مطالعه مینرال شیمی و ترموباروتری گرانتیونده‌های منطقه بند پرچین، شمال غرب ایران

عادل ساکی، محسن مودن

1- استادیار گروه زمین‌شناسی دانشگاه شهید چمران اهواز
2- استاد گروه زمین‌شناسی دانشگاه تبریز
پست الکترونیکی: adel_saki@scu.ac.ir

چکیده: شواهد صحراوی، سیماهای پتروگرافی و مطالعات زوئونیکی نشان می‌دهد که گران‌‌تر سکویی گرانتیونده‌های منطقه بند پرچین از نوع S می‌باشند و در بخشی کنارکت منشأ به سنگ میزبان (سنگ‌های دگرگونی) هستند. این گرانتیونده‌ها دارای مجموعه کانال‌های کوارتز، فلدسپار ریتاسیمی، بلازیوکلاژ، بیوتیت و کانی‌های غنی از آلومینوم (مانند سکویی‌ها و گرانت‌ها) می‌باشند. ترکیب شیمیایی فلدسپار، بلازیوکلاژ، بیوتیت، سکویی و گرانت در نمونه‌های مورد مطالعه نشان می‌دهد که فلدسپارهای نتیجه از نوع اتریک پلازویکلاژ غنی از آلبیت، میکاپات سفید با نوع سکویی، بوده، میزان آنت-فلوگوپیت میکاپی سیاه نشانگر ترکیب بیوتیت و ترکیب شیمیایی گران‌‌تر سکویی نشان می‌دهد که غنی از آلمندینی می‌باشد. دما و فشار لازم برای تشکیل این سنگ‌ها به ترتیب 600 درجه سانتی‌گراد و 8 کیلوبار تخمین زده شده است. همه دماها محاسبه شده برای فلدسپارهای منعکس کننده تیولوای مجد در حاله سب-سیلیدوس می‌باشد. عدم وجود سنگ‌های مادون زیر فلوگوپیت نوع سکویی، وجود انکلاولوای غنی از میکا، سیماهای پتروگرافی (وجود گرانت‌‌‌های و سکویی) و خصوصاً شیمیایی (آلومینوم) همه بانگره‌ای S بودن گرانتیونده‌ای بند پرچین منشا به وابستگی این سنگ‌ها از ذوب بخشی سنگ‌های رسمی دگرگون شده (مانیلیتا) بوجود آمدند.

واژه‌های کلیدی: کمپلکس منشانی، شیمی کانی‌ها، ترموباروتری، گران‌‌ترهای نوع S دگرگونی فشار بایین.
Study of mineral chemistry and thermobarometry of Boland Parchin granitoids, NW Iran

A. Saki 1, M. Moazzen 2

1 - Department of Geology, Shahid Chamran University, Ahvaz
2 - Department of Geology, University of Tabriz
E-mail: adel_saki@scu.ac.ir

(Received: 13/4/2008, in revised form: 15/12/2008)

Abstract: Field evidences, petrographic features and geochemical studies show that the garnet-muscovite granitoids of Boland Parchin area are S-type and they have sharp contact with the host rocks (metamorphic rocks). Granitoids of Boland Parchin contain minerals such as quartz, K-feldspars, plagioclase, biotite and Al-rich minerals (such as muscovite and garnet). Chemical composition of K-feldspars, plagioclase, biotite, muscovite and garnet in the studied samples show that K-feldspars are Or-rich component, plagioclase are Ab-rich, muscovite flakes are rich in the muscovite end-member, phlogopite-annite is the dominant constituent in biotite and chemical composition of the analysed garnets show that they are Alm-rich. Temperature and pressure have been calculated 600 °C and 5-8 Kbar respectively, for the formation of the granitoid rocks. All temperatures obtained from feldspar thermometry reflect sub-solidus re-equilibrium of the feldspars. Lack of equivalent extrusive rocks, existence of restitic micaceous enclaves (restitic biotite), mineralogical features (existence of muscovite and garnet) and chemical characteristics (peraluminous) indicate that Boland Parchin granitoids are S-type. Therefore the rocks are produced from partial melting of metapelites.

Keywords: Boland Parchin, mineral chemistry, thermobarometry, S-type granite, low-P metamorphic

Introduction

A variety of igneous and metamorphic rocks can be seen in Mahnesan Complex (Boland Parchin area). The Precambrian rocks in northwestern Iran were affected by regional and contact metamorphism. Microstructural and petrographical features and field relations show that formation of metamorphic complex is poly-metamorphic with three episodes of metamorphism (M1 to M3) and minimum two deformational phases (D1 and D2). The M2 metamorphic stage is characterized by a strong preferential alignment (S2) and development a peak metamorphic assemblage, this metamorphism is temporally with D2 deformation phase. Metamorphic rocks in the studied area followed a clockwise P-T path. The Barrovian-type (M2) evolution of the rocks indicate a collision tectonic clearly related to crustal thickening [1]. The low-P metamorphism took place after a medium-P event (Alpine orogenic activities overprint the Boland Parchin basement, M3 metamorphic phases; [1]). Intrusive rocks with granodiorite to granite composition are exposed in Mahnesan Complex. Granitiods in the Mahnesan area intruded into the Neoproterozoic (?) metamorphic complex, composed of amphibolites, gneisses, mica-schist and meta-ultramafites rocks. In the view of genetic subdivision, granitoids of
the study area are classified into two sub groups, S-
and I-type granitoids. S-type granitoids are subject
of this study. Gneissic fragments and biotite-rich
restite occur as enclave within S-type granitoids
[2]. S-type granitoids in the Mahneshan and Boland
Parchin area have been formed due to partial
melting of the high grade metapelites. Investigation of the I-type granitoids is not
presented in detail in the present study. The
distribution of both I- and S-type granitoids in the
Mahneshan area is apparently controlled by
differences in source material (meta-basic and
meta-pelitic nature of the protolith rocks). I-type
granitoids derived from igneous source rocks and
S-type granitoids are from sedimentary source
rocks. I-types granitoids in the Ghar-e-Naz are
found in association with mafic migmatites.
Structures related to melting in mafic amphibolites are
(1) layering composed of banded leucosome, mesosome and melanosome, (2) Melansome as
mafic selvage around leucosome, (3) Scholen
structure with floated fragments of the
melanosome in leucosome, and (4) Stiklitolic
structure as dispersed melanosome within
leucosome. Late stage alteration processes
recrystallized I-type granitoids as well as related
mafic-migmatites and granulites to the amphibolite
facies rocks [3]. The previous study of major and
trace element composition of the Boland Parchin
granitoids indicate that they are Volcanic Arc and
syn-collision related products that derived from
dehydratation melting of metagreywackes and felsic
pelites.

Geological setting
The study area is located in south of Mahneshan
town in western Zanjan Province of Iran. The area
is limited to geographical latitude of 47° 07' to 47° 45’ E and longitude of 36° 30’ to 37° 00’ N
(Fig.1). In the context of the structural subdivisions
of Iran, the Boland Parchin area has been assigned to
various tectonic zones by different workers. It is
included in the Central Iran Zone by [4], the
Soltanieye-Misho Zone by [5], and at the junction of the Central Iran, Alborz-Azarbaijan and
have included the study area in the Sanandaj-Sirjan
Zone. In the geological map of area, Published by
geological survey of Iran [2], it is included
between Alborz-Azerbaijan, Central Iran and
Sanandaj-Sirjan Zones. Similarities in the
stratigraphy, lithology and age data (relative and
isotopic ages) of the protoliths of the Mahneshan
complex and equivalent units from the Central Iran
Zone suggest that the Mahneshan complex (Boland
Parchin sub-area) has a Neoproterozoic-Early
Cambrian age and experienced the Pan-African
orogeny, therefore it is included in the Central Iran
Zone. The supporting evidence for this idea as
follow:
- Marbles within the Takab complex contain
upper Cambrian fossils (e.g. Latouchella sp.,
Bemella sp. and Halkiera stenobasis [8]) which are
similar to fossils from the Sorkhak marbles in the
Central Iran Zone [9].
- The intrusion age of the granitic gneisses of the
Takab metamorphic complex (~560 Ma; U/Pb
zircon [10] is similar to U/Pb dates from basement
rocks of the Saghand area in the Central Iran Zone
[9].
- The metamorphic grade and deformational
style of the metamorphic rocks in the Takab area
and the Central Iran Zone are very similar.
In the mapped area, there is some evidence to
suggest the presence of high land (Horst) in
Precambrian time with NW-SE trending. This high
land was widespread enough to form separate
basins in the east (Pari) and west (Shirmand) of
the quadrangle area during the Lower Paleozoic.
Precambrian rocks crop out along this horst and
Char Tagh fault (Figs.2, 3).

