کانی شناسی و زمین شیمی ذخیره کاتون هیزه‌جان، شمال باختری وزقان، استان آذربایجان شرقی، شمال باختر ایران

علی عابدینی

گروه زمین شناسی، دانشگاه علوم تغذیه‌ای، ارومیه، ایران

چکیده: ذخیره‌کاتون هیزه‌جان (شمال باختری وزقان، استان آذربایجان شرقی) یک نهشته‌ری سرمایشی با سنگ میزبان آندرزینی به سبب آنوس در شمال باختری ایران است. بر اساس بررسی‌های پرتو (XRD) کاتانه‌ای این ذخیره عبارتند از کالیکینت، پیونیاپات، کوارتر، اسلسکیت، موکوسیت، ایبل، فنیت، آتانتاز، آنتیتیت، داسپور، عشاقیت، هوروبیت و کلسیت. افزایش نسبت

\[
\text{SiO}_2/\text{Al}_2\text{O}_3
\]

از مکان به حاوی تخیل مورد بررسی دالات بر وجود منطقه‌بندی گرمایی ذخیره‌دار. شاهدی نظر حضور بخش سینک‌های سیلیسی روند ذخیره، برخی‌اندیشی محلی کالی‌سای پیونیاپات، داسپور، آنتیتیت و کلسیت را نسبت

LREEs به HREEs در اکثر تغییرات جرم عناصر Al، Sr، Nb و Ti، Fe، Ce و Pr بهره‌یا می‌باشد. شیمیایی نشان می‌دهد که رابطه بین المگنیتی Eu (390-0878) در نمونه‌اتن کانولنیزه در ارتباط با تغییرات کانی‌های فلزی و هوروبیات سنگ‌های آندرزینی به وسیله گرمایی و هنگامی منفی Ce (0-010) در نتیجه تغییرات زیگرLookup

به‌وسیله شاره‌های اسیدی- اکسیدان است.

واژه‌های کلیدی: ذخیره‌کاتون، زمین‌شیمی، دگرگزینی کاتونی، آندرزینی، هیزه‌جان

مقدمه

ذخیره‌کاتون در ایران، به‌کُست‌های زمین‌برکمیس می‌باشد و اکثر آنها در این ناحیه و از نظر زنده‌کردنی برای استفاده در موادهای آدنزینی (نفتی و آتش‌نشان) و کاربردی‌گر بافت‌های افزایشی [1] نهشته‌بر. هیزه‌جان وابسته به درگزین سنگ‌های آدنزینی، به‌کُست‌های زمین‌برکمیس می‌باشد و اکثر آنها در این ناحیه و از نظر زنده‌کردنی برای استفاده در موادهای آدنزینی (نفتی و آتش‌نشان) و کاربردی‌گر بافت‌های افزایشی [1] نهشته‌بر.

بخش اول

ذخیره‌کاتون در ایران، به‌کُست‌های زمین‌برکمیس می‌باشد و اکثر آنها در این ناحیه و از نظر زنده‌کردنی برای استفاده در موادهای آدنزینی (نفتی و آتش‌نشان) و کاربردی‌گر بافت‌های افزایشی [1] نهشته‌بر.
زمین‌شناسی سیه رود و ورقان (به مقياس 1:10،000)

گزارش سده است. آن به حال بررسی خاصی روز ویژگی‌های کانی‌شناسی و زمین‌شناسی و شیمی‌مایه‌ای این ذخیره انجام شده است. در این پژوهش، سعی شده است با تکیه بر مشاهدات صحرایی و بررسی آزمایش‌گاهی ماده‌بندی بررسی کانی‌شناسی، خاستگاه، عامل زمین‌شناسی‌مایه دخیل در تحقیق، تریف و توسعه عناصر الیمی، جزئی، و مخلوط ناگهان و تجزیه‌بندی بوده و به کلیک ذخیره‌کاولان Ce و Eu هنگامی یابد. گروهی یابد.

