Preparation of SrTiO$_3$ thin films by spray pyrolysis technique and study of their structural and optical properties

N. Tajabor, M. R. Alinejad, P. Iranmanesh

Solid State research lab, Faculty of Science, Ferdowsi University of Mashad
Email: tajabor@ferdowsi.um.ac.ir

(Received: 9/6/2007, in revised form: 4/4/2008)

Abstract: Strontium titanate polycrystalline thin films were prepared by sequent deposition of three TiO$_2$/SrO/TiO$_2$ layers using spray pyrolysis technique. Deposition parameters such as: precursor solution, deposition temperature, flow rate of solution and annealing conditions were optimized to obtain homogeneous transparent films. Prepared thin films have granular microstructure. The optical transmittance and absorption spectra show that the films are absorber of the ultraviolet and transparent against visible lights. The transparency and grain size of the prepared samples increase by annealing process. The calculated optical band gap (3.38 eV) is in good agreement with the existing data.

Keywords: Strontium Titanate, Thin film, Spray pyrolysis.
ساخت لایه‌های نازک SrTiO₃ به روش اسپری با پارولیز و مطالعه خواص ساختاری و اپتیکی آنها

ناصر تجری، مهدی حرمی علی‌زاده، پروانه ایرانی‌نش

دانشکده فیزیک مهندسی دانشگاه علوم پایه، ازمیان، تحقیقات حیات جامد

Email: tajabor@ferdowsi.um.ac.ir

چکیده: لایه‌های نازک SrTiO₃ به روش پارولیز تهیه شدند. پارولیز TiO₂/SrO/TiO₂ در بستر ایجاد شد و شرایط پارولیز و تغییرات زمان و شرایط

دریافت مقاله: ۱۳۸۷/۱/۲۹، نسخه نهایی: ۱۳۸۷/۱/۱۳

مقدمه

در جنگ دهه‌های اخیر لایه‌های کاسیسپت اکسید سیلواسیت با تابث دی‌کلرک نیاز به سیستم‌های الکترونیک بالای نور نزدیک به خود کننده این اکسیدهای در سختی خبان. حفاظه‌های دینامیک قابل دسترس تروتک و سیستم‌های الکتروکنیکی تمایل‌های الکتروولوگی کاربردهای الکترولوگی کاربردهای الکترولوگی کاربردهای الکترولوگی کاربردهای الکترولوگی کاربردهای الکترولوگی

تیتانیوم(۴) (SrTiO₃) در ساختار سختی گوی و نورای الکتریکی ممکن است. ساختار زیری. این ترکیب در دمای کمتر از K ۵۰ به شکل چاه‌گوشه در می‌آید. تیتانیوم(۴) این ماده اکسید سیلواسیت ممکن است. ساختار شکل چاه‌گوشه در می‌آید. تیتانیوم(۴) این ماده اکسید سیلواسیت ممکن است. ساختار

روش کار

روش کار SrTiO₃ پروانه ایرانی‌نش

برای تهیه نازک تیتانیوم(۴) در محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی مخلوط از کاتیون‌های فلزی تهیه شدند. محلول اولیه حاوی
ساخت نانوهای تازک SrTiO$_3$

استون برای رقیق‌سازی به آنها اضافه شده. محصول دوم حاوی استات استرانسیم و آب بیوندایی شده غلظت 7×10$^{-2}$ مول بر لیتر بوده است.

لایه‌بندی به صورت تک لایه دو لایه توانی TiO$_2$/SrO

و نیز لایه توانی TiO$_2$/SrO تا Aجسام شد. شرایط لایه‌بندی به سرعت مسایل خط و با لایه‌بندی که یک تک لایه‌بندی رسانه به درجه 1 از SrO و TiO$_2$ توانی شده که در جدول 1 از آن راه‌های شدند. این لایه‌ها بر ترکیب آلومین و شیشه نشانه شدند.

نتایج نشان داد که لایه‌بندی به سرعت 2گیس در ایمن شرایط و محدوده کمک از RE که به ترکیب A حاصل می‌شود که به همراه ترکیب کلیدی که مشابه شده به فضای فرودی (hv) رابطه ضریب در آزمایش و گفتن نواری این روش به صورت زیر است:

$$\alpha(\lambda) = \frac{A}{\lambda} \left(\frac{\lambda_2 - \lambda_1}{2n}\right)$$

(1)

برای محاسبه گفتن ارزی نوی و تعبین نوع آن، می‌توان تجربی ضریب در آزمایش اینکی لایه با استفاده از رابطه (2) به دست آمد:

$$a(\lambda) = \frac{A}{\lambda} \left(\frac{\lambda_2 - \lambda_1}{2n}\right)$$

(2)

