Mineralogy and petrology in magmatic rocks of Hormoz Formation
(salt diapires of High Zagros)

S. Taghipour, M. Khalili, M. Noghrehyan, Gh. Toraby, M. A. Mackizadeh,
B. Taghipour

Geology Department, Isfahan University
Email: Taghipour.sedigheh@Gemail.com

(Received: 8/9/2007, in revised form: 4/5/2008)

Abstract: Several igneous-evaporitic rocks complexes, belonging to Lower Cambrian, are
exposed in High Zagros. These rocks exposed parallel to the Zagros main thrust as diapir-
shaped bodies. Basaltic rocks are the most common rocks but microgabbro, microdiorite,
andesite and trachyte are the rocks of this complex. The studied clinopyroxenes are usually
fresh mafic mineral in these rocks and display sector zoning features. On the base of
mineralogy and mineral chemistry, the pyroxenes are in the range of titan-augite to diopside
composition. The geochemical study of the clinopyroxene as well as the discrimination
diagrams were used in this study, point to the transitional to alkaline nature of magmatism
which occurred in a within continental plate rift environment.

Key words: Iran, High Zagros, salt dome, igneous rocks, clinopyroxene, transitional magma.
کانی شناسی و سنگ شناسی سنگ‌های مامگاهی سازند هرمز (گنبدی‌های نمکی کاج و دوآب)

صدیقه تقی پور، محمود خلیلی، موسی نقوشیان، قدیر ترابی، محمد علی مکی زاده، بنیل نقی بور
گروه زمین شناسی دانشگاه اصفهان

پست الکترونیکی: Taghipour.sedigheh@Gmail.com

دریافت مقاله ۸/۴/۲۰۱۷، نسخه نهایی ۸/۲/۲۰۱۷

چکیده: زاگرس بلند، مجموعه‌های نسبتاً در بر ریخته‌ای از سنگ‌های آذرین-تیخیری به سر کامی‌آباد زیرین به حالت صورت گنبدی بروز کرده است. این مجموعه‌ها به وسیل‌های مدل‌سازی زاگرس رخنه‌مایه است. بازالت فراوانی‌ترین سنگ آذرین مجموعه‌های با شده است. میکروگیاه‌های سیگماتوریت، آنزیم‌زده و تراکتی از دیگر سنگ‌های آذرین بوده‌اند. سنگ‌های شیشه‌ای و سنگ‌های سیاه‌های بروز کرده‌اند. سنگ‌های کاج و دوآب از انواع سنگ‌های آذرین-تیخیری به شکل شیشه‌ای از نظر لنی-آولیت و دیوبیت است. بررسی شیمی کلینیپروکس و استفاده از نمودارهای تفکیکی زئوشیماییا، میانگ مامگاهی ان تقاضای قلیایی این مجموعه است. کانی نهاده رخنه‌مادمیسم در محیط کافی درون فازهای است.

واژه‌های کلیدی: ایران، زاگرس بلند، گنبدی نمکی، سنگ‌های آذرین، کلینیپروکس، مامگاهی ان تقاضای قلیایی

