دادن می‌تواند به شکلی تازه مشابه شده در این محیط و رشد آن‌ها و در نتیجه همگنی بیشتر نمود نکنده. شکل ۷ نشان‌دهنده گرفتن این محیط در مقایسه با سطح نکنده دارد.

جدول ۳ نتایج اندازه‌گیری تغییر نمودنها در مقایسه با بعضی از مراجع ذکر شده.

<table>
<thead>
<tr>
<th>شماره مرجع</th>
<th>Nomene نام تارک</th>
<th>E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8]</td>
<td>TiO$_2$</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td>TiO$_2$/SrO/TiO$_2$</td>
<td>3.84</td>
</tr>
<tr>
<td></td>
<td>BaTiO$_3$</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td>(روش سل-زل) SrTiO$_3$</td>
<td>3.43</td>
</tr>
</tbody>
</table>

شکل ۷ منحنی‌های تأثیرگذار مستقیم در نمونه‌های (الف) TiO$_2$/SrO/TiO$_2$ و (ب) TiO$_2$ (خط چین مربوط به نمونه پس از بازیخ است).

شکل ۸ منحنی‌های گذار غیرمستقیم در نمونه‌های (الف) TiO$_2$/SrO/TiO$_2$ و (ب) TiO$_2$ (خط چین مربوط به نمونه پس از بازیخ است).

برداشت
لایه‌های نازک SrTiO\textsubscript{3} به صورت لایه‌نشانی سه مرحله‌ای لایه-های تیتانات سرب به روی [Piranol] الکترولیت پایولایز ساخته شدند. نمونه‌های تهیه شده با سیلور با ساختار دامائی هستند. گرچه لایه‌های نازک حاصل تک‌گاز نیستند، ولی پیشبینی می‌شود که بازیکت در دماهای بالاتر از 550°C و آرامش تعداد لایه‌های متوالی نیسته، موجب تک‌گاز شدن نمونه شود. نتایج آن‌ها که نشان می‌دهد که شفافیت نمونه‌ها در گسترده مرتب‌پس از بارزیکت بهبود می‌یابد. ضخامت لایه‌ها در حدود 200 nm است و کافی نیست که مقدار گزارش شده (3.4 eV) مقابله دارد. بررسی‌های انجام‌شده، گزار مستقیم از نور طرفیت به نور رسانش را تأیید می‌کند.

مراجع