Mineralogy, geochemistry and role of olivine mechanical separation in generation of Lower Paleozoic igneous rocks in Shirgesht area, NW of Tabas, Central Iran

H. Ghasemi¹, M. Derakhshi²

¹- Associated professor of petrology at Earthscience Faculty of Shahrood University of Technology, Shahrood, Iran
²- Graduate of petrology at Earthscience Faculty of Shahrood University of Technology, Shahrood, Iran
E-mail: h-ghasemi@shahroodut.ac.ir

(Received: 7/5/2007, in revised form: 4/2/2008)

Abstract: This area is located in Derenjal Mountains, 60Km northwest of Tabas in central Iranian structural zone. The igneous rocks occur as plutonic with composition of olivine-gabbro, gabbro, diorite and monzodiorite in Kalshaneh Formation with Middle Cambrian age and as the extrusive rocks with composition of olivine basaltic lavas in lower part of Niur Formation with Silurian age. Petrographical and geochemical evidences show a genetic relationship between the plutonic and volcanic rocks and generation of them from a common magma. Unlike the magmatic differentiation process, the role of magmatic contamination was weak and olivine mechanical separation was the main process in their magmatic evolution. Different diagrams and documents have been shown that these rocks have transitional to alkaline nature and produced in a within plate continental setting by 12-17 percent partial melting of an enriched garnet-pridotite mantle source during the early Silurian. This tectonic setting is agree with an extensional setting (intercontinental rifting) in Central Iran during Lower Paleozoic and specially with Silurian magmatism during Paleo-Tethyan rifting in this part of Central Iran.

Keywords: Petrology, Geochemistry, Lower Paleozoic, Central Iran, Shirgesht.
کانی شناسی، رشته‌ی مهندسی و نقش فراکسید جدایی‌کننده‌ی مکانیک باله‌های الیوتین در تشکیل سنگهای آذرین باله‌پذیری زیرین منطقه شیرگشت، شمال غرب طبس، ایران مرکزی

حیبی ایم، قاسمی، مرتضی درخشی

1- دانشجو دانشکده علوم زمین دانشگاه صنعتی شهید رضوی
2- فارغ التحصیل کارشناسی ارشد پرتوکره دانشگاه صنعتی شهید رضوی

h-ghasemi@shahroodut.ac.ir

(دریافت مقاله 1383/11/15، پذیرش نهایی 1384/3/17)