مقدمه
نام سری هرمز نخستین بار نسبت به کیِریمی [۱۰] و سپس نسوت بلنفرد [۲۱] از توصیف جزیره هرمز که تقریباً تمامی آن سری از گنبدی نمکی، بزرگی را ترکیب داده‌اند، بررسی شده است. این سری یکی از راه‌اندازه‌های جشنه‌شیشه‌سنگ‌سنگ‌سنگ شیشه‌ای زیندلیکا زاگرس است که اساساً از کانی‌های تیخیری با ضخامت تقریبی ۱۰۰۰ متر [۲۱] تشکیل شده است. جایگاهی که این سنگ‌های نمکی در داخل سنگ‌های آذرین-تیخیری قرار گرفته‌اند. در این زمینه، تعداد زیادی سنگ‌های آذرین و تیخیری از کانی‌های نمکی این سری جای داشته است. در منطقه مورد مطالعه در گنبد‌های مختلف سیاه‌نارنجی شیشه‌سنگ‌های سری هرمز متواشیل است. این نماده‌ها که هرم و همکاران [۲۲] در گنبد‌های جنوب ایران تعین کرده‌اند، در این منطقه دیده نمی‌شود. سنگ‌های زمین‌شناسی سرخ، دولومیتی، استهارد و نمک که به بزرگی نمک‌های آذرین است که به این‌سانگ‌های متواشیل روز و گاه روند م운동 نمک دیده نمی‌شود [۲۳]. سَنگ‌های آذرین یاد شده متنوع بوده و شامل پالت، تیخیری، کرآتوفر، چکیده‌گردی، خلیلی، نقوشیان، ترابی، مکی‌زاده و بوریبینی (شکل ۱).
روش مطالعه
نخست بررسی‌های صحرایی گسترده و نمونه‌برداری سیستماتیک انجام گرفت و سپس کانی‌شناسی سنگ‌ها با میکروسکوپ قطعی‌نگر مدل Bx60 بررسی شد. در راستای تعبیه تركیب کلینوبروکسین در دانشگاه اکلاهماستاتی (نورمن) آمریکا آلیاس ریز پردازش الکترونی (EMPA) بر روی 34 نقطه از نمونه‌های کلینوبروکسین با دستگاه مدل SX-50 انجام شد. در طول آنالیز ریز پدیداری ولتاژ شتاب‌دهنده دستگاه 20 KV جریان 20 nA و زمان شمارش برای کلیه عناصر 30 ثانیه بوده است. در بررسی‌های سنگ‌شناسی و نامگذاری سنگ‌های ماکمایی مجموعه مورد مطالعه، 15 نمونه از سنگ‌های نسبتاً سالم برای آزمایش‌ها انتخاب شدند. این آزمایش‌ها از سوی شرکت XRF انجام گرفت و بررسی XRF 30 عنصری (PHILIPS PW2400).
کلینوپروکسنهای سنجاقی در سنجاقی میکروکارپی (هیپ آپیسال) به صورت درشت بلور و ریز بلور در زمینه ریز دانه متشکل از میکرونیتهای پلاژیوکلاته حضور دارند. درشت بلورها به صورت بلورهای شکل‌دار و نیمه شکل‌دار قابل مشاهده‌اند. برخی از این پروکسنهای سنجاقی با ساختار سخت‌تر و نسبتی به سخت‌تر می‌باشند که می‌تواند به شکل‌های پلاژیوکلات، آمپیبول، امانئه‌های آمپیبولی و پروکسنهای برخی تحقیقات مشاهده شوند. این پروکسنهای برخی از آنها به درازدست بوده و باید تحقیقات بیشتری در این زمینه انجام شود.

1- سنگ شناختی پروکسنهای کلینوپروکسنهای سالمندین کانی‌های سنجاقی ماگمایی کنده‌ای نمکی مورد تحقیق قرار گرفته است. این کانی پروکسنهای بلوکی متفاوتی به نامش می‌گرزند. به دلیل تبلو سریع گذاره در سنگ‌های پازنلی، این سنگ‌ها به صورت ریز دانه دیده شدند.

شکل 2- آلی و ب وجود ماکل ساخته شنی در یک سنگ‌های پروکسنهای کلینوپروکسنه با بلوک لیتومورفیک در زمینه از میکرونتهای پلاژیوکلات و کانی‌های سنجاقی که تحقیقات بیشتری و اکتشافات بیشتری در یک سنگ‌های پروکسنهای پازنلی شده در یک سنگ‌های اکتشافاتی
ب) کلینوپروکسنس

