Mineralogy and petrology in magmatic rocks of Hormoz Formation
(salt diapires of High Zagros)

S. Taghipour, M. Khalili, M. Noghrehyan, Gh. Toraby, M. A. Mackizadeh,
B. Taghipour

Geology Department, Isfahan University
Email: Taghipour.sedigheh@Gemail.com

(Received: 8/9/2007, in revised form: 4/5/2008)

Abstract: Several igneous-evaporitic rocks complexes, belonging to Lower Cambrian, are exposed in High Zagros. These rocks exposed parallel to the Zagros main thrust as diapir-shaped bodies. Basaltic rocks are the most common rocks but microgabbro, microdiorite, andesite and trachyte are the rocks of this complex. The studied clinopyroxenes are usually fresh mafic mineral in these rocks and display sector zoning features. On the base of mineralogy and mineral chemistry, the pyroxenes are in the range of titan-augite to diopside composition. The geochemical study of the clinopyroxene as well as the discrimination diagrams were used in this study, point to the transitional to alkaline nature of magmatism which occurredv in a within continental plate rift environment.

Key words: Iran, High Zagros, salt dome, igneous rocks, clinopyroxene, transitional magma.
کانی شناسی و سنگ شناسی سنگهای ماگمایی سازند هرمز (گنبدهای نمکی کاج و دوآب)

صدیقه تقي پور، محمد خلیلی، موسی نقری‌نیا. قدرت ترابی، محمد علی مکی زاده، بنر تقي پور

گروه زمین شناسی دانشگاه اصفهان
پست الکترونیکی: Taghipour.sedigheh@Gmail.com

(دریافت مقاله 13/05/1389، نسخه نهایی 15/05/1389)

چکیده: زاگرس بلند، مجموعه‌های نسبتا در ریخته‌ای از سنگهای آذرین-تیخیری به سن کامبرین زیرین به حالت صورت گنبدی بروزرسانی دارد. این مجموعه‌ها به موارد گسل اصلی زاگرس رخخورمه‌انه است. این رفتار از دو نظر تکثیر زاگرس آدنین این گنبدها هستند. کلیپیوپروسکس سالت‌محیتی کانی سنگهای زاگرس است که از درگرسان معمول مانده است. و ساختار منطقه‌ای و ماهیت فضایی از دیدن نشان می‌دهد. برای بررسی ساختار کانی سالت‌محیتی کلیپیوپروسکس و استفاده از نمودارهای تکنیکی زنوسیمیاپیک، مینی ماگمایی انتقالی قلبیایی این مجموعه از است. کننده دهده رخداد ماگماتیسم در محیط کافی درون زاگرس است.

واژه‌های کلیدی: ایران، زاگرس بلند، گنبدهای آدنین، کلیپیوپروسکس، ماگماتیسم انتقالی

مقدمه
نام سری هرمز نخستین بر توسیع پلی‌کریم [1] و سپس توسط بلندرده 2) از نام جزیره هرمز که تقریبا دائمی آن سری از کنین نمکی اثر گروبکین را تشکیل داده‌اند. برگردی و در این سری یکی از اوج‌های جنین سنگ‌شناسی-سنگ‌شناختی، زاگرس ساختری‌زایی و اساسا از این سری نشان دهنده تیخیری با ضخامت قبیحی 1000 متر [3] تشکیل شده است و در جنوب شرقی کانی شناسی آن به سنگ و پوشش نشسته زاگرس کامبرین است. زاگرس راه یافته به ساختار سنگ‌شناسی کامبرین، سنگسنگی در ایران و زیرین داشته است. در منطقه مورد تحقیق در گنبدهای مختلف سیاسی راه‌مشاهد کانی شناسی سری هرمز مطالعات ساخت. نظر مشکل که همواره در گنبدهای جنوب ایران تعیین کرده‌اند، در این منطقه دیده نمی‌شود. سازند هرمز شامل شیل‌های سنگ‌زیره، دوولایت، مکانیکی گچ و نمک و به نشانه‌های اثر گروبکین همه اینه درون می‌باشد و گاه درون نهشته‌های نمک نیمه‌پاینده آدنین [4] سنگ‌های آدنین یاد شده متنوع بوده و شامل پاژنت داریت، ریبل، ریتر و غیره.
روش مطالعه
نخست بررسی‌های صحرایی گستره و نمونه‌های سیستماتیک انجام گرفت و سپس کاوشی‌ها در سطح خاک با میکروسکوپ قطبه‌ای مدل Bx-60 بررسی شد. در راستای تعیین ترکیب کلیوپتیروکسین در دانشگاه اکلاهما سیتی (آمریکا آتلانتیک) برای برداشتن الکترونی (EMPA) با روش 34 نقطه از نمونه‌های کلیوپتیروکسین با دستگاه مدل SX50 انجام شد. در طول آنالیز ریز پداراتو و نتایج مشابه دستگاه 20 KV جریان 20 نA و زمان شمارش برای کلیه انعکاس 30 ثانیه بوده است. در بررسی‌های سنگشناسی و نامگذاری سنگهای ماکمایی مجموعه مورد مطالعه 15 نمونه از سنگهای نسبتا سالم برای آزمایش‌های XRF انتخاب شدند. این آزمایش‌ها از سوی شرکت PW2400-2000 PHILIPS زرآزمایی با استرالیا ارمال شدند و با دستگاه PW2400-2000 PHILIPS انجام گرفت.

مشاهده‌های صحرایی و بررسی‌های سنگ شناختی
سنگهایی آذرپی در منطقه مورد مطالعه به صورت مجموعه نامنظمی از بارالت، میکروگالوار، آندریت، میکروبریت و تراکت بینه نشسته‌های سازنده هرم رخ نموده‌اند. ساخت رسومی در برخی از این بارالت‌ها به خوبی مشاهده می‌شود (شکل 3). علاوه بر این ساختهای تشکیل‌دهنده و حفره‌ای نیز در گذاره‌ها به روشنی دیده می‌شوند.

شکل 1 نقشه زمین شناسی منطقه مورد مطالعه [5].

شکل 2 نمایی از گذاره‌ها یا گندپدر دوای.
کلینوپروکسن‌ها در سنگ‌های میکروگریپری‌های (هیپ آبیسیال) به صورت درشت بلور و ریز بلور در زمینه ریز دانه متشکل از میکروپروکسن‌ها پلاژیوکلاز حضور دارند. درشت بلورها به صورت بلورهای شکلدار و نیمه شکلدار قابل مشاهده‌اند. برخی از این بی‌پروکسنا دارای ساختار منطقه‌ای نوسانی و برخی دیگر علاوه بر ساختار منطقه‌ای دارای مالک سخت شیء یا قطاعی هستند (شکل ۱-الف و ب). سنگ‌های ایجادگر علاوه بر بی‌پروکسنا حاوی مقدار چشمگیری پلاژیوکلاز، امفیبول، کاذب‌های کدر (ایلمینیت) و مقدار کمی الیوین، بیوتیت، کلریت، اسفن‌نری و آبانتهای سوزنی هستند. تجمع نقطه‌ای بی‌پروکسنا در برخی موارد باعث بروز بفت گلیومورفیزیکی شده است (شکل ۳-ج و د). این کانی به ندرت به صورت اورالیت و اکتینولیت در آمده است.

کاذب‌های سنجیده‌ای به شکل‌های آبیسیال، پلاژیوکلاز، امفیبول، و کاذب‌های کدر شباهت دارند. سنگ‌های میکروپروکسن‌ها نیز حاوی پلاژیوکلاز، پیروکسن، امفیبول و کاذب‌های کدر با بفت‌های داریته، اینترگرانتور و پروتیه هستند. اندزیت‌ها و میکروپروکسن‌ها سنگ‌های آذرین حذف‌مافیک در منطقه را تشکیل می‌دهند که کاذب‌های پلاژیوکلاز، امفیبول، پیروکسن و کاذب‌های کدر را در بر دارند. بفت‌های پورفیری و بین‌دانه‌ای از بفت‌های اصلی این سنگ‌ها هستند [۱۳].

بحث

1- سنگ شناختی پیروکسن‌ها
کلینوپروکسن‌ها سالمند حاوی کاذب‌های سنگ‌های ماکمایی گنبدهای نمک مورد تهیه هستند. این کانی و بی‌پروکسنا بافت متفاوتی به نمایش می‌گذارد. به دلیل تبلور سریع گدازه در سنگ‌های پالئوئنی، این سنگ‌ها به صورت ریز دانه دیده شدند.

شکل ۲-الف و ب وجود مالک سخت شیء در یک قسمت از بی‌پروکسنا. کلینوپروکسن با بفت گلیومورفیزیکی در زمینه‌ای از میکروپروکسن‌های پلاژیوکلاز و کاذب‌های کدر، تشکیل پایتخت است. ۵ فتوکاسب سالم پیروکسن در زمینه پلاژیوکلاز پردریی شده در یک سنگ نیمه اتصالی شد.
با توجه به اینکه سیالیت‌ها در ساختار کلیوپروکسنسا این ترتیب را دارند:

<table>
<thead>
<tr>
<th>عنصر</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.82</td>
</tr>
<tr>
<td>Mg</td>
<td>0.81</td>
</tr>
<tr>
<td>Al</td>
<td>0.055</td>
</tr>
<tr>
<td>Ti</td>
<td>0.036</td>
</tr>
<tr>
<td>Na</td>
<td>0.029</td>
</tr>
<tr>
<td>Mn</td>
<td>0.006</td>
</tr>
</tbody>
</table>

شکل 2، گروه پیروکسنسا کلیوپروکسنسا نمایان داده واقعی و نمودار Q-1، ب ترکیب شیمیایی نمونه‌های مورد مطالعه در نمودار مثلثی ولستونیت، انسانتنیت و فروسلیت [11] نمونه‌های یاد شده در گروه دوبسید تا نیز از این ویژگی قرار می‌گیرد.

اکسیدهای در جدول اسد. آنانیلهای ریز پردرآور (جدول ۱) نشان می‌دهد که در برخی از تجربه‌ها مقدار TiO۲ به ۲.۷۱ درصد وزنی می‌رسد (نموده شماره ۶-۱۴Cpx-1). این ژست‌های تا اندازه منظم قدرت النهایی می‌باشد که به آنها کاملاً منطقی است [۱۱۵]. در برخی مقاطع میکروسکوپی چنان‌که شدت ماکل ویره (hour glass) از نظر این تیتانیا دار یعنی ساعت سینا با قطاعی نیز در آنها دیده می‌شود. محاسبه فرمول ساختاری کلیوپروکسنسا به صورت زیر است:

(Si, Al۴+)۶ (Ca, Na, Mg, Fe۲+, Mn, Ni, Li, Al۶+, Fe۳+, Cr۳+, Ti۲)
Si + Al = ۲.۰۷۵

\[
\begin{align*}
\text{Al}^{4+} &= 0.۱۷۲ \\
\text{Al}^{6+} &= 0.۰۷۵ \\
\end{align*}
\]

(Si, Al)۲ O۶ (Fe, Mn, Mg, Ni, Li, Ca, Na, K, Al۳+, Cr۳+, Ti)۲
(Si۱.۸۸, Al۴+۰.۱۲۶) O۶ (Mg۰.۸۲, Ca۰.۸۱, Fe۰.۲۷, Al۶+۰.۰۵۵, , Ti۰.۰۳۶, Na۰.۰۲۹, Mn۰.۰۰۶)

شکل ۲، گروه پیروکسنسا کلیوپروکسنسا نمایان داده واقعی و نمودار Q-۱، ب ترکیب شیمیایی نمونه‌های مورد مطالعه در نمودار مثلثی ولستونیت، انسانتنیت و فروسلیت [۱۱] نمونه‌های یاد شده در گروه دوبسید تا نیز از این ویژگی قرار می‌گیرد.
جدول 1: نتایج آنالیز ریز‌بردار کلسیموپروتئین‌های ماگمایی ساندان هرمز در زاگرس بند و محاسبه فرمول ساختاری برای 6 آزمایش

<table>
<thead>
<tr>
<th>لیبل</th>
<th>SiO2</th>
<th>K2O</th>
<th>Na2O</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>Al2O3</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx-1</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-2</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-3</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-4</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-6</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-2</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-3</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>1-4Cpx-4</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>G1-FibHM-2</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
<tr>
<td>G1-FibHM-3</td>
<td>43.84</td>
<td>19.35</td>
<td>12.89</td>
<td>24.63</td>
<td>42.49</td>
<td>72.29</td>
<td>5.72</td>
<td>1.77</td>
<td>0.22</td>
</tr>
</tbody>
</table>

جدول 2: ادامه جدول 1

<table>
<thead>
<tr>
<th>لیبل</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx-1</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-2</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-3</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-4</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-6</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-2</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-3</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
<tr>
<td>1-4Cpx-4</td>
<td>1.479</td>
<td>2.658</td>
<td>1.687</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
<td>0.254</td>
</tr>
</tbody>
</table>
جانبه انتظار می‌رفته، بیشتر ترکیب شیمیایی کلینوبیوتروکس‌های ماکماتیسم نه می‌باشد. این با‌گرایش به محیط قلب‌یابی را نشان می‌دهد. ترکیب متوازن چند نطفه از آتالی‌های ریز پراشی، حتی محیط بر بقیه را نشان داده است. بازالت‌های قلب‌یابی درون بالا و سیلیس پانین است [18].

با توجه به این شواهد نمونه‌های کلینوبیوتروکس در نمونه‌های F1 و WPA، VAB قرار می‌گیرند که در گروه F2 [19] در گستره 0.2-0.5 می‌باشد. این می‌کند که در این صفحه نمونه‌های مورد مطالعه نمودارهای تکیه بندی با آثاری بر پایه درصد نشان داده کنی. کلینوبیوتروکس [16] در گستره قطری (MORB) قرار گرفته‌اند (شکل 6). این نمونه‌های مورد استفاده شده است (شکل 6). از نمونه‌های ماکماتیسم استفاده شده است (شکل 6).
شکل ۵ نمودار TiO2 در سنگ‌های مذکور، نسبت به TiO2 کلیوپیروپس-سنسهای آن و جدایی محیط‌های زئوکتیرنیکی مختلف.

[۱۶]

شکل ۶ افق نمودار

[۱۷] SiO2/Al2O3 و جایگاه پیرکس-سنسهای سازند همز موز ری آن ب نمودار F1-F2 و موقعیت کلیوپیروپس-سنسهای ماگمایی سازند همزم ری آن.

[۱۸]
جدول 2 آنالیز XRF سنگهای آدرین سازند هرموز در زاگرس بلند

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>rock type</th>
<th>g9</th>
<th>G6</th>
<th>g12</th>
<th>g1</th>
<th>g11</th>
<th>g3</th>
<th>g15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>53.6</td>
<td>51</td>
<td>49.9</td>
<td>48.9</td>
<td>48.1</td>
<td>48.4</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.88</td>
<td>1.82</td>
<td>2.04</td>
<td>2.04</td>
<td>2.04</td>
<td>2.04</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.9</td>
<td>15.8</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.89</td>
<td>2.58</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.28</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>4.91</td>
<td>7.62</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.51</td>
<td>3.73</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.61</td>
<td>1.73</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.38</td>
<td>0.3</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.57</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>99.93</td>
<td>99.91</td>
<td>99.87</td>
<td>99.87</td>
<td>99.87</td>
<td>99.87</td>
<td>99.87</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>112</td>
<td>140</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>180</td>
<td>41.0</td>
<td>3.24</td>
<td>3.24</td>
<td>3.24</td>
<td>3.24</td>
<td>3.24</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>4</td>
<td>32</td>
<td>28</td>
<td>30</td>
<td>19</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>17</td>
<td>46</td>
<td>46</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>44</td>
<td>45</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>37</td>
<td>31</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>210</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>94</td>
<td>248</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>14</td>
<td>238</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>31</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>330</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>18</td>
<td>35</td>
<td>44</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>154</td>
<td>30.1</td>
<td>95.4</td>
<td>88.7</td>
<td>88.7</td>
<td>88.7</td>
<td>88.7</td>
<td></td>
</tr>
</tbody>
</table>
آدامه جدول 2

<table>
<thead>
<tr>
<th>نمونه</th>
<th>SO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>MgO</th>
<th>MnO</th>
<th>Sr</th>
<th>Zr</th>
<th>Ba</th>
<th>Nb</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>g10</td>
<td>0.45</td>
<td>0.14</td>
<td>0.15</td>
<td>0.24</td>
<td>0.11</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g5</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g7</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g14</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g16</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g2</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g8</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g4</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.32</td>
<td>0.45</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

منبع

شکل 8: موقعیت سنگهای آدرین سازنده هرمز در منطقه زاگرس بلند روي نمونه در برابر Th/Nb و La/Nb در 23.02 و 23.21 لایه.
برداشت
سنگهای بازی (بازالت و میکروگلبرو) دیابيرهای کاج، رستم آباد و دو اب از مجموعه کانی‌های کلینوپروکسیم، پلاژیوکلر، آمفیپول، آپاتیت، الیوین، اسفن تانوهی و کانی‌های کدر (ایلنیت) تشکیل شده‌اند. برش‌های کانی شناسی وجود مکمل سامت شنی و ساختار منطقه‌ای را در کلینوپروکسن‌ها نشان می‌دهد. علاوه بر آن همراهی آپاتیت و اسفن فراوان، کروستین، تیتان دار بیشتری از کلینوپروکسن‌ها (تیتان اوزیت) در نمونه‌های زئوسیمی‌ای ماده‌گاماتیسم نوع ترا قلبی‌ای (انتقای) را برای سنگهای ماکمایی سازنده هرمز در زاگرس بلند مشخص کرده‌اند.

مراجع
[25] نیکی پور، ص، "مطالعات کانی شناسی و پتروژئیک در مجموعه‌های آدرین-نیکی‌گیکهای نمکی زاگرس لند"، پایان نامه کارشناسی ارشد، دانشگاه اصفهان، منتشر نشده، (1384) 122.
[40] زاهدی، م، "پتروژئیکهای نمکی منطقه زاگرس لند در سرتون جنوب شناسی ایران، فصلنامه علوم زمین (1377) 1, 124-172.
[50] زاهدی، م، "تکه‌گیری شناسی شهروندی (1377) 1، انتشارات سازمان زمین‌شناسی و شهروندی، 120000".
[60] هروی، م، "پتروژئیکهای نمکی کاکان، کمپر، کوه-گون در منطقه پاسووج، اثر کل معدن و فلزات استان کهگیلویه و بویراحمد" گزارش دانشی (1386) 107.
[70] حجتی ح، "پتروژئیکهای نمکی، شناخت جهانی و تغییرات (راز کمپر، کوه-گون در منطقه نازی)، پایان نامه کارشناسی ارشد، دانشگاه اصفهان (1377) 207.