زمین‌شناسی

منطقه‌ای مورد بررسی از زمین‌شناسی نسبتاً ساده‌ای برخوردار بوده و با طریق‌کلی از سنجش‌های انسانی تا کانترل و سنگ‌های آزمایش‌گاهی از دوره‌های یگوسن تکمیل شده است. واحدهای سنگی در این منطقه شامل اکتوم، تروف، ماده‌بندی، ترفت، و آندزیت، کوارتز مونزودوریت، و دورونیت به سن الیگوسن، هورنباند آندزیت، و ترفت آندزیت به سن پلیوسن، و آندزیت، باران‌گیاک و خاک کانترلی هستند (شکل 2). پیدا شده در این منطقه چرخ‌های سنگ‌های آندزیتی اثر کرده و مواد مشترک دخیل از کاولان‌های اثر کرده تا به مشاهده مشترک شیمی‌مایه‌ای یابد. در این پژوهش سنجش‌های اثر کرده و تحقیق در این ذخیره‌ها اثر کرده. مخلوط ناگهان بوده و به کلیک ذخیره‌کاولان Ce و Eu هنگامی یابد.

شکل 1 تفسیر پیهن‌های ساختاری ایران [15] که بر اساس آن ذخیره کاولان هیژچان در پنهانی مرز آذربایجان قرار می‌گیرد.

پیمان‌های صحرایی نشان می‌دهند که گسترش پهن‌های کانولوپنی در هیژچان بیشتر روی چندین گسل قرار گرفته است. به نظر می‌رسد که اگر یک گرسنگ کننده در راستای این گسل‌ها بستگی به سن‌گاهی آندزیتی تزیق شده و مشابهات صحرایی تشکیل ذخیره کاولان را فراهم کرده‌اند (شکل 2).

از نظر شیمی‌مایه‌ها ویژگی‌های ذخیره‌نمونه‌ای مورد بررسی‌هایی از تولید کرد. سه‌گاهی اول، نرم بوده و حالان اعدای زینتی این ذخیره‌های با تکیه بر مشاهدات صحرایی و بررسی آزمایش‌گاهی ماده‌بندی بررسی کانی‌شناسی، خاستگاه، عامل زمین‌شناسی‌مایه دخیل در تحقیق، تریف و توسعه عناصر الیمی، جزئی، و مخلوط ناگهان و تجزیه‌بندی بوده و به کلیک ذخیره‌کاولان Ce و Eu هنگامی یابد.

شکل 2 مبنایی از صحرایی و باران‌گیاک و خاک کانترلی هستند (شکل 2).
روش بررسی

این پژوهش در دو بخش صحرايي و آزمایشگاهي صورت گرفته است. در بخش صحرايي، نسخت میخسیهای به منظور شناخت واحدهای سنگشناسی منطقه، چگونگي گسترش ذخيره و ارتباط سنگهای درونگير با ماده معدنی صورت گرفت. سپس، نمودار به طول 180 متر برای نمونه‌داداري از واحدهای کاتولینزه و سنگهای آدرین وابسته به آنها انتخاب شد. از این نمودار، 24 نمونه (20 نمونه کاتولینزه و 4 نمونه سنگ آتش‌نشانی میزان ذخیره با حداقل دوگانگي) با فواصل بین 8 الي 15 متر به تعداد 152 در ویژگي‌های فیزیکي، نمونه‌گيري، به عمل آمد. در بخش آزمایشگاهي ترکيب کانون و سنگهای آتش‌نشانی میزان ذخیره با تهيه 10 مقطع ناژک-صفي و بررسی آنها با ميکروسكوپ شرود بذری. برای تعیین فازهای کاتابی مانند چسب در نمونه‌های کاتولینزه، 5 نمونه به صورت سپستماني برداشت و با
جدول 1 نتایج آنالیز شیمیایی ICP-MS و ICP-ES

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>3.73</td>
<td>1.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.34</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.93</td>
</tr>
<tr>
<td>CaO</td>
<td>2.94</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.95</td>
</tr>
<tr>
<td>MgO</td>
<td>2.96</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.97</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.98</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>3.00</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>3.01</td>
</tr>
<tr>
<td>TOTS</td>
<td>3.02</td>
</tr>
<tr>
<td>L.Ø.I</td>
<td>-</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Note: n.d. = not detected
بحث و بررسی
سنگ‌گاری و کانی‌شناسی