به منظور تعیین فراوانی عنصر اصلی سازنده پروکسنسها این کاتی مورد نمونه برداری قرار گرفت. نتایج این نمونه‌ها به صورت اکسیدهای تشکیل‌دهنده هر کاتی در جدول انشان داده شده‌اند. فرمول ساختاری این کاتی بر پایه ۶ اکسیون‌های محاسبه‌ی در اختیار جدول ۱ به نام‌های قرار گرفت. در این بخش سعی بر آن است که به ترتیب به‌دست آمده‌ی ریز برداری، به بررسی سرشناسی کاتی شناسی و رده‌بندی پروکسنسها پرداخته شود. ساختار منطقه‌ای (چنانچه در مقاطع میکروسکوپی مشاهده شد) با تغییرات در مقدار درصد وزنی TiO2 در منواد Q-J پروکسنسها در گستره پروکسنسهای کلیسی منیزیم‌آه و نمودار Q-J [۱۴] نمونه‌های پروکسنسهای مورد مطالعه در گستره آزیت با دیوپسید قرار دارند (شکل ۴-b). در تایید کاتی شناسی پروکسنس از نموندار Ca-Fe-Mg اثر استفاده شده است.

شکل ۲- آلت جایگاه پروکسنسهای اهمیت کلی و دوآب در نموندار Q-J [۱۴]، با ترکیب شیمیایی نمونه‌های مورد مطالعه در نموندار مثلثی ولستونیت، استراتسیت و فروسیت [۱۴] نمونه‌های یاد شده در گستره دیوپسید تا نیی قرار گرفت.
جدول 1: نتایج آنالیز ریز برد ریزان، کلینیک، وسایل‌های ماهیت پایداری سایه زند در زاکرگر، بن و محیط فرمول ساختاری برای پایه 6 کسیز

<table>
<thead>
<tr>
<th>Label</th>
<th>SiO2</th>
<th>Total</th>
<th>K2O</th>
<th>Na2O</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>FeO</th>
<th>Al2O3</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx1</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx2</td>
<td>49.9</td>
<td>99.9</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx3</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx4</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx5</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx6</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx7</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx8</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx9</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
<tr>
<td>1-4Cpx10</td>
<td>49.4</td>
<td>99.3</td>
<td>2.7</td>
<td>0.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.6</td>
<td>3.7</td>
<td>4.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4Cpx1</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx2</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx3</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx4</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx5</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx6</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx7</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx8</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx9</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1-4Cpx10</td>
<td>1.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>شناسه گرده‌ماتیک</td>
<td>سطح دور</td>
<td>تنها شیمیایی</td>
<td>نتایج</td>
<td>خلاصه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1FMS1</td>
<td>42,167</td>
<td>32,554</td>
<td>1,258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6Cpx-1</td>
<td>24,844</td>
<td>20,212</td>
<td>1,632</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دانه‌گرده‌مایی شیمیایی کلینی‌پروکسینها در انواع سطح‌های آدنین می‌تواند باعث سرعت‌گیری ماده‌های انیکن‌ها باشد. کلینیپروکسین مقاوم‌ترین کانی این سنجش در برای دگرگونی است. به طوری که در قسمت‌های از پارای‌های هوازده بلوهای کلینیپروکسین از هوازده‌گونی ماده‌ای که در زمینه دگرگونی قرار گرفته‌اند. این پارای‌های بلوهای کلینیپروکسین در نمودار F1 و F2 در گروه عنصری WPA، VAB قرار می‌گیرد که گروه‌های یکسان و وجود ماده‌هایی به سرعت نزول قلیایی (قلیایی - انلاین) برابر سطح‌های انیکن‌ها است (شکل ۶-ب).

دلیل قرار گرفتن نمونه‌های مورد بررسی در گروه‌های این سنجش که بیشترین دقت در پیش‌رفت و تولید MORB آبگوی پوسته‌ای اقیانوسی در نتایج به تبدیل می‌شود.

