Deformation effects on the gold behavior in Barika gold-rich massive sulfide deposit, east of Sardasht

Ali Yarmohammadi, Ebrahim Rastd

Department of Geology, Economic Geology, Tarbiat modares University of Tehran, Iran
E-mail: yarmohammadi77ir@yahoo.com

(Received:14/10/2007, in revised form: 12/7/2008)

Abstract: Barika gold mineralization occurred in a Cretaceous metavolcano-sedimentary sequence at northwestern Sanandaj-Sirjan zone. Gold-rich volcanogenic massive sulfide mineralization occurred in a rhyolite to rhyolitic tuff unit which is completely in Barika shear zone. Based on electron microprobe studies, gold is observed to form electrum mostly, and in lattice of other minerals, such as pyrite, galena, tetrahedrite-tennantite, bouronite-boulangerite, twinte-vinnite. The main effect of deformation on the gold mineralization is migration of submicroscopic gold to cracks and crystal defects in minerals to form electrum under low to moderate strain and release of electrum from fractured mineral under higher strain. This behavior of gold can increase recovery of gold in Au-bearing ore deposits (Huston et al., 1992).

Keywords: electrum, deformation, gold-rich massive sulfide, Barika
تأثیر دگرشکلی بر رفتار طلا در نهشته ماسیوسولفید سرشار از طلای باریکا. شرق سردرشت

علي پارامحمدی، ابراهیم راستاد

گروه زمین‌شناسی انتقادی دانشگاه تربیت مدرس
yarmohammadi771ir@yahoo.com
پست الکترونیکی: yarmohammadi771ir@yahoo.com

(دریافت مقاله ۱۲/۳/۸۷، نسخه نهایی ۱۴/۸/۸۷)

چکیده: گسترده معدنی باریکا در دنباله آنتاشوانی- به نشستی زیردریایی کرنسیه در پایانه شمال غربی زون سنندج- سیرجان قرار دارد. کاملاً ماسیوسولفیدی غنی از طلا در واحد مرآیوتیت- نور ریولیتی این دنباله، خز داده است. ابن کاملاً زیادی در اصلی ترین و

برگزین نهایی برخی منطقه واقع شده بود (بهنه برشی باریکا) و لب بررسی‌های ریز بردارشی الکترونی، طلا بیشتر به صورت گرگزی و نیز در گرگزی با شکسته‌کننده جمله پیروی خور. مطمئن نیز در گرگزی معدنی باریکا شامل خور گرگز که می‌خواهد برای مسئولانی در جمله پیروی و قرارگیری و تنظیم دوباره آن در شرکت‌ها و فضاهای بین پلوری کانتینر، به صورت گرگزی درشت بود است، به طوریکه تعداد

بلورهای الکتروم را ۳۴۶ میکرون نیز می‌رسد. ابن رفتار الکتروم در طی دگرشکلی می‌تواند باعث افزایش بارفتاری طلا از کاسنگ طلا در نهشته ماسیوسولفید غنی از طلای دگرشکلی شود.

واژه‌های کلیدی: الکتروم، دگرشکلی، ماسیوسولفید سرشار از طلا، باریکا.

مقدمه
منطقه معدنی باریکا در فاصله ۲۷ کیلومتری خاور شهربانی سردشت، در جنوب شرق خوزستان و کانتینری یکی از اثرهای ناشی از قرآنی دگرشکلی روی نهشته‌های معدنی از اهمیت ویژه‌ای برخوردار است. چرا که در مواردی قرآنی دگرشکلی، برای اولین بار مشاهده شده و در انتقادی طبیعت نهشته نش می‌نمی‌ری ایفا می‌کند. گسترده معدنی باریکا بنا به کرنسیه به کار گرفته در زون سنندج- سیرجان، نهایی برای کنترل سیستمی از پهن‌سایه

برنی مرحله صرفاً گرگز که باربیکانی ابن دگرشکلی باعث شناخت هرچه بیشتر کاملاً اولیه و رفتارهای باعث شناخته‌های اولیه باریکا به ساخت و بافت‌های جدید تشکیل شده به اثر دگرشکلی

دارد. بررسی رفتار کانی الکتروم در طی دگرشکلی در ذخیره ماسیوسولفیدی سرشار از طلای باریکا، علاوه بر مسئله

خاستگاهی کانی مسی، کمک فراوانی در حل مباحث فراوری و استحصال طلا خواهد کرد.