Analytical methods
Petrographic and mineralogical features of
the granitoid rocks were determined by study of 50
thin sections. Major-element compositions of the
Grt, Bt, Ms, Pl, Kfs minerals in selected granitoids
were determined by wavelength-dispersive
spectrometry using the Cameca SX100 m i c r o p r
o b e a t t GeoForschungs Zentrum, Potsdam,
Germany. The operational conditions were 15 kV,
10_20 nA specimen current. The analytical spot
diameter was set between 3 and 5 mm, keeping the
same current conditions. Representative mineral
analyses of granitoids are presented in Tables1, 2
and 3.
Fig. 1. Location of the study area on the structural subdivision map of Iran.

Fig. 2. The simplified geological and structural map of Mahneshan complex. Existence of an old horst (Gor Gor - Belghis and Ghebleh dagh), which late Precambrian–Paleozoic to Oligocene rocks is eroded. This horst has a trend of NW-SE. This high land was widespread enough to form separate depression in the east (Pari) and west (Shirmard) Precambrian rocks crop along with this fault.
Fig. 3. Geological map and sample locations of the Mahneshan Complex (Boland Parchin ES of Mahneshan).

Table 1. Representative feldspar and garnet analyses and their structural formulae.

<table>
<thead>
<tr>
<th>Sample</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Pl</td>
<td>Pl</td>
<td>Pl</td>
<td>Kfs</td>
<td>Kfs</td>
<td>Kfs</td>
<td>Grt</td>
<td>Grt</td>
</tr>
<tr>
<td>SiO₂</td>
<td>66.36</td>
<td>66.96</td>
<td>67.05</td>
<td>65.40</td>
<td>65.20</td>
<td>65.00</td>
<td>63.70</td>
<td>63.32</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.95</td>
<td>21.60</td>
<td>21.65</td>
<td>18.90</td>
<td>19.05</td>
<td>18.81</td>
<td>20.80</td>
<td>21.30</td>
</tr>
<tr>
<td>CrO₃</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.60</td>
<td>3.04</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>26.97</td>
<td>26.27</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>14.63</td>
<td>14.90</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.53</td>
<td>0.56</td>
</tr>
<tr>
<td>CaO</td>
<td>1.94</td>
<td>1.80</td>
<td>1.80</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.83</td>
<td>0.80</td>
</tr>
<tr>
<td>Na₂O</td>
<td>11.38</td>
<td>11.51</td>
<td>11.50</td>
<td>1.40</td>
<td>1.92</td>
<td>1.82</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.34</td>
<td>0.37</td>
<td>0.25</td>
<td>15.33</td>
<td>14.86</td>
<td>14.71</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Totals</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>101</td>
<td>101</td>
<td>100.4</td>
<td>102</td>
<td>103</td>
</tr>
</tbody>
</table>

Structural Formulae on a basis of 8 oxygens

Si	2.871	2.885	2.888	3.27	3.26	2.253	2.94	2.90	2.923	2.915
Ti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.001
Al	1.12	1.10	1.10	0.945	0.952	0.94	1.964	2.00	2.00	2.00
Cr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe³⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.157	0.18	0.156	0.172
Fe²⁺	0.00	0.00	0.00	0.00	0.00	0.00	1.807	1.75	1.80	1.72
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.993	1.00	0.98	1.05
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.063	0.07	0.075	0.08
Ca	0.09	0.08	0.083	0.00	0.00	0.00	0.07	0.07	0.066	0.06
Na	0.955	0.965	0.962	0.07	0.091	0.093	0.00	0.00	0.00	0.00
K	0.19	0.20	0.20	0.14	0.766	0.743	0.735	0.19	0.00	0.00
Totals	5.055	5.056	5.05	5.05	5.05	5.00	8.00	8.00	8.00	8.00
Study of mineral chemistry and thermobarometry of . . .

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>Pl</td>
<td>Pl</td>
<td>Pl</td>
<td>Pl</td>
<td>Kfs</td>
<td>Kfs</td>
<td>Kfs</td>
<td>Kfs</td>
<td>Grt</td>
<td>Grt</td>
<td>Grt</td>
<td>Grt</td>
</tr>
<tr>
<td>SiO₂</td>
<td>66.60</td>
<td>66.41</td>
<td>66.74</td>
<td>65.9</td>
<td>65.8</td>
<td>66.05</td>
<td>36.51</td>
<td>36.92</td>
<td>36.65</td>
<td>32.9</td>
<td>35.52</td>
<td>36.06</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.50</td>
<td>0.38</td>
<td>0.00</td>
<td>0.01</td>
<td>0.08</td>
<td>0.05</td>
<td>0.44</td>
<td>0.00</td>
<td>0.36</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.35</td>
<td>0.28</td>
<td>1.80</td>
<td>3.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>27.90</td>
<td>28.18</td>
<td>27.73</td>
<td>19.61</td>
<td>23.46</td>
<td>22.40</td>
</tr>
<tr>
<td>MnO</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>11.60</td>
<td>11.87</td>
<td>12.21</td>
<td>0.50</td>
<td>0.47</td>
<td>0.46</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>1.68</td>
<td>1.63</td>
<td>1.51</td>
<td>7.92</td>
<td>7.44</td>
<td>7.75</td>
</tr>
<tr>
<td>CaO</td>
<td>1.94</td>
<td>1.96</td>
<td>1.87</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.80</td>
<td>0.94</td>
<td>0.81</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Na₂O</td>
<td>11.30</td>
<td>11.30</td>
<td>11.46</td>
<td>1.33</td>
<td>1.50</td>
<td>1.73</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.18</td>
<td>0.11</td>
<td>0.20</td>
<td>15.72</td>
<td>15.36</td>
<td>15.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.09</td>
<td>9.13</td>
<td>9.52</td>
</tr>
<tr>
<td>Totals</td>
<td>101.7</td>
<td>101.6</td>
<td>102</td>
<td>101</td>
<td>101</td>
<td>102</td>
<td>101.8</td>
<td>101.9</td>
<td>101.7</td>
<td>91.18</td>
<td>96.61</td>
<td>96.27</td>
</tr>
</tbody>
</table>

Structure Formulae on a basis of 8 oxygens

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe(m+)</th>
<th>Fe(m)</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.88</td>
<td>2.88</td>
<td>2.88</td>
<td>3.05</td>
<td>3.295</td>
<td>3.29</td>
<td>3.30</td>
<td>2.93</td>
<td>2.99</td>
<td>2.945</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>1.11</td>
<td>1.105</td>
<td>0.97</td>
<td>0.965</td>
<td>0.97</td>
<td>1.99</td>
<td>1.986</td>
<td>1.995</td>
<td>1.895</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.02</td>
<td>0.11</td>
<td>0.197</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.181</td>
<td>1.866</td>
<td>1.30</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
<td>0.181</td>
<td>0.936</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td>0.086</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.95</td>
<td>0.966</td>
<td>0.066</td>
<td>0.075</td>
<td>0.086</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.006</td>
<td>0.011</td>
<td>0.786</td>
<td>0.768</td>
<td>0.753</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.617</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>5.04</td>
<td>5.04</td>
<td>5.05</td>
<td>5.05</td>
<td>5.05</td>
<td>5.1</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>7.63</td>
<td>7.82</td>
</tr>
</tbody>
</table>