جدول ۱: نمونه‌های شیمیایی کلینی‌پروکسینها به‌منظور محیط قلیایی را نشان می‌دهند. ترکیب متوسط چند نقطه از آنالیز‌های ریز پراوسیسی حتی محیط بر قلب‌ها نشان داده است. بزارت‌های قلیایی درون بالا و ریز آلیان است [18] با توجه به این نتایج نمونه‌های کلینی‌پروکسین در نمودار F1 و F2 در گروه عنصری WPA، VAB قرار می‌گیرد که گروه‌های یکسان و وجود ماده‌هایی به سرعت نزول قلیایی (قلیایی - انلاین) برابر سطح‌های انیکن‌ها است (شکل ۶-ب).

درباره گرده‌مایی شیمیایی کلینی‌پروکسینها در انواع سطح‌های آدنین می‌تواند باعث سرعت‌گیری ماده‌های انیکن‌ها باشد. کلینی‌پروکسین مقاوم‌ترین کانی این سنجش در برای دگرگونی است. به طوری که در قسمت‌های از پارای‌های هوازده بلوهای کلینی‌پروکسین از هوازده‌گونی ماده‌ای که در زمینه دگرگونی قرار گرفته‌اند. این پارای‌های بلوهای کلینی‌پروکسین در نمودار F1 و F2 در گروه عنصری WPA، VAB قرار می‌گیرد که گروه‌های یکسان و وجود ماده‌هایی به سرعت نزول قلیایی (قلیایی - انلاین) برابر سطح‌های انیکن‌ها است (شکل ۶-ب).

دلیل قرار گرفتن نمونه‌های مورد بررسی در گروه‌های این سنجش که بیشترین دقت در پیش‌رفت و تولید MORB آبگوی پوسته‌ای اقیانوسی در نتایج به تبدیل می‌شود.

دانه‌گرده‌مایی شیمیایی کلینی‌پروکسینها در انواع سطح‌های آدنین می‌تواند باعث سرعت‌گیری ماده‌های انیکن‌ها باشد. کلینی‌پروکسین مقاوم‌ترین کانی این سنجش در برای دگرگونی است. به طوری که در قسمت‌های از پارای‌های هوازده بلوهای کلینی‌پروکسین از هوازده‌گونی ماده‌ای که در زمینه دگرگونی قرار گرفته‌اند. این پارای‌های بلوهای کلینی‌پروکسین در نمودار F1 و F2 در گروه عنصری WPA، VAB قرار می‌گیرد که گروه‌های یکسان و وجود ماده‌هایی به سرعت نزول قلیایی (قلیایی - انلاین) برابر سطح‌های انیکن‌ها است (شکل ۶-ب).

دلیل قرار گرفتن نمونه‌های مورد بررسی در گروه‌های این سنجش که بیشترین دقت در پیش‌رفت و تولید MORB آبگوی پوسته‌ای اقیانوسی در نتایج به تبدیل می‌شود.
شکل ۵: نمودار TiO۲ در سنگ‌های TiO۲ کلینوپروکسنهای آن و جدایی محتوای زئوتونینی‌های مختلف.