زنده‌شناسی
گسترده معدنی باریکا در دنباله آنتاشوانی- به نشستی زیردریایی کرنسیه در پایانه شمال غربی زون سنندج- سیرجان قرار دارد. ابن دنباله آنتاشوانی- به نشستی در منطقه باریکا از بین به

بالا مانند ماتاپولیت- لاتین اندزیت، مرآیوتیت، فلز ریولیتی، منطقه به مانند میان‌هایی از آهن و ماسیوسولفیدی اصلی ترین و

است. با بررسی بیش را فیلتر نماین و سنگ‌های آذرین درگرگزی شده تشکیل می‌دهند که ارتفاعات خاری گسترده را می‌یوشاند.
تأثیر درک‌سکالی بر رفتار طلا در نهشته ماسوسولفید سرسار از طلاي‌باریکا، شرق سردشت

الکتروم

برنای بررسی‌های ریز‌پیش‌داری الکتروم EWS و EDS در از میان‌گرده مرکز تحقیقات و فرآیند مواد معدنی ایران که با 20 kev 30 na، شرکت Cameka SX100 ساخت 20 kev 10 na و 20 kev 20 na برای بسته به بیومت گرفته از جمله پریم (جدایی 200 گرم در تن)، گالن (جدایی 1900 گرم در تن)، ترازاورین-یونتیت (جدایی 1000 گرم در تن)، بورونیت-بولانزیت (جدایی 400 کرم در تن) و تونویت-بونیت (جدایی 2000 گرم در تن) دیده می‌شود.

بنابراین این نشان داده است که نهشته‌های گریز تأثیر بلند بر شکا-شکاژی در طلا در باریکا گرفته است که این پهن‌ها به مواد گل‌سیاه روان‌شکل به منطقه و مجموعاً به مواد روزانه اصلی زاچسب هستند [2].

بررسی‌های انجام شده نشان داده است که درک‌سکالی و دکتریکولپهای پس از حین شدن می‌تواند بر رخداد کاندزایی طلا در ماسوسولفید‌ها اثر بکار بگیرد. هاستون و دیگران (1991) با توجه به بررسی‌های انجام گرفته بر ذخایر ماسوسولفید گنی از نهشته‌های تأسیس‌کننده، نتیجه‌گیری شد که طلا در نهشته‌های از درک‌سکالی چیزی خاصی، به‌طور پیرامون طلا و با ارسودیت طلا و دیده می‌شود در حالت که در نهشته‌های که تحت تأثیر درک‌سکالی قرار گرفته‌اند، الکتروم مهم‌ترین کانی طلاست. [6] به طور کلی طلا و فاصله به سود می‌تواند است به صورت غیرقابل رؤیت در پریم و با کانی‌های دیگر وجود داشته باشد (شکل 1 A) و در این بررسی‌ها درک‌سکالی بعدی با تیولسردیت طلا به مزیت داشته و با سنگ‌های موجود در بیومتر مهارت و کاهش‌های هسته مبنای الکتروم می‌پردازی کمی می‌شود است (شکل 1 B) این یافته مهاجرت از طریق ساز و کار خشک یک نشست- محلول

کاندزایی طلا، نقد و فلزات پایه در واحد متالولیت-موفقیت ریزی رخ داده است [1]. دبیل و اننشنهای - تحصیل کرنازه در منطقه باریکا تحت تأثیر پهن‌تری شکا-شکاژی جدید بر پریم شما. جدید به‌طور کاملاً به‌طور دقیق گرفته است. کاندزایی مورد مطالعه در اصلی‌ترین و بزرگ‌ترین دنیای جهانی پهن‌تری منطقه (پهن‌تر باریکا) مورد شده است [2]. این پهن‌تری بهتر طولی در حدود 3.5 کیلومتر و عرض مناسب 400 متر دارد.

درک‌سکالی و کاندزایی

بر پایه کارهای قبلی انجام شده [1] و [2] درک‌سکالی اصل و واکنش به کانی‌های شاخص مسیستی-سیلیسی-پلیژیت کرده و که در کاندزایی کلینیکی دیگر نیز در کریمالین و حاشیه‌ای کانی ساز و ساخته می‌شود که کاندزایی طلا نقره، فلزات پایه و باریکا در کناری معدنی باریکا به شکل عمده و در پی نشان‌دهنده سنجش که اننشنهای اسیدی رخ داده است. کانی پیچی از پایین به بالا سه زون تشکیل شده است [1]:

- زون سیلیسی سولفیددار
- زون غنی از سولفید و سولفوسالت
- زون کانسک برایتی

نمونه‌های آلوده رشته زون‌های سه‌گانه‌داری عبارت‌اند از: نفرود، جالیه از طلا نقره، و فلزات پایه‌اند. به طوریکه مقدار طلا در بین از نمونه‌های زون غنی از سولفید و سولفوسالت تا به 100 ppm بیش از 10 بررسی‌های کانی شامل مقطع‌های زیر-تیتانیت-SI-وقیل-نکتان-و-و-مناطق XRD و آنالیزهای ریز-پریم و الکتروم در زون‌های کاندزایی بیان شده، منجر به شناسایی کانه‌های معتبر سولفیدی، سولفوسالتی، اسکین‌داری و کراتنی به صورت اولیه و انالیز شده است. که می‌توان از پریم، استکلماریت، گالن، ترنشترید-نتناتیت، بورونیت-بولانزیت، جیم‌سونیت، توئینیت، نوئیتیت، نتناتیت، الکتروم، کالکومبریت، کوئلیت، مالائیت، آزوریت، هامانت، گوپیت، و لیمویت نام پردازد.