در این رابطه، طیف در آنالیز UV–VIS و فرآیند اندازه‌گیری UV به شکل‌های مختلف نشان داده شده خاصیت دنده این اجزای در دو شرایت و محصول اول به دو بخش در همان وضعیت، و نیمه آن در شرایت به این شکل شیمیایی افتخارات، یک سر در درگیر زمانی 15 دقیقه، محصول دوم و 15 دقیقه یک سر در اول در همان شرایط لایه‌بندی شدند. پس از لایه‌بندی، کوره خاموش شد و لایه‌ها را ریشه و به دست آمدن به دواظه را شدند. سپس تعدادی از شیب‌های شیمیایی به مدت 45 ساعت در دمای 550 درجه سانتی‌گراد.

ب) بررسی‌های ساختاری

برای تعیین این وسیله میکروسکوپ نوری قطعیوی (Leo 1450 VP مدل) شده مطالعه ترکیب فرمول‌های نموده‌ای به یک طیف‌سنج انرژی (EDX) و میکروسکوپ الکترونی استخوان‌یابی (LMGP-1548، پیشی. مدل) می‌تواند این روش از محدودیت‌ها و لایه‌بندی ناشناخته شده در زیرای شیمیایی به مدت 45

در ضریب جذب به دست آمده از این رابطه منحنی تجربی ضریب سازگار باشد. در عمل با انتخاب یکی از مدقیق را بازی

$$ln(a(\lambda)v) = ln B + r ln(hv - E_g)$$

(4)

بنابراین بدرود یا مفروض در شیب منحنی برحسب $hv = E_g$ درست باشد. با توجه به رابطه (3) و در نتیجه رابطه زیر:

$$ln(a(\lambda)v) = ln B + r ln(hv - E_g)$$

(4)

باید بتوان همان مقدار 4 برای بازی که دست آورده. با این روش، اندازه گرفتن نوی مشابه مشاهده شد.
بحث و بررسی

جند نمونه از تهیه میکروسکوپ بر روی لاوه‌های تهیه شده در شکل‌های ۱ و ۲ نشان داده شده‌اند. دیده می‌شود که رشد نمونه‌آموزان بازرگانی است و شامل لایه‌ی کاملی کنواخت و شفاف است. البته این لایه‌ای که به دست آمده‌ای است. در نمونه مورد گذشته در زمینه آکسیدتابی‌های است. در نمونه سالامیهای برای تهیه می‌شود. سطح لاوه‌های پوسته و بدون ترک خوردگی است. همچنین نمونه‌های نشان داده که به صورت دانه‌ای برخوردها در شفافیت و اندازه دانه‌ها تغییر کرده و جنبه‌ی کمتر می‌شود. بنابراین تغییر دانه‌ها و اندازه‌اندازه‌ای یک‌پاره‌یت و شکل آنها منظم‌تر و به شکل گروهی توزیع شده است.

شکل ۳ تصاویر میکروسکوپ بر روی لاوه‌های TiO۲/SrO/ TiO۲-۹۳ نشانده‌ن

شده در دمای ۵۰۰ درجه سانتی‌گراد بکر شیده. (الف) برای TiO۲ و

شکل ۴ تصاویر میکروسکوپ بر روی لاوه‌های SrO/ TiO۲ و TiO۲-۹۳ نشانده‌ن

شده در دمای ۵۰۰ درجه سانتی‌گراد بکر شیده. (ب) برای SrO و

گلوهای پر اثر تر X نکلان‌های TiO۲ و SrO در شکل

۴ نشان داده شده‌اند. این گلوهای نشان می‌دهد که هر دو لاوه

متشکل از یک زمینه آموزنده که می‌تواند ناشی از بستر

شیشه‌ای و یا ترکیب باند مشاهده شده که گردن فاز بلوری

جین فرابین انشعابی شکل می‌گیرد و لی پلورکهای فاز

SrO تنها پس از بزرگ‌سازی در دمای ۵۵۰ درجه سانتی‌گراد می‌باشد.
شکل ۳ تصاویر SEM نمونه TiO\(_2\)/SrO/TiO\(_2\) تشانده‌شده در دمای C۵۰۰ درجه سانتی‌گراد.

شکل ۴ طرح‌های پراید برتر X نمونه (۱) TiO\(_2\) و (۲) SrO نشان‌دهنده به‌روش امپری پارولزی برتر.

در طرح پراش نمونه سلاپ‌های بازیختشده در شکل ۵ فاز تینتلاست‌ترین مشاهده شد. برای این رابطه، ساختار a = ۳.۹۳ Å مکعبی با گروه فضایی Pm3m تأیید شد که برگردش خویی با گزارش‌های موجود دارد [۸].