چکیده: این منطقه در 40 کیلومتری شمال غربی طبس در کوه‌های درنژال و در زون ایران مرکزی قرار دارد. سنگهای آذرین مورد مطالعه به صورت نفوذی و یا طبیعی ترکیب الیوتین گیاهی، گیاهی، دوستی و مونزودوریت در سازند کالشان به سن کامبرین میانی و به شکل خورنده و با ترکیب الیوتین گیاهی در گسترش منطقه زینک شدید سیلوری و سن سیلورین قرار دارد. شواهد سنگ‌شناسی و زنبورهایی انسانی از ارتباط زیستی سنگهای نفوذی و خروجی به یکدیگر نشان دهنده گرافین آنها یک مکانیکی مشترک، ناشناخته ایم که در کانی‌های مکانیک باله‌پذیری این مناطق است. نمونه‌ها و شواهد مختلف حاکی از ماهیت نیتگرایانه اولیه سنگ‌های جدایی‌کننده مکانیک باله‌پذیری الیوتین در روند شکل‌گیری و تحول این سنگهایهای شیرگشت در مناطق مورد علاقه و در زمین‌شناسی عمومی منطقه منطقه مورد مطالعه در 40 کیلومتری شمال غربی طبس و 10 کیلومتری شمال روسایشگری با مختصات جغرافیایی 34° 34' 56 طول شرقی و 5° 37' 14 عرض شمالی قرار دارد. این منطقه از لحاظ ساختاری در شال‌های گریزی افتاده‌ای طبس به عنوان جزئی از خرده‌ی قاره ایران مرکزی، واقع شده است. سنگهای آذرین مورد مطالعه در کوه‌های درنژال و در مناطق سازندی‌ها به سن کامبرین سیلورین که به شدت سخت‌نوش چین خورده‌گر شدهاند، پرتوکره‌ای دارند (شکل). این مقدمه حضور سنگهای آذرین نفوذی و خروجی در واحدهای به نشسته باله‌پذیری زیرین مناطق مختلف ایران، به ویژه ایران مرکزی، یکی از حوادث مهم زمین‌شناسی ایران است که ویژگی‌های آن در سایر مناطق نظیر این منطقه مشترک باشد. سایر مورد مطالعه در حاشیه شیرگشت و جایگاه رخندان آنها صورت نگرفته است و این سنگ‌ها تنها توسط رخندن در زمین‌شناسی آذرین موجود در ناحیه شیرگشت و جایگاه رخندان آنها صورت نگرفته است. [1] و در حد توصیف صحراوي و سنگ شناختی اولیه به عنوان دایپهای دیاژیک مورد اشاره قرار گرفته‌اند. با توجه به تغییرات مطلوب سنگ‌شناسی سنگهای آذرین این منطقه می‌تواند مکمل اطلاعات موجود در خصوص سرگشت زمین‌شناسی و روزم
سنگها در ساندیه‌های سلطانی، بروت، زاکن، لالان، کالاسه،
درنجال و شیرگشت به صورت دایک، سیل و توده‌های نفوذی
کوچک دیده می‌شود. بیشترین میزان سنگ‌های آذرین، به صورت توده‌های نفوذی و بدون هیچگونه نظم و
ترتیب چینه‌شکنی خاص در درون ساندیه‌ها ایجاد نمی‌کند. این
سنگ‌ها دست‌خوش دگرگون نمودند نه تنها نسبت به
مطالعات سنگ‌شناسی نورتوم توسط [1] روی این سنگ‌ها، منجر به
معرفی آنها به عنوان الیون - اوزیت - داریت و هونرلند-
اوژیت- داریت شده است. ولی بررسی‌های دایک قدیمی است. این
کاک پژوهشی، آنگامی‌ها را مردود دانسته و نام‌های الیون-
گاکی، گاکی، گاکی، دیوریت و دیوریت دریاچی و دیوریت دریاچی را برای آنها
بارده است.

از طرفی دو همانند سیاری از مناطق ایران مرکزی، وجد
یک روانه گذاره به شکل یک مربع به شکل شده و بادی
وشکلی است [چسندی و] که از پیوندی آن، نموده‌ای گرانش، در گرین‌بردی‌های گزاره که نموده‌ای که می‌تواند شده و به
باز آن‌ها که پژوهش‌ها از پیوندی از پیوندی آن، نموده‌ای که می‌تواند شده و به
بلژیک نام داده می‌شود. به طور شناختی، دمای گردویی که به شکل شده و به
فقط بلژیک نام داده می‌شود. به طور شناختی، دمای گردویی که به شکل شده و به
من اطلاعات سنگ‌شناسی نورتوم توسط [2] روی این سنگ‌ها، منجر به
شواهد مختلف نشان می‌دهد که سنگ‌های آذرین (نفوذی و
خروجی) منطقه از نظر زنده‌پایی با یکدیگر مرتبط بوده و به
ماکماک‌های گسترده سیلویون در ایران مرکزی تعلق دارند. بر
پایه مطالعات سنگ‌شناسی و نتایج عمده سنگ‌های میزانی، می‌توان آن‌ها در آن‌ها در ده‌ها، بيورانک‌ها
این سنگ‌ها و فوقان آنها تکنیک‌های مربوط را در خلال
سیلویون در عمق ۲۰۰۰ تا ۳۰۰۰ متری دانست [۲].

کاناسیس و سنگ‌شناسی سنگ‌های نفوذی

ب- گاکی، گاکی، گاکی، دیوریت
گاکی، گاکی، گاکی، دیوریت

های آذرین

sun مورد مطالعه را تشکیل داده‌اند. گاهی‌ها اصلی تشکیل
دهنده آنها شامل بلژیک، لیمون و گاهی‌ها اصلی

شناختی. بلژیک نام داده می‌شود. به طور شناختی، دمای گردویی که به شکل شده و به

نام‌های این سنگ‌ها را تشکیل می‌دهد که سنگ‌های آذرین (نفوذی و

خروجی) منطقه از نظر زنده‌پایی با یکدیگر مرتبط بوده و به

ماکماک‌های گسترده سیلویون در ایران مرکزی تعلق دارند. بر

پایه مطالعات سنگ‌شناسی و نتایج عمده سنگ‌های میزانی، می‌توان آن‌ها در آن‌ها در ده‌ها، بيورانک‌ها

این سنگ‌ها و فوقان آنها تکنیک‌های مربوط را در خلال

سیلویون در عمق ۲۰۰۰ تا ۳۰۰۰ متری دانست [۲].
کاتیشناسی، زئوشیمی و نقش فرابند جدایی مکانیکی بلورهای...

شکل ۲ (الف) تصویری از یک بلو درشت البوین (Ol) در البوین گاروها که در سطوح ضعیف آن سربیانیت و اکسید آلیاژ تشکیل شده است. ب) بلوهای شکلدار جنیم شکلدار البوین با حاشیه گرد شده که در زمینه‌ای از کلیوپروکسین (Cpx) قرار گرفته‌اند. ج) بلوهای شکلدار پلاژیوکلاز در البوین گاروها که مدل شکل‌دار و اشکال شکلدار البوین در البوین گاروها و شکلگری مکانیکی بلوهای البوین در البوین گاروها و Shaded.

د) موزدودیبوتی‌ها
این سنگ‌ها دارای بافت‌های دانمار و میان دانمار بوده و کاتیشناسی البوین با نشان می‌دهند که در این البوین دانماری. تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییرات در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و ترکیب سنگ‌ها از پایین به بالای Lایه تغییراتی در انداره دانمار و Tرکیب سنگ‌ها از پایین به بالای لایه تغییراتی در انداره دانمار و Tرکیب سنگ‌ها از پایین به بالای Lایه Tغییراتی در انداره دانمارس.
تا بررسی شیمیایی عناصر اصلی نمونه‌های منطقه مورد اصلی این انتخاب به کمترین زیادی کردن در ترکیب انتخاب و ICP-MS در آزمایشگاه کناره به روش Actlab در مورد تجزیه شیمیایی قرار گرفتن (جدول 1).

با توجه به ماهیت مفاهیم و دانش تغییرات در MgO سه اثرات منطقه (26.3 - 4.72 = 0) تغییرات اکسیدهای اصلی و عناصر کمبود MgO (نمونه‌های نسبت به) MgO فنر رسم شده است. در این نمونه‌ها با کاهش مقدار Zr، Na2O، TiO2، P2O5، SiO2، Al2O3 مقدار Zr و FeO افزایش و مقدار Cr و FeO در نمونه کاهش دیده شد.

این روند باعث نوعی ارتباط زینتیکی بین نمونه‌های منطقه می‌گردد. در نتیجه قابلیت روند در نمونه‌ها وجود یک دیجیتال نشان دهنده تغییرات نسبت به در روند مختلط ذوب بهبود سیستم شکل‌گیری سری مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان نمونه Nb مثال، در حال حاضر در مقاله در بررسی مزبور تغییر تاریک دانست. به عنوان

جدول 1 نتایج تجزیه شیمیایی عناصر اصلی نمونه‌های منطقه مورد مطالعه، این انتخاب از دستگاه‌های ناحیه از حدف مواد مورد گزارش

<table>
<thead>
<tr>
<th>سلسله</th>
<th>SM-13-1</th>
<th>SM-7-2</th>
<th>SM-7-1</th>
<th>SM-11-2</th>
<th>SM-3-7</th>
<th>SM-6-1</th>
<th>SM-10-2</th>
<th>DM-1-2</th>
<th>DM-2-1</th>
<th>DM-2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیترات الیوت</td>
<td>46.83</td>
<td>46.45</td>
<td>46.97</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
</tr>
<tr>
<td>نیترات الیوت</td>
<td>46.83</td>
<td>46.45</td>
<td>46.97</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
</tr>
<tr>
<td>نیترات الیوت</td>
<td>46.83</td>
<td>46.45</td>
<td>46.97</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
</tr>
<tr>
<td>نیترات الیوت</td>
<td>46.83</td>
<td>46.45</td>
<td>46.97</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
</tr>
<tr>
<td>نیترات الیوت</td>
<td>46.83</td>
<td>46.45</td>
<td>46.97</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
<td>46.83</td>
</tr>
</tbody>
</table>
ادامه جدول 1

نتایج تجزیه شیمیایی عنصر کمیاب نمونه‌های منطقه (بر حسب ppm)

<table>
<thead>
<tr>
<th>Samples</th>
<th>SM-13-1 الیوین بارالت</th>
<th>DM-2-2 الیوین بارالت</th>
<th>SM-11-2 الیوین بارالت</th>
<th>SM-6-1 مونودوربیت</th>
<th>DM-2-1 الیوین بارالت</th>
<th>SM-7-2 الیوین کابرو</th>
<th>DM-1-2 الیوین بارالت</th>
<th>SM-5-1 مونودوربیت</th>
<th>SM-10-2 مونودوربیت</th>
<th>DM-2-3 الیوین بارالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Be</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>Cr</td>
<td>0</td>
</tr>
<tr>
<td>Co</td>
<td>0</td>
</tr>
<tr>
<td>Ni</td>
<td>0</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
</tr>
<tr>
<td>Zn</td>
<td>0</td>
</tr>
<tr>
<td>Ga</td>
<td>0</td>
</tr>
<tr>
<td>Ge</td>
<td>0</td>
</tr>
<tr>
<td>Pb</td>
<td>0</td>
</tr>
<tr>
<td>Bi</td>
<td>0</td>
</tr>
<tr>
<td>Th</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
</tr>
</tbody>
</table>

نتایج تجزیه شیمیایی عنصر کمیاب نمونه‌های منطقه (بر حسب ppm)

<table>
<thead>
<tr>
<th>Samples</th>
<th>SM-13-1 الیوین بارالت</th>
<th>DM-2-2 الیوین بارالت</th>
<th>SM-7-2 الیوین کابرو</th>
<th>DM-1-2 الیوین بارالت</th>
<th>SM-6-1 مونودوربیت</th>
<th>SM-5-1 مونودوربیت</th>
<th>SM-11-2 الیوین بارالت</th>
<th>SM-10-2 مونودوربیت</th>
<th>DM-2-1 الیوین بارالت</th>
<th>DM-2-3 الیوین بارالت</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>0</td>
</tr>
<tr>
<td>Ce</td>
<td>0</td>
</tr>
<tr>
<td>Pr</td>
<td>0</td>
</tr>
<tr>
<td>Nd</td>
<td>0</td>
</tr>
<tr>
<td>Sm</td>
<td>0</td>
</tr>
<tr>
<td>Eu</td>
<td>0</td>
</tr>
<tr>
<td>Gd</td>
<td>0</td>
</tr>
<tr>
<td>Tb</td>
<td>0</td>
</tr>
<tr>
<td>Dy</td>
<td>0</td>
</tr>
<tr>
<td>Ho</td>
<td>0</td>
</tr>
<tr>
<td>Er</td>
<td>0</td>
</tr>
<tr>
<td>Tm</td>
<td>0</td>
</tr>
<tr>
<td>Yb</td>
<td>0</td>
</tr>
<tr>
<td>Lu</td>
<td>0</td>
</tr>
<tr>
<td>ΣREE</td>
<td>0</td>
</tr>
</tbody>
</table>

کانی شناسی، زئوشیمی و نقش فرابند جدایی مکانیکی بلورهای...
نمودارها، قرارگیری شده مونوهای منطقه در گستره
پازالتنهای اولیه (شکل 5-ج) است. دلیل نزدیک بودن ترکیب
این سنگها به پازالتنهای اولیه، به انتشارگی فراوان الیوین در
هنگام تفریق ماسکومی در این مونوهای وابسته است.

به منظور تعیین جایگاه زمین ساختی سنگهای منطقه نیز
از نمودارهای مختلفی که بیشتر بر پایه عناصر کمیاب طراحی
شدند، استفاده شده است. در نمودارهای مختلف [17-20]
(شکل‌های 5-الف تا د)، تماس میانگین در گستره پازالتنهای
درون صفحه قرار می‌گیرند. قرارگیری بیشتر مونوهای در
گستره پازالتنهای انتقالی و برخی از آنها در قلمرو پازالتنهای
فلایی که به عنوان تایید کننده پذیرش به دست آمده در خصوص انتساب این
سنگها به سری انتقالی تا کمی فلایی است.

برای اساس، تمامی نمودارهای تغییرات عناصر ناساژگار و
سازگار مونوهای سنگی منطقه (شکل 4 نشان دهند شکل-)
گیری آنها از خاستگاه مشترک و نیز نقش اساسی تبلور تفریقی
Zr در تشکیل اینهاست. البته در نمودار تغییرات
مقدار کمی پراکندگی و انحراف از روند خطی دیده می‌شود که
با توجه به نامتعزی بودن این عناصر در حالت طبیعی و در
خلال دگرسانی [11, 12] می‌توان دلیل این پراکندگی جزئی
را در ارتباط با مقادیر کم آلایش ماسکومی و با تغییرات ناجی
در درجه ذوب خاستگاه دانست.

نمودارهای سنگی منطقه مورد مطالعه در نمودارهای تمایز
سرپدای ماسکومی [13-16] دارای ماهیت انتقالی تا آلكالن
هستند (شکلات 5-الف تا د). یکی از موارد قابل توجه در این
نمودارهای تغییرات عناصر ناسازگار- ناسازگار و ناسازگار-سازگار برای نمونه‌های منطقه مورد مطالعه.

شکل ۲

شکل ۳

شکل ۴

شکل ۵

تغییرات عناصر ماده اصلی سنگ‌های آذربایجان منطقه مورد مطالعه با استفاده از نمودارهای متمایز کشیده (الف) از [۱۵]. (ب) از [۱۲۳] ج. از [۱۶]. (د)
در بررسی الگوی توزیع عنصر کمیاب بر پایه نمودارهای عنکبوتی، مقادیر عنصر کمیاب ناسازگار و نادر خاکی نمونه‌های منطقه نسبت به مقادیر کندرینی [۲۱] به‌هنجار شده‌اند (اشكل‌های ۷، ۸، ۹، ۱۰). این نمونه‌ها بیانگر فنی‌گر شدیدی تمامی نمونه‌ها از ان عناصر در مقایسه با مقادیر کندرینی هستند. در این میان، عنصر کمیاب خاکی سبک (LREE) و عنصر به شدت ناسازگار، غنی شدگی بیشتری نسبت به عنصر کمیاب خاکی سبک (HREE) نشان می‌دهند. مواری بودن الگوی عنصر در منطقه در این نمونه‌ها نیز تایید کننده نتایج به دست آمده از یک‌پریده بلند بی‌خانگی مشترک این سگه‌ها و نقش بیانگر توزیع چندانی از عنوان ساز و کار اصلی تشکیل این سگه‌ها، همچنین وجود یک سری‌پی-نتایج و پراکندگی (ناهنجاری‌های شدید و منفی) در مقادیر عنصر در این نمونه‌ها بیشتر به دگرگانه
نمذج‌بندی به باقیماندن در مذاب باقیمانده را دارند [۲۱]. این ناسازگاری بی‌پایه از نظر دریایی ضریب جداشیت کمتر از ۱ برای این عناصر است. برخی از این عناصر با فاصله و جداشیت بین مقادیر عناصر کمی ممکن است. به طوری که این نمونه‌ها در اکثر موارد از مقاوم‌ترین عناصر کمی در میان سنگ‌های محلی هستند. دیگر این نمونه نیز عناصر کمی در این سنگ‌های محلی در ارتقاء مستقیم با ترکیب کانی‌شناسی (به ویژه تفاوت فاصله در مقدار مولار بیوین) و فراوانی تشکیل آن‌ها است. این نمونه‌ها در این سنگ‌های محلی (بیوین نیز) با مقادیر بالای بیوین و کلینوپروکسین هستند. به طور کلی ضرایب جداشیت عناصر کمی بین نیز و کلینوپروکسین با مقدار سبلیکاتی کم بهبود (جدول ۲) و این عناصر عموماً نسبت به این کانی‌ها ناسازگارند [۲۱].

جدول ۲ ضرایب جداشیت عناصر کمی به وسیله کانی‌های بیوین، کلینوپروکسین، بالینوکلریز و هورتینتند در مذاب‌های بازالتی (در [۲۵]).

<table>
<thead>
<tr>
<th>Trace element</th>
<th>Olivine</th>
<th>Clinopyroxene</th>
<th>Plagioclase</th>
<th>Hornblende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>۰.۹۸</td>
<td>۰.۸۳</td>
<td>۰.۷۱</td>
<td>۰.۲۴</td>
</tr>
<tr>
<td>Sr</td>
<td>۰.۱۴</td>
<td>۰.۱۳</td>
<td>۰.۱۰</td>
<td>۰.۱۰</td>
</tr>
<tr>
<td>Ba</td>
<td>۰.۰۹</td>
<td>۰.۵۲</td>
<td>۰.۲۳</td>
<td>۰.۰۴</td>
</tr>
<tr>
<td>K</td>
<td>۰.۰۸</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Y</td>
<td>۰.۰۱</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Ti</td>
<td>۰.۱۵</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Zr</td>
<td>۰.۰۷</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Hf</td>
<td>۰.۱۳</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Nb</td>
<td>۰.۰۳</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Th</td>
<td>۰.۰۳</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>U</td>
<td>۰.۰۱</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>La</td>
<td>۰.۰۷</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Ce</td>
<td>۰.۰۹</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Nd</td>
<td>۰.۰۴</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Sm</td>
<td>۰.۰۹</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Eu</td>
<td>۰.۰۴</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Gd</td>
<td>۰.۰۷</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Dy</td>
<td>۰.۰۳</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Er</td>
<td>۰.۰۵</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Yb</td>
<td>۰.۱۹</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
<tr>
<td>Lu</td>
<td>۰.۳۲</td>
<td>۰.۴۳</td>
<td>۰.۱۷</td>
<td>۰.۰۹</td>
</tr>
</tbody>
</table>
سنگ زایی به منظور تشخیص میزان گذشته خاک‌های شدگی در یک حالت همکار [10] و یا ناشی از ناهنجاری محل خاک‌های باشد [28] (شکل 9). نمونه در نمودار Zr/Nb نسبت به Zr/Y آذرین منطقه، از نسبت‌های عناصر ناسازگار Y/Zr و Zr/Nb ارائه شده توسط [21] برای تفکیک خاک‌های غنی شده از تحقیقات استفاده شده است. این عناصر به دلیل تحکیم بسیار پایین خود حتی در درجات بالای وسیع‌تری نیز اگر نمونه‌های دیگری نسبت‌های (نظر نمونه‌های منطقه مورد بسیار معین نشده است. بر اساس این اساس، تصمیم نمونه به منظور مورد مطالعه در جدول‌های غنی شده قرار می‌گیرد (شکل‌های 8-الف، beta). در این نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک نیز می‌شود. از نمودارها پراکندگی اندکی به دیده می‌شود. از آنجاک N