شکل ۶: نمودار SiO۲/Al۲O۳ و جایگاه پروکسنهای سازنده هرمز روی آن. ب نمودار F۱–F۲ و موقعیت کلینوپروکسنهای مابه‌سپاره‌سازنده هرمز روی آن.
جدول 2 آنالیز XRF سنگهای آذرین ساند هرمز در زاگرس بلند.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>rock type</th>
<th>g9</th>
<th>G6</th>
<th>g12</th>
<th>g1</th>
<th>g11</th>
<th>g3</th>
<th>g15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>Basalt</td>
<td>45.6</td>
<td>51</td>
<td>39.9</td>
<td>48.9</td>
<td>48.1</td>
<td>48.8</td>
<td>46.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Basalt</td>
<td>4.94</td>
<td>1.38</td>
<td>2.12</td>
<td>2.04</td>
<td>2.30</td>
<td>2.18</td>
<td>2.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Basalt</td>
<td>15.6</td>
<td>15.7</td>
<td>15.9</td>
<td>15.9</td>
<td>13.16</td>
<td>13.9</td>
<td>13.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Basalt</td>
<td>3.89</td>
<td>3.58</td>
<td>3.12</td>
<td>2.38</td>
<td>2.39</td>
<td>2.04</td>
<td>2.29</td>
</tr>
<tr>
<td>FeO</td>
<td>Basalt</td>
<td>8.15</td>
<td>8.88</td>
<td>8.89</td>
<td>9.14</td>
<td>9.16</td>
<td>9.11</td>
<td>13.6</td>
</tr>
<tr>
<td>MnO</td>
<td>Basalt</td>
<td>0.23</td>
<td>0.14</td>
<td>0.14</td>
<td>0.11</td>
<td>0.11</td>
<td>0.1</td>
<td>0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>Basalt</td>
<td>4.94</td>
<td>7.26</td>
<td>6.28</td>
<td>6.96</td>
<td>6.95</td>
<td>11.03</td>
<td>8.75</td>
</tr>
<tr>
<td>CaO</td>
<td>Basalt</td>
<td>4.98</td>
<td>4.21</td>
<td>8.19</td>
<td>8.14</td>
<td>10.14</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>Basalt</td>
<td>5.51</td>
<td>3.32</td>
<td>3.47</td>
<td>3.37</td>
<td>0.72</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>K₂O</td>
<td>Basalt</td>
<td>1.61</td>
<td>1.33</td>
<td>1.58</td>
<td>1.55</td>
<td>1.53</td>
<td>1.78</td>
<td>0.78</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Basalt</td>
<td>0.28</td>
<td>0.3</td>
<td>0.54</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.38</td>
</tr>
<tr>
<td>LOI</td>
<td>Basalt</td>
<td>0.57</td>
<td>0.58</td>
<td>0.78</td>
<td>0.89</td>
<td>1.34</td>
<td>1.36</td>
<td>0.78</td>
</tr>
<tr>
<td>total</td>
<td>Basalt</td>
<td>99.93</td>
<td>99.91</td>
<td>99.87</td>
<td>99.95</td>
<td>99.88</td>
<td>99.94</td>
<td>99.96</td>
</tr>
<tr>
<td>Zr</td>
<td>Basalt</td>
<td>112</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>124</td>
</tr>
<tr>
<td>Sr</td>
<td>Basalt</td>
<td>18.0</td>
<td>41.0</td>
<td>30.3</td>
<td>30.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Rb</td>
<td>Basalt</td>
<td>4</td>
<td>23</td>
<td>28</td>
<td>30</td>
<td>37</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Th</td>
<td>Basalt</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pb</td>
<td>Basalt</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zn</td>
<td>Basalt</td>
<td>115</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>98</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Basalt</td>
<td>17</td>
<td>46</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Ni</td>
<td>Basalt</td>
<td>48</td>
<td>1.8</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>216</td>
</tr>
<tr>
<td>Co</td>
<td>Basalt</td>
<td>44</td>
<td>45</td>
<td>47</td>
<td>47</td>
<td>71</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>La</td>
<td>Basalt</td>
<td>37</td>
<td>31</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>F</td>
<td>Basalt</td>
<td>11</td>
<td>94</td>
<td>30.7</td>
<td>30.4</td>
<td>30.4</td>
<td>30.4</td>
<td>30.4</td>
</tr>
<tr>
<td>V</td>
<td>Basalt</td>
<td>210</td>
<td>154</td>
<td>112</td>
<td>114</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>Cr</td>
<td>Basalt</td>
<td>94</td>
<td>228</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>S</td>
<td>Basalt</td>
<td>14</td>
<td>228</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Y</td>
<td>Basalt</td>
<td>31</td>
<td>3.5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Hf</td>
<td>Basalt</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Ba</td>
<td>Basalt</td>
<td>330</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Ce</td>
<td>Basalt</td>
<td>18</td>
<td>25</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>U</td>
<td>Basalt</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nb</td>
<td>Basalt</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Cl</td>
<td>Basalt</td>
<td>156</td>
<td>30.14</td>
<td>95.6</td>
<td>98.7</td>
<td>98.7</td>
<td>72.1</td>
<td>93.8</td>
</tr>
</tbody>
</table>
جدول ۲