شاخه‌های متصل وابسته به دسته صفحات بلوری این ساختار، SrTiO\(_3\) را می‌توان مشخص کرد. عکسی بر فاز تیتانات‌سنتزی مشاهده شد. در نمونه TiO\(_2\)/SrO/TiO\(_2\) در این نمونه حضور داشت.

در طرح پراش نمونه، سلاپ‌های بازیختشده در شکل ۵ تبلورهای Fاز فازهای دوتایی پراکنده مثل Sr\(_2\)TiO\(_4\) و Sr\(_2\)Ti\(_2\)O\(_7\) مشاهده نشدند [۹]. انتظار می‌رود که با افزایش دمای بازیخت و نیز تعداد لاشه‌های متوازی نشسته، ناشی از اثرهای رشد دانه‌ای، بلورکه‌های Fاز برود و نمونه تک Fاز شود.
شکل ۵ طرح‌های پراش برخورد نمونه‌ها TiO۲/SrO/ TiO۲ در دمای ۶۰۰° بر پایه آماری شیشه‌ای (۱) پیش از بازیخت، و (۲) پس از بازیخت.

شکل ۶ منحنی‌های جذب و تراوکسیل نمونه‌های (۱) TiO۲/ Ba۵۵۰۰، (۲) TiO۲/ Sr۵۰۰۰/ TiO۲ (۳) بازیخت شده، (۴) بازیخت شده، (۵) بازیخت شده.

جدول ۲ شیفتِ پراش شده نمونه‌های مختلف

<table>
<thead>
<tr>
<th>t (nm)</th>
<th>نمودار لاژ ناک</th>
<th>نمودار لاژ ناک</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۱۶</td>
<td>TiO۲/ Sr۵۰۰۰/ TiO۲</td>
<td>TiO۲/ Sr۵۰۰۰/ TiO۲</td>
</tr>
<tr>
<td>۲۰۱</td>
<td>بازیخت شده</td>
<td>بازیخت شده</td>
</tr>
<tr>
<td>۲۶۱</td>
<td>TiO۲/ Sr۵۰۰۰/ TiO۲</td>
<td>TiO۲/ Sr۵۰۰۰/ TiO۲</td>
</tr>
<tr>
<td>۳۷۶</td>
<td>بازیخت شده</td>
<td>بازیخت شده</td>
</tr>
</tbody>
</table>

گراف نواری نمونه‌ها پس از بازیخت با استفاده از روابط (۲) و (۳) محاسبه شد که نتایج حاصل در جدول ۳ دیده می‌شوند.

گراف نواری محاسبه شده برای تمام نمونه‌ها گزاره مستقیم ۵۰۰ = r (شکل‌های ۶ و ۸) را تأیید می‌کند. نتایج به دست آمده با مقداری تجربی گزارش شده همکاری خویی دارد [۶ نا] ۱۱۱.
در شرایط مناسب لایه‌شانی، رادیکال‌های جذب شده در سطح
پایه به دست می‌آید. بدین‌جایی که بازیخ در دمای مناسب
شکل جوی سطحی بر فراز همکاری تنش درونی و
رشد ناپایدار و در نتیجه همگامی بیشتر
لازمه مورد نظر خواهد شد.

جدول ۱. نتایج اندام‌گیری گاف توانی نمونه‌ها در مقایسه با بعضی از منابع ذکر شده.

<table>
<thead>
<tr>
<th>شماره مرجع</th>
<th>نمونه‌های ناکرده (eV)</th>
<th>شماره مرجع</th>
<th>نمونه‌های ناکرده (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳۴۳</td>
<td>TiO۲</td>
<td>۳۴۴۳</td>
<td>BaTiO۳</td>
</tr>
<tr>
<td>۳۳۴۳</td>
<td>TiO۲</td>
<td>۳۴۴۴</td>
<td>TiO۲/SrO/TiO۲</td>
</tr>
<tr>
<td>۳۴۴۴</td>
<td>BaTiO۳</td>
<td>۳۴۴۴</td>
<td>TiO۲/SrO/TiO۲</td>
</tr>
<tr>
<td>۳۴۴۴</td>
<td>TiO۲/SrO/TiO۲</td>
<td>۳۴۴۴</td>
<td>BaTiO۳</td>
</tr>
<tr>
<td>۳۴۴۴</td>
<td>BaTiO۳</td>
<td>۳۴۴۴</td>
<td>TiO۲/SrO/TiO۲</td>
</tr>
</tbody>
</table>

شکل ۷. منحنی‌های تأیید کننده گذار مستقیم در نمونه‌های (الف) TiO۲ و (ب) TiO۲/SrO/TiO۲ (خط چین مربوط به نمونه پس از بازیخ است).

References:

