Mineralogy and petrology in magmatic rocks of Hormoz Formation
(salt diapires of High Zagros)

S. Taghipour, M. Khalili, M. Noghrehyan, Gh. Toraby, M. A. Mackizadeh,
B. Taghipour

Geology Department, Isfahan University
Email: Taghipour.sedigheh@Gmail.com

(Received: 8/9/2007, in revised form: 4/5/2008)

Abstract: Several igneous-evaporitic rocks complexes, belonging to Lower Cambrian, are exposed in High Zagros. These rocks exposed parallel to the Zagros main thrust as diapir-shaped bodies. Basaltic rocks are the most common rocks but microgabbro, microdiorite, andesite and trachyte are the rocks of this complex. The studied clinopyroxenes are usually fresh mafic mineral in these rocks and display sector zoning features. On the base of mineralogy and mineral chemistry, the pyroxenes are in the range of titan-augite to diopside composition. The geochemical study of the clinopyroxene as well as the discrimination diagrams were used in this study, point to the transitional to alkaline nature of magmatism which occurred in a within continental plate rift environment.

Key words: Iran, High Zagros, salt dome, igneous rocks, clinopyroxene, transitional magma.
کاني شناسی و سنگ شناسی سنگهای ماجمایی سازند هرمز (گنبده‌ای نمکی کاج و دوآب)

صدیقی تقی پور، محمود خلیلی، موسی نقرویان، قدیر ترابی، محمد علی مکی زاده، بنول تقی پور

گروه زمین‌شناسی دانشگاه اصفهان
پست الکترونیکی: Taghipour.sedigheh@Gmail.com

دریافت مقاله ۱۳۹۶/۰۱/۱۵، تاریخ نهایی ۱۳۹۶/۰۴/۲۸

چکیده: زاگرس، بندل، مجموعه‌های نسبتاً در ریخته‌ای از سنگهای آذرین-خیبری به سمت کامبرین وزیری به حالت صورت گنبده‌ای بروند. این مجموعه‌ها بیشتر از زاگرس رخندوم یافته است. بازالت‌های آدرین المیکا آدرین مجموعه‌های با شده است. میکروگرد غوی، میکروسدوربت، اندزیت و تراکت از دیگر سنگهای آدرین نیز مورد پاسخ‌گویی کانی شناسی و مکان شیمی پیروکسنس از نوع تیتان-آوژیت و دیوپسوپ است. بررسی شیمی کلینوبروکس و استفاده از نمودارهای تفکیک زئوشیمیایی می‌تواند مجموعه‌ای از سنگ‌های آدرین به شکل صحیح تدوین فاز‌های است.

واژه‌های کلیدی: ایران، زاگرس، سنگ‌های آدرین، کلینوبروکس، ماجمایی انتقالی

مقدمه
نام سرم هرمز نخستین بار توسط پلیگریم [۱۸] و سپس توسط بلنفرد ایلفرید [۳۲] از نام جنوب هرمز که تقریباً تمامی آن بر این کنید نمکی برگزی را تشریح داده است. برگزی. این سرپینسکی از این سنگ‌های با رنگ‌های صنایع زاگرس است که اساساً از ترکیب نشانه‌های تیخیری با شناسی را به سنگ‌های آدرین پیشینه بین کامبرین و جایگاه آنها را در منطقه کامبرین آفریده است. در منطقه مورد مطالعه در کنیده‌ای مختلف سیمایی-چینه‌شناسی سرم هرمز متفاوت است. نظام مشخص که در همکاران [۱۶] در گنبده‌ای جنوب ایران پژوهش انجام شد. این مسئله دیده نمی‌شود. سرم هرمز شامل شباهت های ایالتی سرم هرمز، دیواره‌ای، مقداری و کمک به نتیجه‌گیری از این نتایج است که به اندازه‌ی متفاوت روز و گه درون می‌تواند این نتایج دیده نمی‌شود. این سنگ‌های آدرین به شکل انسانی بوده و شامل بازالت، دیوپسوپ، کرتوبرای خود می‌باشد.