شکل 7: نمونه‌های انکوباسیون محل منطقه مورد مطالعه که نسبت به مقدار کنترلی [31] (الف) و [22] (ب) به مبنای شداندن.
در گستره QAR نمی‌گردد، که این امر می‌تواند نشان دهنده عدم رشد گیاه‌های ماده‌ای نیمه OIB/نشرت باشد.

تی/ور/م نسبت به نیمه

يثوانهای متغیر در گستره بین یادآوری چزاری باربیتاتیو-وی از قانون (IB) مستقر قرار می‌گیرند. چنانچه قبل از گردن، ترکب OIB که پاتنده نشان است، نیمه تواند به عنوان محل خاص‌گزینه عمل کرده باشد. ولی نزدیک بودن ترکب سگهای منطقه به ترکیب‌های بخش‌های زیرین یپسته (شکل 1) نیز ممکن است از ارتباط با آلونستگی‌ها با این سگ‌ها باشد. که قابلیت چکننده بیشتری تولید

و گوشته در مرز موه، مکان اصلی برای توافق ماده، تولید

و تولید کردن یک در نظر گرفته شده. که توانایی و CF یافته می‌کند. توانایی Ta زمانی

اماده کردن چکننده آن را در تفریق ماده‌گری به حدای بررس

که بتواند نوری شناوری لازم برای این آماده را دسترس آورد. این توانایی را مزکر ایشان از ماده‌گری را مشاهده نمی‌کند، با این

دیدگاه، نشان می‌دهد که آله‌های ماده‌گری در مقابله با

فی‌ادم نهایی تیپ در نظر گرفته شده در مقایسه میانی یافته از یک اندازه بالا/ریخته

لایه‌داری (CLM) در نظر گرفته شده و به ویژه در حالت نسبت

Nbr/Nb به‌کار رفته در صورت ها/Sm 3 [23] گیاهان دوراه

در شکل-11 ـ اف نیمه‌های متغیر مورد مطالعه روز

متجه‌ها در 16 تا 16 درصدی یک خاص‌گزینه کاربنیدینی قرار گرفته‌اند. در شکل-11-ب مدل خاص‌گزینه برای یک

خاص‌گزینه غربی و نیز یک خاص‌گزینه (MORB) تهیه شده

را نشان می‌دهد، نمودار مخلوط مکانیک در قلمرو درجات

ذوب بخشی تعدادی 12 درصدی یک خاص‌گزینه غربی قرار می‌گیرد. بنابراین، می‌توان درجات ذوب بخشی 12 تا 17 درصدی یک خاص‌گزینه غربی کاربنیدینی را برای

ماگماتیک تکثیر دهنده سنته‌گاه منطقه به نظر گرفت.
جایگاه زمین ساختنی درون صفحه سنگهای آذری
منطقه مورد مطالعه و نیز موارد مشابه در نقاط دیگر ایران به ویژه دنیا‌هایی تیتانیتوسی آتش‌های کانادا و کانادا مربوطه در این زمان در منطقه باقی بود با نتایج مطالعات زمین ساختنی و نشست شناسی مبنا بر وجود یک محیط کششی (کالفی) درون قاره‌ای طی بالاژوئیک زیر بین در ایران مرکزی سازگار است. همچنین نمایش سنگهای منطقه مورد مطالعه به سمت انتقالی، می‌تواند نشان دهنده اهمیت بالای کشی‌گی و نازک‌ی شدگی پوسته‌ای در این منطقه از ایران مرکزی طی سیلورین باشد.