Discussion

Petrography and field relations

Samples for this study were collected from Boland Parchin area. Figure 3 illustrates the sample localities and rock types. In the northern part of Aglek Village the massive sequences of gneiss with enter-bed of amphibolite is crop out. These sequences in the northern part of Aglemu Village show typical petrological changes, and it consists of green mica schist, amphibolite with netamoblastic textures, biotite gneiss with porphyroblastic to granoblastic textures, granite gneiss with granoblastic texture and anatectic leucogranites. This sequence not only shows mylonitic fabric but also shows a main foliation with trend of NW-SE. On the other hand, evolution of these rock units from green schist to alkali granites show that evidence for progressive metamorphism ended by anatectic phenomena and formed leucogranites in the Boland Parchin area. This granitoids are typical S-type granitoids. The Mahnesan igneous rocks occur in a number of texturally and compositionally different sub-types:

1. Granitoid (anatetic alkali granite) white to light grey in color
2. Myrmekitic alkali- granite

3. Granodiorite

1) Granitoid (anatectic alkali granite)

These rocks are exposed in Ghazikandi, Ghozlo and Davehyataghi villages. The granitoid rocks are mainly composed of coarse-grained to medium grained, white to light grey, hypidiomorphic granular and anatectic alkali granite (Fig.4a, b). Modally, most samples of granitoids belong to leuco-granite to monzogranite. These granitoids were emplaced as large diapiric intrusions very later than their magmatic crystallization that produced brecciated halos instead of metamorphic aureoles around the granitoid masses. The mineralogy is generally composed of quartz, plagioclase, K-feldspar, garnet, biotite and muscovite. Garnet and biotite are the main mafic minerals. Locally, the veins contain concentrations of almandine-rich garnet, that are up to 10-15 mm in diameter (Fig.4b, c). The igneous rocks are pale grey, holocrystalline with coarse plagioclase, K feldspar, quartz and garnet crystals. The main textures of the rocks are granular porphyric, (with relatively larger K-feldspar and garnet crystals), and cataclastic texture (crushed minerals such as garnet).
Most of coarse-grained granites show subsolvus re-crystallization, in terms of two separate feldspar crystallization, containing both plagioclase and K-feldspar. This granites show migmatitic structures (Fig. 4a) and in some places are formed as boudin in metapelite host rocks (Fig. 4d).

Fig. 4. a) S-type granite with migmatitic structure. b) S-type granite with garnet and muscovite. c) Granite with atole garnet texture. d) Anatectic (Garnet-granite) as boudinage in the Grt-Hbl schist. e, f) Deformed granite with kinked plagioclase and biotite. g) The symplectic intergrowth of quartz and K-feldspar as myrmekite. K-feldspar porphyroblast replaced by myrmekite. h) The symplectic intergrowth of quartz and plagioclase as myrmekite.
2) Myrmekitic alkali-granite (leucograniotes, considered equivalent to Duran granite in the Zanjan area with a Precambrian age).

These rocks are exposed near Boland Parchin and Aqkand villages. The rocks are composed of quartz, K-feldspar, muscovite and less common plagioclase, garnet and zircon. The myrmekitic alkali-granites are dominated by K-feldspars (around to 60 wt %). The amount of plagioclase is 10 wt % and quartz varies between 15 and 30 wt %. In total, the amounts of dark mineral do not exceed than 5 wt. % Large quartz crystals (>5mm) show undoluse extinction. There are no opaque minerals in some samples and the rocks are made of myrmekite, quartz, microcline and zoned plagioclase. There are idiomorphic garnet crystal (Fig.4e) in myrmekitic alkali-granite. These rocks are deformed regionally and in some parts small shear zones are developed. In most cases, myrmekite is associated with K-feldspar (Fig.4g), but in some places, it replaces albite plagioclase [3]. In the studied rocks, myrmekite is associated with K-feldspar (Fig.4g, h).

Field evidences and petrographic results show that the alkali-granites are S-type because of the following evidences:
1. There is not any mineralization with the alkali granite.
2. Existence of Al-rich minerals (such as Muscovite and Garnet) show that the granites have per-aluminous character and indicate the sedimentary source for them.
3. The accessory minerals such as titanite, alanite and magnetite, as indicators for I-type granites are not observed.
4. Alkali granite show migmatitic structure and preserved restitic biotite enclaves.
5. Field evidence and petrographic observations (minerals) of alkali granite show that they S-type granite.