بر پایه کارهای قبلی انجام شده [1] و [2] کاندزایی طلا، نقره، و فلزات پایه در این گستره‌ای معدنی مشابه گونه‌های
Migration of gold to cracks and crystal defects in Pyrits to form electrum under low to moderate strain.

Release of electrum from fractured pyrite under higher strain
تاثیر درگشکلی بر رفتار طلا در نهشته ماسوسوله سرشار از طلاي باریکا، شرق سردشت

جدول ۱: نمایش انکلوزیون‌های الکتروم (Cl) در بیبریت (py) تحت تأثیر درگشکلی کم تا متوسط و ب (سیگما و بایس) انباشت الکتروم در شکستگی بیبریت.

<table>
<thead>
<tr>
<th>Point</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>As</th>
<th>Ag</th>
<th>Cd</th>
<th>Sb</th>
<th>Te</th>
<th>Au</th>
<th>Hg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>253.6</td>
<td>255.0</td>
<td>257.7</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
<td>258.3</td>
</tr>
<tr>
<td>2</td>
<td>258.3</td>
</tr>
<tr>
<td>3</td>
<td>258.3</td>
</tr>
<tr>
<td>4</td>
<td>258.3</td>
</tr>
<tr>
<td>5</td>
<td>258.3</td>
</tr>
<tr>
<td>6</td>
<td>258.3</td>
</tr>
</tbody>
</table>

شکل ۲: انباشت انکلوزیون‌های الکتروم (Cl) در بیبریت (py) تحت تأثیر درگشکلی کم تا متوسط و ب (سیگما و بایس) انباشت الکتروم در شکستگی بیبریت.

بلوری به صورت الکتروم درشت بال سلور شود. به عنوان مثال چنانکه در جدول ۱، ۳ و ۴ دیده می‌شود، تجزیه الکتروم در شکستگی بیبریت و توپونیت-وینتیت، نشاندهنده وجود طلا در شبکه این کانی‌ها است.

نمونه‌های الگوی دغشکلی، طلا می‌تواند از شبکه کانی‌ها خارج شده و به صورت الکتروم درشت بال سلور همراه با کانی‌های دیگر شود (شکل ۲). چنانکه در شکل ۶ نمودار مراحل تشکیل تحقیق و تحلیل، در صورتی که کانی‌های دیگر می‌تواند الکتروم در مرحله تعویض او به عنوان مثال در طلا، الکتروم در شکستگی بیبریت از سلور فراورده و سلور سخت‌تر که به وجود آمده و در گستره معدن باریکا در زون شکستگی و سلور الکتروم در شکستگی بیبریت است. بیبریت در مقطع ۱ الکتروم کلیت (Cl) به عنوان یک صفت فلزات باشند.

دیگر بلورها ممکن است با تبلور باید و بیبریت در مرحله الکتروم را به وجود آورده و در گستره معدن باریکا در زون شکستگی و سلور الکتروم که به دست آورده دگشکلی بیشتری شده است. بیبریت در مقطع ۱ الکتروم کلیت (Cl) به عنوان یک صفت فلزات باشند.

شکل ۶: نمودار مراحل تشکیل تحقیق و تحلیل، در صورتی که کانی‌های دیگر می‌تواند الکتروم در مرحله تعویض او به عنوان مثال در طلا، الکتروم در شکستگی بیبریت از سلور فراورده و سلور سخت‌تر که به وجود آمده و در گستره معدن باریکا در زون شکستگی و سلور الکتروم در شکستگی بیبریت است. بیبریت در مقطع ۱ الکتروم کلیت (Cl) به عنوان یک صفت فلزات باشند.

ابن ساس: کی می‌تواند باعث افزایش استحکام طلا از کانی‌گیری طلا در نهشته‌های دغشکلی شود [۶]. در گستره معدنی باریکا، ساز و کانی بیان‌های ارتباط بیبریت با الکتروم می‌تواند برای کانی‌های دیگر، از جمله تتراندریت-تاناتین، گالن، بورونیت-بولونیت، و باریت سورد، توجه قرار گیرد. ابن ساس: کی می‌تواند باعث خروج الکتروم غیرقابل رویت کانی‌ها از آنها و قرارگرفتن آن در شکستگی‌ها و فضای بین

ج. م. ایام و. پ.
درگشکلی این پهن و برخی روز این کانه‌ها کاملاً مشهود است. یکی از اهره‌های مهم درگشکلی، خروج الکتروم غیرقابل روئیت از کانه‌های طالدار از جمله پیچ و قرارگیری و بازیاب در درگشکلی و فضای بین پلواری که به صورت الکتروم درشت پلور است. مراحل مختلف تنشکل پلواری درشت الکتروم طی درگشکلی با درجات مختلف به صورت چالی در ذخیره ماسیوسولفید غنی از طلای بازیکا قابل مشاهده است. برای دستاوردیده‌های هاستون و درگدن (1992) این رفتار الکتروم طی درگشکلی می‌تواند باعث افزایش باریک‌سی طلا از کانسند طلا در نهستهای ماسیوسولفید غنی از طلای درگشکل شود. بنابراین درگشکلی اعمال شده، در تحرک دورباز و تغییر طلا در این گستره از اهمیت ویژه‌ای برخوردار است.

برداشت
کانه‌زایی طلا (فلات پایه و باریک) در گستره معدنی بازیکا تحت تأثیر پهن و برخی از گرفته‌های اثره‌های ناشی از رخساره شیست سبز و درگشکلی شکن- شکل‌یابی برخی باریکا قرار گرفته‌اند. در این مرحله الکتروم موجود در مرحله اول که به صورت کاما ریز و میکروسکوپی درون پلواری پر شده و با اثر باریکا فرد قرار دارد، تحت تأثیر درگشکلی به درون شکستگی‌ها و فضاهای خالی بین کانه‌های دیگر مهار می‌گردد. و در اثر باز پلور، دانه‌های درشت الکتروم ایجاد شده است. بنابراین مرحله درگشکلی، موجب تحرک دورباز و تغییر طلا در این گستره شد که در مباحث جراوری و استحصال طلا از اهمیت ویژه‌ای برخوردار است.

[شکل ۲] مهاجرت الکتروم (el) از درون شکستگی پیریت به فضای بین پلواری بازیکا (ba) و فرار گریز الکتروم در فضای بین پلور (py) و ب) فرار گریز الکتروم در فضای بین پلور (py) و BSE (py) و ب) تصویر BSE از همان الکتروم.
جدول ۲: آنالیز کمی گالان موجود در زون غنی از سولفورید و سولفوریالت (تعداد مقدار بر حسب درصدن).

<table>
<thead>
<tr>
<th>Point</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Cd</th>
<th>Sb</th>
<th>Au</th>
<th>Hg</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>۱</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۳</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۵</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
</tbody>
</table>

جدول ۳: آنالیز کمی تترادریت-تنانیت (تعداد مقدار بر حسب درصدن).

<table>
<thead>
<tr>
<th>Point</th>
<th>S</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Cd</th>
<th>Sb</th>
<th>Au</th>
<th>Hg</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰.۰</td>
</tr>
<tr>
<td>۱</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۳</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۵</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
</tbody>
</table>

جدول ۴: آنالیز کمی از کانی توپنیت-وینیت (تعداد مقدار بر حسب درصدن).

<table>
<thead>
<tr>
<th>Point</th>
<th>S</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Cd</th>
<th>Sb</th>
<th>Au</th>
<th>Hg</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۰.۰</td>
</tr>
<tr>
<td>۱</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۲</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۳</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۴</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
<tr>
<td>۵</td>
<td>۱۴</td>
<td>۱۴۱</td>
</tr>
</tbody>
</table>

شکل ۵ الف) دو زیر الکتروم (el) موجود در شکستگی تترادریت (tet) همراه با استفالت (sph) الکتروم درشت و پای تبلور در فضای بین بلوهای پیریت (py)، باریت (ba)، استفالت (sph) و گالان (ga) و ج) دو زیر الکتروم درشت الکتروم در پای پیریت (ba).
| شکل ۶ مراحل تشکیل و تحلیل توالی پارازنتی کانیها در گستره معدنی پاریکا. |

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Volcanic Exhalative</th>
<th>Deformation</th>
<th>Supergene</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyriteI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyriteII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sphalerite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrahedrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bournonite-Boulangerite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>twinnite-veenite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jamestonite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stibnite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>galena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>electrum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chalcocite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>covellite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>malachite-azorite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>barite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quartz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sericite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disseminated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloform-Framboidal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vein-Veinit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open space filling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banded(Shear band)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recrystallization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure shadow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strainfring oulinage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cataclastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textures & Structures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تشریح و قدارتایی از جنب آقای مهندس محمد جواد شمس، مدیری متبرک خدمات اکتشافی سازمان زمین‌شناسی و اکتشافات معدنی کشور به دلیل حمایتهای مالی در خصوص انالیزهای مورد نیاز از جمله رز پردازنده الکترونی در این کار پژوهشی، و نیز از جنب آقای دکتر محمد محتالی به خاطر نفسر دگرگشتی در منطقه تشریح و قدارتایی می‌شود.

مراجع