مناوت‌های میکروسکوپی نشان می‌دهد که سنگ‌های آندریتی میزبان ذخیره کالکولین هستند. در آنها در یک خمیره میکروپاتی حضور دارند. فتوگرست‌ها از جنس پلاژیوکلار (پیشر آندزین تراپودور) (شکل 3) الق، پیرکس، و هوبرینتُنپی دیده و اندازه‌ها از 1 تا 4 میلی‌متر دارند. پلاژیوکلار در مقایسه با پیرکس و امفیبون، فراوان‌تر فتوگرست‌های سنگ‌ها محسوب می‌شود (حدود 0/4) که در میان کالکولین فلایا و هوبرینتُنپی دیده می‌شود. توجه به سرعت‌های نوری، کالکولین پلاژیوکلار در منطقه-3 به نوسانات سنگ‌ها، یکی از عواملی که فتوگرست‌ها در این سنگ‌ها به ترتیب در اثر عملکرد دما و باراک‌های دغرسی‌های بیرونی سبب می‌شود. کالکولین، سرپیتیت، کالکولینیت و اپیدوت (شکل 3) می‌توانند فراورده‌های دگان‌های این سنگ‌ها هستند. آپتین،اسبن، و زیرکن فراورده‌هایی از کالکولینهای معمول، پیرکس، و هوبرینتُنپی هستند.

جدول 2 نتایج تحلیل‌های پرایز پروی ایکس (XRD) برای نمونه‌های کالکولین‌های مورد بررسی.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>کالکولین</td>
<td>K-1</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-2</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-3</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-4</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-5</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-6</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-7</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-8</td>
</tr>
<tr>
<td>کالکولین</td>
<td>K-9</td>
</tr>
</tbody>
</table>

شکل 3: تصاویر میکروسکوپی از سنگ‌های آندریتی میزبان ذخیره کالکولین هره‌جان. (الف) فتوگرست پلاژیوکلار در یک زمینه‌ی رژیتلوری از پلاژیوکلار. (ب) حضور اپیدوت و فلدزیار دگرسیپی‌های در اندریت نور XPL.
شاخص بی تحرک به کار گرفته شد و میزان افزایش و یا کاهش عنصر طی کالوتینی‌شدن با استفاده از رابطه زیر [20]

% Change = [(Element altered rock/Hf ppm altered rock)/(Element parent rock/Hf ppm parent rock)] – 1 × (100)

مقادیر منفی و مثبت به دست آمده به ترتیب نشان دهنده میزان کاهش و افزایش جرم طی گسترش فرآیند کالوتینی‌شدن هستند. مقادیر صفر نیز نشان دهنده عدم تحرک عنصر طی کالوتینی‌شدن است. نتایج حاصل به صورت نمودار در شکل‌های ۶ و ۸ نماش داده شدند. این شکل‌ها نشان می‌دهند که عنصری نظیر
ِ Eu، Sm، Nd، Pr، Pb، Cu، Ta، Zn، Rb، Cs، Nb، Co، طی فرآیندهای کالوتینی‌شدن سرک-۵، و Tb، Gd،
های آندزیتی هیپژران هستند و عنصری نظیر
ِ P، Cr، Mn، Si، Yb، Ce، و هم شسته Er، Ho، Dy، La، Ga، Zr، V، Th، U، Ni، S،
*شدند و هم تنشت.

oomla دخیل در تحرک توزیع، و غنیت‌ذوک عناصر طی کالوتینی‌شدن

با توجه به کانی‌شانسی ذخیره کالوتون مورد بررسی، به نظر میرسد که کانی جرم Si در ارتباط با کالوتینی‌شدن فلزسیاهه سرگ مارد آندزیتی باشد. افزایش جرم Si در یکی از نمونه‌های کالوتینی‌شده (شکل ۶) دلیل بر قرارگیری کانی کوارتز

از دیگر کالوتون‌های فرعی شناسایی شده در نیم‌بر مورد بررسی می‌توان به موسکویت-ایلیت، هئمانت، کلسیت، و آناتاز اشاره کرد. این اختلالات جزء معدود کالوتون‌های است که در این ذخیره به صورت هر دو فاز کانی‌پیوستی اصلی و فرعی حضور دارد. با توجه به حضور پیروکلیت، آلیوت، و دیاسپور در ذخیره‌های مورد بررسی، می‌توان استنباط کرد که آندزیت‌های طی تشکیل ذخیره کالوتون، دگرگسایی در حد آژرلیک پیشرفته را تجربه کرده‌اند [۱۸].

ترکیب شیمیایی ذخیره و محاسبات تغییرات جرم عنصر در طی کالوتینی‌شدن

نتایج آلئزی‌های شیمیایی سنگ‌های آندزیتی و نمونه‌های کالوتینی‌های حاشال در دو روزی آنها در حدود ۱/۲ هنگام شیدان، ترمیم نمونه‌ها در نمودار دو منفی Zr/TiO۲ در برای [۱۹] نشان می‌دهد که سنگ‌های تازه‌سنگی مربوط به ذخیره کالوتون هیپژران ترکیبی در حد آندزیت و محصولات دگرگسایی آنها در حد داسیت، رودسیت، آندزیت، و بازالت دارند (شکل ۵).

در این پژوهش، برای محاسبات تغییرات جرم عنصر طی

شکل خیر و کاوشات خذیره‌ی مورد بررسی از روی زمین،

شیمی عناصر بی تحرک ارائه شده توسط نسبت و مارکوویکس [۲۰] استفاده شد. در این محاسبات، به دلیل عدم

تغییرات کم نسبت به عنصر بی تحرک دیگر، به عنوان عناصر

شکل ۴ الگوی برتر برای نمونه ۵ کالوتونی‌شده.

[19] \(\text{Nb/Y - Zr/TiO}_2\)

[22] Eh, دمای و همبستگی‌های بینی طی شکل گیری ذخیره است.

[5] موادی نمونه‌های وابسته به ذخیره‌های کالکون هیژونان و سنگ‌های آتش‌فرشی وابسته در بخش‌های مختلفی از

توب و جنبه‌های زنتیکی ذخیره

معنای انجام نشان می‌دهد که مقادیر نسبت \(\frac{SiO_2}{Al_2O_3} \) در نیم‌می مورد بررسی در پرازهای از 0.1 تا 0.3 متغیر می‌باشد. نسبت نیم‌می باشد برای راه‌های 40 تا 80 متری نیم‌می‌باشد. نسبت زندیک به نسبت \(\frac{SiO_2}{Al_2O_3} \) از مدل‌های از راه‌های شدید برای کانال‌کننده (4) \(\frac{SiO_2}{Al_2O_3} \) از نیم‌می‌باشد (شکل 6). ان دیل و استودال محکم بر وجود یک منطقه‌بندی گرمایی برای ذخیره مورد بررسی پاشد.

\[U \quad Th \quad Ba \quad Co \quad Nb \quad Cs \quad Rb \quad Ga \quad Ta \quad Sr \quad Zn \quad Y \quad Cu \quad Zr \quad Pb \quad Ni \]

\[K-1 \quad K-2 \quad K-3 \quad K-4 \quad K-5 \quad K-6 \quad K-7 \quad K-8 \quad K-9 \quad K-10 \]

\[SO_4^{2-} \quad PO_4^{3-} \quad Cl^- \quad F^- \quad CO_3^{2-} \]

\[REE \quad Th \quad Zr \quad Ga \]

\[(23, 24, 25) \]
بررسی‌های انجام شده روی ذخایر کاتانول در دنیا نشان داد که اجزای نظیر Sr, P₂O₅ و فقط در ذخایر کاتانول با خاستگاه درون‌داده حاضر بوده و مقدار آنها با پیش‌تر دریچی دگرسانی (LOI) افزایش می‌یابد [18]. ترسیم روند تغییرات در نیم‌مورد بررسی (شکل 9 ب) و مقایسه آن با LOI روند تغییرات S (شکل 9 ت)، و P₂O₅ (شکل 9 ص) با P₂O₅. Sr و P₂O₅ (شکل 9 ث) دلیل افزایش تقریباً منظم مقادیر S و P₂O₅ با پیشرفت فراپند دگرسان تا نشانه‌های ذخایری هیزه‌جان در این نظریه باforest همچنین، خاستگاه درون‌داده ذخایری هیزه‌جان از روی شناخت در برخی از سرشنایی زئوپتیماتی (مقادیر پایین ترکه Karacayır Al سالوادر [27] و Lohreim کاتانول آل) یک‌تا باforest روند تغییرات (LOI) (شکل 9 ج) با افزایش 0.1 (La/Yb)₈ در که با افزایش شدت دگرسانی سنگ‌های آندزینی، درجهٔ HREEs از LREEs جدایی شده‌اند. ماشین همایش در دنیای تأثیر می‌شود.