Geochemical studies

Previous geochemical evidences show that Boland Parchin granitoid is S-type and formed in the Syn-collision tectonic setting and the source of this granite can be volcanic are rocks [11]. The supporting evidence are as follows:
SiO2: 70-76, Rock types is granite, calc-alkaline to alkaline-calcic affinity, peraluminous character, Na2O/CaO: 2-4, Na2O/K2O: 0.4-2, negative anomaly of Nb-Ta.

Mineral chemistry

In order to identify the chemical composition of K-feldspars, plagioclase, biotite, muscovite and garnet in the studied samples, two fresh and representative samples from the igneous rocks of the Boland Parchin were chosen for mineral chemistry studies. Two polished thin sections of the rocks were analysed which their localities are shown in (Figures 3 and 4).

K-feldspar

Tables 1 and 2 include the microprobe analyses of K-feldspars in the studied samples (47a and 47g). In the two samples, feldspars are clear and fresh with minimal alteration effects. Most alkali feldspars are untwined and show patchy or lamellar exsolution of albite lamellae or intergrowth with plagioclase and myrmekite associated with K-feldspar. The grain size of the K-feldspars varies considerably from a few to more than 1 cm. Figure 5b shows the composition of the alkali feldspars on Ab-An-Or triangular diagram. According to the figure, K-feldspars are orthoclase-rich.

Plagioclase

Microprobe analyses of plagioclase in the 47a and 47g samples are provided in Tables 1 and 2. the grain size is similar to that of alkali feldspars, There are no noticeable differences between the compositions of plagioclases in two samples. In Figure 5b, composition of the plagioclases are plotted on Ab-An-Or triangular diagram. According to the figure, plagioclases are Ab-rich.

Muscovite

Muscovite analyses are listed in Table 3. The number of cations is calculated on the basis of 11 Oxygens. According to Figure 5a, after [12], muscovite flakes are rich in the muscovite end-member, paragonite is the second dominant component. The mole fractions of other components are negligible.

Biotite

Microprobe analyses of biotite are presented in Table 2. The oxide totals are between 91.18 and 96.61. The amount of Ti is 0.02 (apfu). The number of cations is calculated on the basis of 11 Oxygens. Figure 5d shows that phlogopite-annite is the dominant constituent in biotite.
Table 3. Representative Muscovite analyses and structural formulae.

<table>
<thead>
<tr>
<th>Sample</th>
<th>47a</th>
<th>47a</th>
<th>47g</th>
<th>47g</th>
<th>47g</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.43</td>
<td>47.42</td>
<td>46.95</td>
<td>46.80</td>
<td>47.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.50</td>
<td>1.30</td>
<td>0.13</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>36.90</td>
<td>36.94</td>
<td>37.36</td>
<td>37.36</td>
<td>37.42</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.08</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>FeO₂</td>
<td>1.57</td>
<td>1.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.35</td>
<td>0.41</td>
<td>1.41</td>
<td>1.36</td>
<td>1.41</td>
</tr>
<tr>
<td>MgO</td>
<td>0.07</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>0.90</td>
<td>0.84</td>
<td>0.43</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.43</td>
<td>0.57</td>
<td>0.64</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>K₂O</td>
<td>11.27</td>
<td>10.95</td>
<td>10.80</td>
<td>10.90</td>
<td>10.90</td>
</tr>
<tr>
<td>Totals</td>
<td>99.7</td>
<td>99.7</td>
<td>99.7</td>
<td>99.7</td>
<td>99.7</td>
</tr>
</tbody>
</table>