تراکت، ایکسميریت، توپفیت با بهترین دریافت مقاله ۱۳۹۶/۰۱/۱۵، تاریخ نهایی ۱۳۹۶/۰۴/۲۸

در این کار پژوهشی بر پایه بررسی‌های صحرایی و سنگ‌شناسی، ناحیه فلورودسی برونواییک، و داده‌های حاصل از رژیم‌های پیروکسنس سنگهای مورد پژوهش، به سنگ‌هایی این سنگ‌های پیروکسنس و حیات تکنولوژی‌های مجموعه‌ای آدرین این به شکل در طول ۱۵ تا ۴۵ شرکت و عرض ۱۵ تا ۳۲ شرکت قرار دارند و هم‌اکنون در راستای کلی زمان‌های زاگرس رخندوم یافته‌اند (شکل ۱).
روش مطالعه

نخست بررسی‌های صحرایی گسترده و نمونه‌برداری سیستماتیک انجام گرفت و سپس کانی‌شناسی سنگ‌های با میکروسکوپ قطع‌نما مدل Bx-60 بررسی شد. در راستای تعبیه ترکیب کلینوپیریکس در دانشگاه اکلاهما سیتی (آمریکا آمریکا آلبا) ریز برداری‌های الکترونی (EMPA) بر روی 47 نقطه از نمونه‌های کلینوپیریکس با دستگاه مدل SX-50 انجام شد. در طول آنالیز ریز برداری و تائید شاتاهده دستگاه 20 KV جریان 20 nA و زمان شمارش برای کلیه عنصر 30 ثانیه بوده است. در بررسی‌های سنگ‌شناسی و نامگذاری سنگ‌های ماگمایی مجموعه مورد مطالعه، 15 نمونه از سنگ‌های نسبتاً سالم برای انتخاب شدند. این آزمایش‌ها از سوی شرکت XRF انجام گرفت. آزمایش ۳۰ عضوی (PHILIPS PW2400) به استرالیا ارسال گردید و با دستگاه RW2400 آزمایش گردید.

مشاهدات صحرایی و بررسی‌های سنگ شناختی

سنگ‌های آذرین در منطقه مورد مطالعه به صورت گروهی توسط میکروگیاپ، میکروگیاپ، آنادزیت، میکرودیوریت و ناحیه که به نشانه‌های سازند هرمز خط‌پوشان یافتالند. ساختار سنگی در برخی از این ناحیه‌ها به خوبی مشاهده می‌شود (شکل ۲). علاوه بر این ساختارهای بادامکی و حفره‌ای نیز در گدازه‌ها به روشی دیده می‌شوند.

شکل ۱ نقشه زمین‌شناسی منطقه مورد مطالعه [۵].

شکل ۲ نمایی از گدازه باهوه‌گونه دوام.
کانی‌های سنگهای باش شده بیشتر از پلاژیوکلاز، پیروکسن، آمفیبول، و کانی‌های کدر تشکیل شدهاند. سنگهای میکروگرایبویی نیز حاوی پلاژیوکلاز، پیروکسن، آمفیبول و کانی‌های کدر با بانگهای ناری، انترگرایبان و پورفیری هستند. اندرزیته و میکرودرزیته سنگهای آذرین حداقل این منطقه را تشکیل می‌دهند که کانی‌های پلاژیوکلاز، آمفیبول، پیروکسن و کانی‌های کدر را در بر دارند. بافت‌های پورفیری و بین دانایی از بافت‌های اصلی این سنگ‌ها هستند [12].

بحث

1- سنگ شناختی پیروکسنا
کلینوپیروکسنا سالتوری کانی‌های سنگهای ماکمایی گنبدیان نمکی مورد تحقیق هستند. این کانی یکی از بهترین بافت‌های متقاوتی به نامش می‌گذارد. به دلیل تبلور سریع گذره در سنگ‌های بازالتی، این سنگ‌ها به صورت ریز دانه دیده شده‌اند.