سنگهای سیلورین ایران به احتمال زیاد بیانگر نخبگان ناشی از جدایی و شکافت صفحه توران از ابرقارة آندسون است. به عقیده [42] توالی برکلی‌ن فوکالی - اردوهایان که شامل نهشته‌های یک توالی پتروولی - برخوردهن نشستی درون دو قاره‌ای است نیز حاوی سنگهای آتش‌های و نفوذی در یک محیط کششی کافی است. این پدیده در زون البرز به وسیله گروه‌های متعدد تقریباً 1000 متری از سنگ‌های آذرین نفوذی و خروجی به ترکیب غالب ماکی (مجموعه سلطان میان منطقه سیلورین) قطع می‌شود و با دنیا‌های دوی- تریبس پوشیده می‌شود. به عقیده وی این دنیا‌های بالاژوئیک زیری معرف مرحله آغازین شکستن ایجاد ریز و گسترش یک محیط فلات قاره‌ای در دوین است.

شکل 8. نمودارهای تفکیک خاستگاه غنی‌نشین و تهی‌نشین با استفاده از نسبت‌های Y/Zr و Nb/Zr برای نمونه‌های منطقه مورد مطالعه (بر اساس داده‌های [۲۱]).

شکل ۹. نمودار تعریف سرشت‌های خاستگاه ماگمای تیتانیتوسی دهندگان سنگ‌های منطقه مورد مطالعه (بر اساس مقادیر [۲۱]).
برداشت
سنگهای آدری بینی که در ناحیه شیرگشته به شکل تفوسی و با ترکیب الیوم-گاربا نامیده می‌شوند، در سازند کالاشانه باشد. بخش زیرین سازند نیرو دیده می‌شود و در دو ایز سیالیک بوده و از تریلیک پیک ماگنی می‌شود با ماهیت انتقالی تا کمی قلبی حاصل شده‌اند. شاهد سنگ شناختی در الیوم-گاربا و بخش‌های...

Mراجع
[1] Ruttner A., Nabavi M.H., Hajian J., "Geology of Shrigesht area(Tabas area, East Iran)", G.S of Iran. No.4 (1968b) 133P.
[2] رختی م., قاضی‌پور ج., طاهری ع., صادقی‌پور م., خیب و ج., "موقعیت جهان‌نامی بالکنی سوزنگ‌های آذرین جنوبی پالاژونولیک زیرین ناحیه نیکنیک, شمال غرب طبس", دهه‌های کهن‌نام‌سازی سوزنگ‌های آذرین (1385)
[3] رختی م., پروکی اولیوی، "موقعیت جهان‌نامی بالکنی سوزنگ‌های آذرین جنوبی ناحیه نیکنیک, شمال غرب طبس", پایان نامه کارشناسی ارشد پروکی اولیوی، دانشگاه علمی کهن‌نام‌سازی صنعتی شمیران، (1385)
[4] دوست‌زاده غ., "زیست‌نامی پرتوپرسی, ترجمه", انتشارات دانشگاه تهران(1381) 569 صفحه

[38] Jenny J., "Geologie et stratigraphie I Elbourz oriental, enter Aliabab et Shahrud, Iran NE", These univ. Geneve(1977) 238 P.

[39] Zahedi M., "Etude geologique de la region de soh(W. de I Iran Central)", Geol. Survey of Iran, No. 27(1973) 197 P.

[45] لاسمی ی. محیطهای رسوبی سنگهای اردوبسیان ایران (توالی‌های هرمزمان با ریفت) و تشکیل حاشیه وکرای پالاسیوس، هندسی‌های کردهای علوم زمین (1375).