Structural Formulae on a basis of 11 oxygens

<table>
<thead>
<tr>
<th>Si</th>
<th>3.03</th>
<th>3.00</th>
<th>3.04</th>
<th>3.034</th>
<th>3.035</th>
<th>3.031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.024</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>2.78</td>
<td>2.764</td>
<td>2.85</td>
<td>2.86</td>
<td>2.85</td>
<td>2.86</td>
</tr>
<tr>
<td>Cr(3+)</td>
<td>0.076</td>
<td>0.086</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Cr(2+)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.086</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.045</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Totals</td>
<td>7.00</td>
<td>6.98</td>
<td>6.987</td>
<td>7.00</td>
<td>6.994</td>
<td>6.98</td>
</tr>
</tbody>
</table>
Garnet
The grain size of garnets is up to 1.5 cm in diameter. Garnet compositions are presented in Tables 1 and 2. In general, the garnets are Fe-rich with almandine component varying between 80 and 90 %. Totals oxides are between 99.85 and 102. Ti has not been detected or may occur in very low amounts. Figure 5c shows the chemical composition of the analysed garnets on the Alm, Pyp and (Grs, SpS) triangular diagram. Stoichiometry and the Fe3+ content of garnets were calculated based on eight cations and charge balance constraints for O = 12.

Thermobarometry
There are not many suitable assemblages in the Boland Parchin igneous rocks for thermobarometry. Pressure and temperature during formation of the studied granites were estimated using conventional geothermobarometric methods. Two feldspars phase relations thermometry (e.g. [13], [14]), Fe-Mg exchange between garnet and biotite thermometer using calibrations of [15] and [16] were applied to granites. Solution models of [17] and [18] are used for garnets. For pressure estimation of the formation of granites GPMB (garnet-plagioclase-muscovite-biotite) barometer [19] were employed. Garnets with highest Mg contents and biotites with highest Ti content were used to find P-condition.

Using thermometry of Solvocalc program, temperature for formation of granitoids are 510 to 540 °C at 5 and 7 Kbar pressures respectively, (Fig. 7). [13] Derived an improved graphical thermometer by making some modifications to [20] thermometer. Composition of the Boland Parchin igneous feldspars plotted in this graphical thermometer in (Fig. 6) give a yield temperature below 350 °C. These temperatures are far below the solidification temperature of the granitic magma. Therefore all temperatures obtained from feldspar thermometry reflect sub-solidus re-equilibrium of the feldspars. The calculated temperature by Fe-Mg exchange between garnet and biotite thermometer using calibrations of [15] and [21] is 583 °C for granitoids. The pressure estimated for the formation of granitoids of Boland Parchin area, using GPMB barometry (garnet-plagioclase-muscovite-biotite) pressure, is 4.5 kbar.

Using multiple equilibria calculation and THERMOCALC (3.2) program, temperature and pressure have been calculated for the formation of the granitic rocks. The results of thermobarometry using multiple equilibria calculation and THERMOCALC (3.2) program are 626±50°C and 8.3±2 kbar.
Study of mineral chemistry and thermobarometry of . . .

Fig. 6. Two feldspars phase relations thermometry of granitoid (graphical thermometer).

Fig. 7. Using thermometry by Solvocalc program, temperature for formation of granitoids is calculated 510 to 540 °C for the maximum pressure (5 and 7 Kbar).

Conclusion
Field evidences and petrographic results, lack of extrusive equivalent of rocks, existence of restitic micaceous enclaves (restitic biotite) and mineralogical features (existence of muscovite and garnet) all indicate that Boland Parchin granitoids may be S-type.

Granitoids of Boland Parchin, contains minerals such as Quartz, K-feldspars, Plagioclase, Biotite and Al-rich minerals (such as Muscovite and Garnet). Chemical compositions of K-feldspars, Plagioclase, Biotite, Muscovite and Garnet in the studied samples show that K-feldspars are Or-rich, plagioclase are Ab-rich, muscovite flakes are rich in the muscovite end-member, phlogopite-annite is the dominant constituent in biotite and chemical composition of the analysed garnets show that they are Alm-rich. Pressure and temperature of formation of the studied granitoids were estimated using conventional geothermobarometric methods. Temperature and pressure for the formation of the granitoid rocks have been calculated 600°C and 5-8 Kbar respectively. All temperatures obtained from feldspar thermometry reflect sub-solidus re-equilibrium of the feldspars. Subsolidus re-crystallization of the igneous rocks is related to
cooling events and exhumation. The Boland Parchin granitoids magma has started to crystallize in a relatively low temperature. The estimated pressure and temperature for granitoid crystallization is well consistent with the P-T condition of the associated metapelites at the peak of metamorphism, corresponding to the depth of ca. 17-24 km.

References