شکل ۳: این و ب وجود ماکل سابع، سنگ میکروگرایبویی در زمینه‌ای از میکروپیروکسنا پلاژیوکلاز و کانی‌های کدر، تشکیل یافته است. هفتورکینست سالم پیروکسن در زمینه پلاژیوکلاز پرها و یونی شده در پک سنت نیمه اشکشانی.
۲- شیمی کلسیم‌پریوکسپنها
به منظور تعیین فراوانی انواع اصلی سازندگی پریوکسپنها، این کاتی مورد آنالیز رژیم پریوکسپن قرار گرفت. نتایج این آنالیزها به صورت اکسیدهای تشکیل دهنده هر کاتی در جدول انشان داده شده‌اند. فرمول ساختاری این کاتی بر پایه ۶ اکسیژن محاسبه و در انتهای جدول ۱ نمایش داده شده است. در این بخش سعی بر این است که به باری داده‌های رژیم پریوکسپن، بررسی سرشناسی کاتی شناسی و رده بندی پریوکسپن‌ها برداخته شود. ساختار منطقه‌ای (جناحک) در مقاطع میکروسکوپی مداومه شده با تغییرات در مقدار درصد وزنی TiO۲ در مناطق مختلف پلیر اکسید است (جدول ۱).

در نمونه‌های Q1-PQ-1 پریوکسپن‌های کلسیم-منیزیم-کروم-نیکل و Wo-En-Fs در نمونه‌های Q2-PQ-1 نمونه‌های پریوکسپن‌های مورد مطالعه در گستره اوزیت تا دوبیسیت قرار دارند (شکل ۴-ب). در نتیجه نیز استفاده شده Ca-Fe-Mg کاتی شناسی پریوکسپن از نمونه‌ها.

شکل ۲ آلی جایگاه پریوکسپن‌های تکی کاج و دوآب در نمونه‌های Q1-PQ-1. ب ترکیب شیمیایی نمونه‌های مورد مطالعه در نمونه‌های ۱۵۱-۱۲۳ و ۱۲۳-۷۱ و ۱۲۳-۱۲۷ استاندارد و فروش.
جدول 1 نتایج آنالیز ریز پدیداری کلینیک‌های مگامی از تیره‌ای ساندن هزموت در زاگرس و در محاسبه فرمول ساختاری براید ۱۶کسیون.

<table>
<thead>
<tr>
<th>Label</th>
<th>SiO2</th>
<th>Total 1</th>
<th>K2O</th>
<th>Na2O</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>FeO</th>
<th>AI2O3</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx1-1</td>
<td>24.88</td>
<td>49.34</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx1-2</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx1-3</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx1-4</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx1-5</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx2-1</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx2-2</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx2-3</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
<tr>
<td>1-4Cpx2-4</td>
<td>46.97</td>
<td>41.67</td>
<td>10.85</td>
<td>5.16</td>
<td>15.45</td>
<td>18.3</td>
<td>7.48</td>
<td>6.27</td>
<td>4.229</td>
<td>4.393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx1-1</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx1-2</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx1-3</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx1-4</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx1-5</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx2-1</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx2-2</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx2-3</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>1-4Cpx2-4</td>
<td>1.499</td>
<td>0.237</td>
<td>0.175</td>
<td>0.278</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>0.277</td>
<td>9.27</td>
</tr>
<tr>
<td>اسم آداهم</td>
<td>ستون</td>
<td>ستون 1</td>
<td>ستون 2</td>
<td>ستون 3</td>
<td>ستون 4</td>
<td>ستون 5</td>
<td>ستون 6</td>
<td>ستون 7</td>
<td>ستون 8</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1-6Cpx-5</td>
<td></td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
<td>1.246</td>
</tr>
<tr>
<td>1-6Cpx-6</td>
<td></td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
<td>1.424</td>
</tr>
<tr>
<td>1-6Cpx-7</td>
<td></td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
<td>1.641</td>
</tr>
<tr>
<td>1-6Cpx-9</td>
<td></td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
<td>2.028</td>
</tr>
<tr>
<td>1-6Cpx-10</td>
<td></td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
<td>2.189</td>
</tr>
<tr>
<td>G-2FMS2-5</td>
<td></td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
<td>1.615</td>
</tr>
<tr>
<td>G-2FMS2-6</td>
<td></td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
</tr>
<tr>
<td>G-2FMS2-7</td>
<td></td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
<td>2.128</td>
</tr>
<tr>
<td>G-3-FMS3-1</td>
<td></td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
<td>1.669</td>
</tr>
<tr>
<td>G-3-FMS3-2</td>
<td></td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
</tr>
<tr>
<td>G-3-FMS3-3</td>
<td></td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
<td>2.071</td>
</tr>
<tr>
<td>G-3-FMS3-4</td>
<td></td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
<td>1.227</td>
</tr>
<tr>
<td>G-3-FMS3-5</td>
<td></td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
<td>1.489</td>
</tr>
<tr>
<td>G-3-FMS3-6</td>
<td></td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
<td>1.751</td>
</tr>
<tr>
<td>G-3-FMS3-7</td>
<td></td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
<td>1.914</td>
</tr>
<tr>
<td>G-3-FMS3-8</td>
<td></td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
<td>1.616</td>
</tr>
<tr>
<td>G-3-FMS3-9</td>
<td></td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
<td>1.878</td>
</tr>
<tr>
<td>G-3-FMS3-10</td>
<td></td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
<td>2.139</td>
</tr>
<tr>
<td>G1-FibHM-1</td>
<td></td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
<td>1.482</td>
</tr>
<tr>
<td>G1-FibHM-2</td>
<td></td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
<td>1.647</td>
</tr>
<tr>
<td>G1-FibHM-3</td>
<td></td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
<td>1.815</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>ولاتونیت</th>
<th>انستینیت</th>
<th>فروشپیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1FMS1</td>
<td>33.162</td>
<td>5.545</td>
<td>13.558</td>
</tr>
<tr>
<td>1-4Cpx1-1</td>
<td>42.844</td>
<td>40.422</td>
<td>11.855</td>
</tr>
</tbody>
</table>
شکل ۵ نمودار TiO۲ در سنگ‌پاژی است. نسبت به کلیوپروکسن‌های آن و جدایی محیط‌های زونکتونیکی مختلف.[۱۶]

با توجه به دوگ نهادی شده در سنگ‌پاژی این منطقه (Na۲O, K۲O) نمودارهایی که بر بازه عناصر اصلی (moins) هستند به یقین نمی‌توانند ترکیب ماکما را نشان دهد. لذا از نمودار شکل ۱۰ استفاده شد. با توجه به نمودار زر/Ti در سنگ‌پاژی استفاده شد. با توجه به نمودار بی‌پرس نموداری مورد بررسی در گستره‌ی زاول‌نیهای درون‌کاره‌یTiO۲.

شکل ۶ نمودار SiO۲/Al۲O۳ و جایگاه پیروکسن‌های سازند هرمز روی آن. ب نمودار F۱-۱۴ و موقعیت کلیوپروکسن‌های ماگما‌ای سازند هرمز روی آن.[۱۸]
جدول ۲ آنالیز XRF سنگهای آذرین ساند هرمز در زاگرس بلند.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>rock type</th>
<th>g9</th>
<th>G6</th>
<th>g12</th>
<th>g1</th>
<th>g11</th>
<th>g3</th>
<th>g15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>53.6</td>
<td>51</td>
<td>49.9</td>
<td>48.9</td>
<td>48.1</td>
<td>48.8</td>
<td>49.9</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.39</td>
<td>1.88</td>
<td>2.12</td>
<td>2.04</td>
<td>2.03</td>
<td>2.18</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.6</td>
<td>15.3</td>
<td>15.7</td>
<td>15.9</td>
<td>15.9</td>
<td>13.16</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.89</td>
<td>3.58</td>
<td>3.12</td>
<td>2.83</td>
<td>2.39</td>
<td>4.39</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.28</td>
<td>0.14</td>
<td>0.31</td>
<td>0.21</td>
<td>0.2</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>3.41</td>
<td>4.26</td>
<td>2.84</td>
<td>2.98</td>
<td>2.98</td>
<td>11.03</td>
<td>8.74</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.98</td>
<td>8.21</td>
<td>8.19</td>
<td>8.14</td>
<td>10.14</td>
<td>7.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.51</td>
<td>3.47</td>
<td>3.47</td>
<td>3.64</td>
<td>3.04</td>
<td></td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.61</td>
<td>1.23</td>
<td>1.58</td>
<td>1.55</td>
<td>1.57</td>
<td>0.78</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.28</td>
<td>0.4</td>
<td>0.51</td>
<td>0.47</td>
<td>0.31</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.57</td>
<td>0.25</td>
<td>0.79</td>
<td>0.89</td>
<td>0.92</td>
<td></td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>99.93</td>
<td>99.91</td>
<td>99.87</td>
<td>99.95</td>
<td>99.96</td>
<td>99.86</td>
<td>99.66</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.12</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Sr</td>
<td>180</td>
<td>41.0</td>
<td>30.4</td>
<td>30.4</td>
<td>97</td>
<td>99</td>
<td>244</td>
<td>128</td>
</tr>
<tr>
<td>Rb</td>
<td>4</td>
<td>22</td>
<td>28</td>
<td>30</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Th</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Zn</td>
<td>315</td>
<td>211</td>
<td>215</td>
<td>215</td>
<td>98</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>17</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>137</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>48</td>
<td>65</td>
<td>63</td>
<td>63</td>
<td>53</td>
<td>150</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>44</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>La</td>
<td>77</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>V</td>
<td>210</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>Cr</td>
<td>94</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>S</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Y</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Hf</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ce</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>U</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nb</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Cl</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
<td>1566</td>
</tr>
<tr>
<td>Sample No.</td>
<td>g10</td>
<td>g3</td>
<td>g4</td>
<td>g7</td>
<td>g14</td>
<td>g11</td>
<td>g2</td>
<td>g8</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>rock type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachky Andesite</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Trachky Andesite</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Co</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Th</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Pb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Co</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>La</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>V</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>S</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Y</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hf</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ba</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ce</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>U</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Diagram:

- **Shallow 8:** مواقف سنگهای آذرین سازند هرمز در منطقه زاگرس بلند روي نمودار در پرایز Th/Nb-0135

Equation:

\[\text{La/ Nb} = 0.38 \]
برداشت
سنگهای باری (بازالت و میکروگلیتر) دیپاهای کاج، رستم آباد و دو آب از گروه کانی‌های کلینوپیروکسنس، پلاژیوکلر، آمفیتول، آپاتیت، الیوین، اسفن، تاناته، و کانی‌های کدر (اکلیمینت) تشکیل شده‌اند. بررسی‌های کننده و جدول‌های ششی و ساختار منطقه‌ای را در کلینوپیروکسنس‌ها نشان می‌دهد. علاوه بر این همراهی اپاتیت و اسفن درسیاک، کروموتیت، تیتانیت و کلینوپیروکسنس‌ها (تیتان اوژیت) و نمونه‌های نژادی سیاسی‌های مادگان‌پیمیج ترا شیل‌پایی انتقالی را برای سنگهای ماکم‌بایی سازنده هرمز در زاگرس بلاست مشخص کرده.