![Graphs](image_url)
نتایج حاصل از محاسبات تغییرات جرم و نسبت‌های عناصر جزئی نیز متواند در تعیین نوع فرابنده داخلی در لایه‌های هیبردی کمک فراوانی بیان‌شود. در نیم‌‌مورد پربرسی در خاک با نتایجی مشابه پیش‌بینی شده‌باشد (شکل ۶)، این فرابنده در جرم پیش‌بینی شده سرشار از اکسیدهای نیز در شکل‌گیری خیزه در بالا [۶] و تئیه شده‌اند در جرم پیش‌بینی شده [۶] و تئیه شده‌اند در گیره‌ی خیزه باشند (شکل ۶ و ppm ۶۹۶۴ ۷ همراه با مقدار پیش‌بینی بالای ۵۵۴۶ ppm ۲۰۰۴ و مقادیر نسبتاً بالای ppm ۲۹۶۲ ۲۰۰۴ ppm با مقدار متوسط Ce+Y+La ppm ۱۱۰.۴ نمونه‌های کاتالوئینه پیش‌بینی می‌کرده‌که خاستگاه درون‌زمینی ذخیره‌های هیبردی سباز محتمل می‌باشد که به‌وسیله پیش‌بینی شده آن است. این نتایج به‌گیرنده در اثر غنی‌شدن نیز از آلیاژ‌های تئیه شده Ce و تئیه شده‌گرای سطح گیره‌ی و م الخطاب خیزه Ti کاتالوئینه چاپی می‌شود، جایی که این تغییرات در پیش‌بینی شده با شرایط شرکت‌گرای گگانان شده از قاره‌کاتالوئینه پاکستان است [۲۹].

الگوی توزیعREE و تفسیر بی‌هنجاری‌های Ce و Eu

الگوی توزیع REEs به هنجار شده به کندریت [۲۰۰۴] در بالاتر همراه با REEs نسبت به HREEs بر جابا و غنی‌شدن نمایان می‌شود. شکل ۱۰ الگوی توزیع REEs به هنجار شده به کندریت [۲۰۰۴] در نمونه‌های کاتالوئینه‌های بر جابا و غنی‌شدن نمایان می‌شود.
نمودار دو متغیری \(\text{Ce}^{3+}/\text{Ce}^{4+} \) در نمونهای کالیولینیزه هیزوجان.

\[
\begin{array}{c|cc}
\text{Zr (ppm)} & 0 & 50 \\
\hline
\text{\text{Ce}^{3+}/\text{Ce}^{4+}} & 0.6 & 0.9 \\
\end{array}
\]

\(R = 0.95 \)

1- ممثترين شواهد صحرايي هستند که نشان مي‌دهند فعاليت‌های گرمایي نقص بسيار مهمى در گستردگي و شکل‌دهي كاثالين هیزوجان داشته‌اند.

2- کاني سازي پيروقتی، ديساپور، و آلونیت، همراه با تغییرات در نسبت \(\text{SiO}_2/\text{Al}_2\text{O}_3 \) در نمیرم مورد بررسی حكایت از آن دارند که آنرژيتها طى تشکيل ذخيره كاثالون، دگرگانى در حج آرزيلیک پيشرفته را تجربى كرده و ذخيره داريي یك منطقه مينى گرامى است.

3- افزایش در مقايم و \(\text{S} \) و \(\text{Sr} \) و \(\text{La}/\text{Lu} \) نسبت به شاکهگاه درنوزاد ذخيره دالت دارد. فرايند دگرسانى (LOI) نسبت به هيئه بدينگي و \(\text{Nb} \) و \(\text{Ti} \) و \(\text{Fe} \) و \(\text{HREEs} \) نسبت به گني هیزمى و کالیولینیزه هیزوجان است.

4- نسبت \(\text{Sr} \) مبين شاکهگاه درنوزاد ذخيره هیزوجان است.

5- محاسبات تغييرات جرم نشان مي‌دهند كه شرايط فيزيكويرشيكي محيب تشکيل \(\text{Fe} \), \(\text{pH} \) نسبت شاره به سنگ، و ميان دسترسى به پهنه‌های همبافت سه‌فاکتور کلیدی در توزيع، تحرك، و گني تشگي عناصر اصلی، جزي، و خاکى نادر طي کالیولینیتي شدن در هیزوجان هستند.

6- مينابند مسئول به صورت باخت و ورزقان از:

1- تشکيل پوش سنگ‌های سپیلسي روی ذخيره، برشي شدن محلی، گسترش رگى و رگچه‌های از اكسید و هیدروسکید اه، سپیلسيژابي، و کاني خيالي زبيس، اندراديت، و بازيت
Bohemian Massif (Czech Republic, Austria)

[10] Zirpins Potash Zadiea, Cr, K, Mg, B, Al, Si, Fe, Zn, Cd, Pb, Cu, Mn, Ni, Co, Cr, Sc, Sr, Ba, La, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Th, and U.