<table>
<thead>
<tr>
<th>نمونه</th>
<th>g10</th>
<th>g3</th>
<th>g7</th>
<th>g14</th>
<th>g11</th>
<th>g2</th>
<th>g8</th>
<th>g4</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع سنگ</td>
<td>آندریت</td>
<td>تراکیک آندریت</td>
<td>تراکیک آندریت</td>
<td>تراکیک آندریت</td>
<td>تراکیک</td>
<td>تراکیک</td>
<td>تراکیک</td>
<td>تراکیک</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۷</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
</tr>
<tr>
<td>SiO2</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
</tr>
<tr>
<td>Na2O</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>K2O</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۳۶</td>
</tr>
<tr>
<td>Nb</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>Sr</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Zr</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>Rb</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>Ba</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>TiO2</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>Th</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Zn</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Pb</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Cu</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>La</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>V</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Cr</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Ni</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Ce</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>Mn</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Nb</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>Cl</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
</tbody>
</table>

شکل ۸: موقعیت سنگهای آذرین سازنده هرمز در منطقه زاگرس بلند رودی نمودار در برای La/Nb-Th/Nb که در عدد [1,0] La/Nb از [0.2, 0.2] و [23, 32] صورت گرفته.
کانی شناسی و سنگ شناسی سنگهای ماکماپی سارند هرمز (گنبدهای نمکی کاج و دوآب)

شکل ۹ نمودار جدایی کندن بارانتها بر پایه Ti/Y و موقعیت نمونه‌های سارند هرمز در زاگرس بلند روي آن [۴۴].

شکل ۱۰ نمونه‌های مورد مطالعه روي نمودار پرس و نوری (در گستر بارانتهای درون صحنه) قرار گرفته است.

است. بر این پایه نمونه‌های مورد بررسی مربوط به کسل‌های تبدیل حاشیه کافت‌های اقیانوسی هستند که بیشتر از سری تولیتنی، قلیایی و هم تبدیل هستند.

تشکل و قدردانی
از تحقیقات تکمیلی دانشگاه اصفهان به سبب حمایت از این کار پژوهشی سپاسگذاری می‌شود.

مراجع

برداشت
سنگهای باری (بازالت و میکروگانروک) دیاپیرهای کاج، رستم آباد و دو آب از مجموعه کانی‌های کلینوپپروکسین، پلاژیوکلاز، أمفیبول، آپاتیت، الیویت، اسفن ثانویه و کانی‌های کدر (ایلمنیت) تشکیل شده‌اند. بررسی‌های کانی شناسی و ساختار سنگی و ساختار منطقه‌ای را در کلینوپپروکسین نشان می‌دهد.

علاوه بر این هرم‌ها ابی‌پای و اسفن قفاوان، کرستینیت، تیتانیت، بودن بیش از کلینوپپروکسین (تیتان اوزیت) و نمونه‌های زوئوستیلیک ماکماپیسم نوع ترا قلیایی (التقی) را برای سنگ‌های ماکماپی سارند هرمز در زاگرس بلند مشخص کرده.

[6] مهری، م. هوشنگ. خزر، نیکی، م. مفتاحی، جدیدی از چینه شناسی نمکی زاگرس بندر مسجدی در گنبدی نمکی جنوب ایران، سمپوزیوم دولتی، ۱۳۷۹.

